
Managing Evolution by Orchestrating Requirements
and Testing Engineering Processes

Federica Paci
and Fabio Massacci

DISI
University of Trento

Email:{federica.paci, fabio.massacci}@unitn.it

Fabrice Bouquet
and Stephane Debricon

Laboratoire d’Informatique, Université de France-Comté
{fabrice.bouquet,stephane.debricon}@lifc.univ-fcomte.fr

Abstract—Change management and change propagation across
the various models of the system (such as requirements, design
and testing models) are well-known problems in software engi-
neering. For such problems a number of solutions have been
proposed that are usually based on the integration of model
repositories and on the maintenance of traceability links between
the models.

We propose to manage the mutual evolution of requirements
models and tests models by orchestrating processes based on a
minimal shared interface. Thus, requirement and test engineers
must only have a basic knowledge about the “other” domain,
share a minimal set of concepts and can follow their “own”
respective processes. The processes are orchestrated in the sense
that when a change affects a concept of the interface, the change
is propagated to the other domain. We illustrate the approach
using the evolution of the GlobalPlatform R© standard.

I. INTRODUCTION

Change management is a well known problem in software
engineering and in particular the change propagation across
the various models of the system (such as requirements, design
and testing models). For such problem a number of solutions
have been proposed that are usually based on the idea of
integrating model repositories and on the maintenance of
traceability links.

However, such solutions are not always feasible when
the development of various design artifacts is outsourced to
subcontractors. Here is a concrete example drawn from multi-
application smart cards domain: test engineer in charge of
certifying that the card is secure might not have access to
system code (and the relative design models) simply because
he is part of a third-party company to which the certification
has been outsourced. Still, the test engineer must coordinate
with the requirement engineer to show that requirements are
achieved. In any security engineering process, the cooperation
between test engineer and requirement engineer is of primary
importance. For this process to work smoothly in presence of
changes we need to orchestrate the work of the requirement
engineer with the work of the test engineer. In many cases,
requirements evolution can have impact on a confined part of
the system. In such cases it would be beneficial to clearly
identify only those parts of the system that have been affected
by the evolution and that need to be re-tested for compliance
with requirements. In this way re-running all test cases is

avoided because it is possible to identify which new test case
need to be added to the test suite and which test cases can be
discarded as obsolete.

To address these issues, we propose a framework for man-
aging the impact of changes happening at requirement level on
testing generation process and vice versa. The key features of
the framework are model-based traceability by orchestration
and separation of concerns between the requirement and the
testing domain. Separation of concern allows the requirement
engineer to have very little knowledge about the test (process,
modeling or generation) domain, and similarly for the test
engineer. They only share a minimal set of concepts which is
the interface between the requirement and the testing frame-
works. Moreover, both engineers simply need to follow their
respective processes (i.e., requirement engineering and testing
generation process) separately. The processes are orchestrated
in the sense that when a change affects a concept of the
interface, the change is propagated to the other domain. The
interface also supports traceability between the requirement
and test models through mapping of concepts in the two
domains.

For sake of concreteness, we instantiate the requirement
framework to SI* [13] and the test framework to SeTGaM
[11]. However, our approach is independent from the specific
requirement and testing frameworks that are adopted, and can
thus be applied to other competing instantiations if these have
mapping concepts similar to the ones we propose in Section V.

In the next section we introduce the evolution of the
GlobalPlatform standard for multi-application smard cards that
will be our running example. Then we describe how changes
are managed at the requirements level (§III) and at the level
of model-based testing (§IV). Sec.V illustrates the conceptual
interface. Sec. (§VI) presents the overall orchestrated process
while Sec.VII illustrates the application of the process to the
case study. Finally we discuss related works in Sec. VIII and
conclude the paper in Sec IX.

II. GLOBALPLATFORM EVOLUTION

The most popular solution for smart cards now is Glob-
alPlatform (GP) [1] on top of Java Card [20]. Loosely speak-
ing GP is a set of card management services such as loading,



Fig. 1. Card Life Cycle in GP-2.1.1 and GP-2.2

enabling, or removing applications. The GP specification de-
scribes the card life cycle and the GP components that are
authorized to perform a transition in the life cycle: Security
Domains and Applications. Security Domains act as the on-
card representatives of off-card authorities such as the Card
Issuer or Application Providers.

The card life cycle begins with the state OP READY. Then
the card can be set to the states INITIALIZED, SECURED,
CARD LOCKED and TERMINATED that is the state where
the card cannot longer be used. During the evolution of card
life cycle between versions 2.1.1 and 2.2 of GP specification as
illustrated in Figure 1 a number of changes took place giving
authority to perform transitions to different stakeholders. In
GP-2.1.1 a privileged application can terminate the card from
any state, except CARD LOCKED. Additionally, a privileged
application can lock the card by changing card state from SE-
CURED to CARD LOCKED. However, only the issuer of the
card can move it to TERMINATED state. A security domain
is a special kind of privileged application, and therefore, has
exactly the same behavior of privileged application in terms of
card lifecycle management. In GP-2.2 two main changes with
respect to GP-2.1.1 are introduced: a) a privileged application
can terminate the card from any state if the application has
appropriate privileges; b) any privileged security domain can
trigger all card life cycle transitions while in GP-2.1.1 only
the issuer security domain can do that.

III. CHANGE MANAGEMENT FOR EVOLVING
REQUIREMENTS

SI* [13] is a modeling framework which supports se-
curity requirement analysis. SI* is part of a complete se-
curity methodology, which aims at analyzing and modeling
organizational settings and its security and dependability re-
quirements. As illustrated in Fig. 2, the SI* language 1 is

1We only mention concepts that are relevant to this work

Fig. 2. SI* conceptual model

founded on the concepts of actor, goal, resource and relations
such as AND/OR decomposition and means-end. An actor is
an entity which has intentions, capabilities, and entitlements;
a goal captures a strategic interest that is intended to be
fulfilled; a resource is an artifact produced/consumed by a
goal; AND/OR decomposition is used to refine a goal; means-
end identifies goals that provide means for achieving another
goal or resources produced or consumed by a goal/task. The
requirement analysis is an iterative process that aims at refining
the stakeholders’ goals until all high-level goals are achieved.
We use the analysis proposed by Asnar et al. [2] where the
keyword SAT denotes that the evidence is in favor of the
achievement of the the goal and DEN denotes that the evidence
is against it.

The evolution of a requirements model can be triggered by
a change request that can be placed by stakeholders, or it
can be a reaction to a previous change, or caused by external
circumstances and merely observed. A change in a SI* model
can be represented as a transition of the model from a pre-
state model, to a post-state model. A change in a pre-state
model can be detected and its impact assessed by means of an
automated analysis. The analysis evaluates the impact of the
change on the security principles that should be satisfied by the
system. These security principles are declaratively specified
by an extensible set of security patterns. A security pattern
expresses a situation (a graph-like configuration of model
elements) that leads to the violation of a security property.
Whenever a new match of the security pattern (i.e. a new
violation of the security property) emerges in the model, it
can be automatically detected and reported. The specification
of security patterns may also be augmented by automatic
remedies (i.e. templates of corrective actions) that can be
applied in case of a violation to fix the model and satisfy
the security property once again.

IV. CHANGE MANAGEMENT FOR EVOLVING TESTS

As testing generation process we consider SeTGaM [12].
The model-based testing generation process starts by the
design of the test model by the test architect: the model



Legend: A requirementis a statement about what the system should do; a test model captures the expected SUT behavior (Class diagram, State machine); a test case is a finite
sequence of test steps; a test intention is a user’s view of testing needs; a test suite is a finite set of test cases; a test script is executable version of a test case; atest stepis an
operation’s call or verdict computation; a test objectiveis an high level test intention.

Fig. 3. Basic testing concepts

should describe the expected behaviour of the system under
test (SUT). Then, the test model is used to generate the test
cases and the coverage matrix, which relates the tests with
the covered model elements. The tests are then exported, or
published, in a test repository and then executed. After the test
execution, test results and metrics are provided.

A test model consists of three different types of UML
diagrams (Fig. 3). First, a class diagram describes the data
model, namely the set of classes that represent the entities
of the system, with their attributes and operations. Second,
an object diagram provides a given instantiation of the class
diagram together with the test data (i.e. the objects) that
will be used as parameters for the operations composing the
tests. Finally, the behavior of the system is described by two
(complementary) means: a state chart diagram, and/or OCL
constraints associated with the operations of the class diagram.
The test coverage of system requirements and test objectives
is achieved by using the tags @REM and @AIM to annotate
the OCL code.

When evolution occurs, the status of the test changes de-
pending on the impact of the evolution on the model elements
covered by the test case. Evolution of status is defined by
considering two versions of the test model, M and M ′, in
which addition, modification or deletion of model elements
(operations, behaviors, transitions, etc.) have been performed.
Test may have a status new in case of a newly generated test
for a newly introduced target.

If none of the model elements covered by the test is
impacted, the test is run as is on the new version of the model
M ′, without modifying the test sequence. The test is thus said
to be reusable. More precisely, there are two cases: unimpacted
and re-executed. A test is unimpacted if the test sequence is
identical to its previous version, and the covered requirements
still exist. The test is re-executed if it covers impacted model

elements, but it can still be animated on the new version of
the model without any modification.

If a test covers model elements impacted by the evolution
of M to M ′, and if the test cannot be animated on M ′ the
test becomes obsolete. There are two cases: either the target
represents deleted model elements, and thus the test does not
make any sense on M ′ and it is said to be outdated; or, the test
fails when animated on model M ′ (e.g. due to a modification
of the system behaviour), and it is then failed. When the test
case operations can be animated but produce different outputs,
a new version of the test is created in which the expected
outputs (i.e. the oracle) are updated w.r.t. M ′. In this case the
tests have the status updated. When the test case operations
can not be animated as is in the first version of the test, a
new operation sequence has to be computed to cover the test
target. In the latter case, tests have status adapted.

To determine the status of a test when evolution takes
place, the SeTGaM approach relies on dependency analysis
that is performed to compute the differences between the
models, and their impacts on test cases. We have four different
classification suites.
• evolution test suite contains tests classified as new and

adapted;
• regression test suite contains tests classified as unim-

pacted and re-executed;
• stagnation test suite contains tests classified as outdated

and failed.
• deletion test suite contains tests, that come from the

stagnation test suite from the previous version of the
model.

V. CONCEPTUAL INTERFACE

The orchestration of the requirements engineering process
and the test generation process is based on the identification



TABLE I
REQUIREMENTS COVERAGE

Test Classification Test Status Test Result Achievement
Level

Evolution New, Adapted,Updated Pass Fulfill
Regression Unimpacted, Re-Executable Pass Fulfill
Evolution New, Adapted,Updated Fail Deny
Regression Unimpacted, Re-Executable Fail Deny
Stagnation Outdated, Failed Pass Deny
Stagnation Outdated, Failed Fail Fulfill

of a set of concepts that are shared or mappable in the two
domains: a shared concept is a concept that has the same
semantics in both domains while a mappable concept is a
concept that is related to one in the other domain. We identify
one shared concepts that is Requirement. A Requirement in
both domains represents a statement by a stakeholder about
what the system should do. The concepts of Actor, Goal,
Process are mapped on the Test Model. In particular, the
concept of Actor is used to identify the system under test
(SUT). The concepts of Goal and Process are used by the test
engineer to build the different types of Test Models. The goals
and processes in the Requirement Model are identified by a
unique name that is used to annotate the State Machine of the
Test Model and the OCL code in order to achieve traceability
between the Requirement Model and the Test Model.

Mapping of a test case’s result and status to a requirement
achievement level allows the requirement engineer to quantify
the requirement coverage after evolution. This correspondence
is reported in Table I: if the status of a test case after evolution
is new, adapted or updated, and the test result is pass the
requirement covered by the test case is fulfilled while it is
denied (i.e. we have evidence that has not been achieved) if
the test result is fail. A subtle case is present when a test case
is part of the stagnation suite (i.e. obsolete) and the test result
is fail. Here the test covers requirements that have been deleted
from the model and thus the corresponding behavior should no
longer be present (for example a withdrawn authorization) so
failing the test shows that the unwanted behavior is no longer
present.

We also consider completion indicators for the change
propagation process which indicates whether all changes in
the requirement model have been propagated to the test model.
Table II summarizes the mapping between Goal and Process
in the requirement model and the Test Model element. In a
nutshell we say that the change propagation process has been
completed if:

• for each new or modified model element in the ReM
model a new test case and an adapted are added to the
evolution test suite,

• for each model element not impacted by evolution there
is a re-executable test case in the regression test suite,

• for each model element deleted form the model there is
an obsolete test case in the stagnation test suite.

TABLE II
COMPLETION OF CHANGE PROPAGATION

Change in ReM Model Test Status Test Suite
New Element (Goal, Process) New Evolution

Modified Element (Goal, Process) Adapted Evolution
Model Element Not Impacted Re-Executable Regression

Deleted Element Obsolete Stagnation

VI. ORCHESTRATED CHANGE MANAGEMENT PROCESS

The orchestration of the test and the requirements engi-
neering processes is based on the principle of separation of
concern: the two processes should be understood as separate
processes with their own iterations, activities and techniques
for managing change.

The UML activity diagram of Fig. 4 gives a high-level
overview of the orchestrated process.

Fig. 4. Change Management Process
Legend: The diagram is divided into three partitions to distinguish between the activities
and objects under the control of users, requirement engineers, and test engineers. A user
is typically the client commissioning the testing and may be the owner of the SUT. In
the diagram, the diamonds specifies branching of the sequence of activities.

Interactions are triggered by the change request from a
stakeholder of the system. To illustrate the process, we start
from changes in the requirement domain:

1) Update ReM. The requirement engineer uses the previous
requirement model (ReM-before) and the change request
to update the model, producing ReM-after.

2) Extract New Actors, Goals, Actions. Based on the ReM-
after, new actors, goals and processes are extracted if
relevant and provided to the test engineer.



3) Update Test Model. Receiving the extracted actors, goals
and processes the test engineer based on the traceability
links between the ReM and the test model (TeM), identify
the part of the TeM that are affected by the changes in
the ReM. The test engineer thus updates the TeM and the
test suite for the updated TeM (See Sec.IV for the test
suite generation).

4) Test Execution.Then, the test engineer executes the new
test suite. The test engineer returns the test results to the
requirement engineer in a suitable table. The table shows
for each test case in the test suite the number of times
the test has been executed, the status of the test after
evolution, the TeM element and the requirements/goals
covered by the test case, and the test result.

5) Requirement Analysis. The requirement engineer evalu-
ates the matrix for each requirement covered by the test
and translates the test results into a level of achievement
(partial satisfaction/denial or full satisfaction/denial) for
the low level requirements. Once the requirement engi-
neer gets the achievement levels for low level require-
ments, he can run the requirement analysis to determine
the level of achievement also for top-level requirements.

6) Identify the problem. If some of the requirements are
not fulfilled, the requirement engineer must identify the
problem.
a If there is a problem with the ReM, the requirement

engineer must backtrack and search for an alternative
way of updating the ReM when considering the change
request that was initially passed from the user.

b If there is a problem with testing, the test engineer
must determine whether there is the need to generate
new test cases or not.

VII. APPLICATION TO CASE STUDY

We first illustrate how a change from the GP-2.1.1 to the
GP-2.2 requirement model is propagated to the test model and
thus how the test suite for the GP-2.2 test model is generated.
Then, we show how the test classification for the test model of
GP-2.2 can be used to evaluate the completion of the change
propagation process.

Fig. 5 shows the SI* model for GP-2.1.1 and 2.2. The main
actors are Global Platform Environment (OPEN), Privileged
application (App), Privileged Security Domain (SD), and
Issuer Security Domain (ISD). We only focus on the card
lifecycle transition to TERMINATED state that is the one
impacted by the evolution. This transition is represented by
the goal G5: in the GP-2.1.1 model the goal G5 is AND
decomposed in two subgoals G13 and G11’ the latter further
decomposed into subgoals in goals G8’ and G12’; in the GP-
2.2 model the goal G5 has only G12 as subgoal (labeled in
grey).

Fig. 6 represents the test model for GP-2.1.1 and GP-
2.2: transitions SetOpNopSD and SetInNopSD (dotted arrows)
are removed in GP-2.2 because they are associated with the
deleted goal G9’. The transitions SetStatusNoApp and SetSta-
tusNoApp (bolded arrows) between the states Card Locked to

!"#$%&'(")*+'#),-./0")*
!"#!#$#%&'(()

1"(1('(2314*

!"#!#$#%&*+('(()

1"(567.614*
1"(1('(238.#9*

56,:"');* <&%='>%?")* 1"/2#")*

1"(1('(2314*

1"(1('(23@66*

1"(1('(2314* 1"(1('(2314* 1"(1('(2314*

1"(<&7.614*

1"(1('(237.614*117.614* 117.614* 117.614*

Legend: Dotted arrows correspond to transitions that were part of GP 2.1.1 test model and
has been removed in the model of GP 2.2, bolded arrows represent new transitions, dashed
arrows correspond to modified transitions, while full arrows correspond to transitions not
impacted by evolution of requirements.

Fig. 6. Test Model for GP specifications 2.1.1 and 2.2

Legend: OCL code for the transition setStatusApp from CARD-LOCKED to TERMI-
NATED requested by an Application with cardTerminate privilege. The code is annotated
with the identifiers of the goals G5 (@REM G5) and G12 (@REM G12) covered by the
test cases Test 3 and Test 5.

Fig. 7. OCL code for SetStatus APDU command setting card state to
TERMINATED

Terminated are added to the test model because in GP-2.2
requirement model the decomposition of G5 goal is changed.

The traceability link between the goals in Fig. 5 and the
transitions in the test model of Fig. 6 is illustrated in Fig. 7 rep-
resenting the dynamic behavior of the transition setStatusApp.
In order to trace the transition to goals G5 and G12 , the OCL
code is annotated with the tags @REM G5 and @REM G12
referring the goals G5 and G12. Based on the traceability
link between goals and test model transitions we can generate
the test suites for GP-2.1.1 and GP-2.2 that are illustrated
respectively in Tab. III and Tab. IV. The tables only focus on
the test cases for transitions from Card Locked to Terminated
states: SetStatusNopSD and SetStatusNopApp that correspond
to setStatus command performed by a Security Domain and
Application with no Terminate privilege, SetStatusSD and
SetStatusApp correspond to setStatus command performed by
a Security Domain and Application with Terminate privilege
and SetStatusForb corresponding to a Security Domain and
Application with no Card Locked privilege. For example, since
a new goal G12 has been added to the SI* model for GP-2.2
two new test cases Test 3 and Test 5 covering G12 and its top
goal G5 have been added to the test suite.

With respect to the completion of the change propagation
process, we can see that the changes in the card life cycle
related to the state TERMINATED has been propagated from
the requirement model to the test model: two new test cases



Legend: Goals surrounded by dashed rectangles correspond to requirements that belong only to G-2.1.1 model, goals in grey are new requirements related to the card life cycle
introduced in version 2.2, and goals in white are goals corresponding to requirements that are present in both versions.

Fig. 5. Requirement Model for GP specs 2.1.1 and 2.2

TABLE III
TEST SUITE FOR GP-2.1.1

Transition Covered Test Requirement
SetStatusForb Test1 G6, G11′

SetStatusNopSD Test2 G5, G8′ , G11′
SetStatusSD Test3 G5, G8′ , G11′ , G12′

TABLE IV
TEST SUITE FOR GP-2.2

Transition Covered Test Requirement Status
SetStatusForb Test1 G6, G11 Re-executed

SetStatusNopSD Test2 G5, G8, G11 Updated
SetStatusSD Test3 G5, G8, G12, G15, G16 Updated

SetStatusNopApp Test4 G5, G11, G15 New
SetStatusApp Test5 G5, G12, G15, G16 New

Test 4 and Test 5 and two updated test cases Test 2 and Test
3 corresponding to G5 and its subgoals has been included in
the evolution test suite. Test 4 and Test 5 correspond to an
Application executing setStatus command without and with
Terminate privilege respectively, while Test 2 and Test 3 are
related to the execution of the setStatus command performed
by a Security Domain without and with Terminate privilege.

VIII. RELATED WORKS

Change management is well known for being a difficult and
costly process. However, only some requirement engineering
proposals provide support for handling change propagation and
for change impact analysis. Goal-oriented approaches such as
KAOS, Secure Tropos, and Secure i* [27], [13], [18] provide
good support for change propagation because they are based
on goal models which explicitly show relationships and depen-
dencies between goals, and also support the modeling and the
analysis of dependencies between agents. Tanabe et al. [25]
propose an approach to requirements change management that
supports version control for goal graphs and impact analysis of
adding and deleting goals. Chechik et al. [6] propose a model-
based approach to propagate changes between requirements
and design models that utilize the relationship between the
models to automatically propagate changes. Hassine et al. [14]
present an approach to change impact analysis that applies
both slicing and dependency analysis at the Use Case Map
specification level to identify the potential impact of require-
ment changes on the overall system. Lin et al. [17] propose
capturing requirement changes as a series of atomic changes
in specifications and using algorithms to relate changes in



requirements to corresponding changes in specifications.

Other works relevant to change propagation are the one
about the generation and maintenance of traceability links,
and model-to-model transformations. Most of the works on
the maintenance of traceability matrix focus on the recovery
of traceability links between requirements and artifacts of
different types [19], [22], [29], and on methods and CASE
tools for the representation and management [16], [29], [15]
of traceability links.

Model-to-model transformation techniques such as VIA-
TRA2 [28], QVT [24], and ATLAS [5] support change
propagation by means of bidirectional incremental model
synchronization. With respect to change management in test
engineering, several works about regression testing have been
proposed.There are two kinds of regression testing: code-based
regression testing and specification-based regression testing.

Code-based testing is limited to unit testing, and is mainly
applied to concurrent programs ([9]). At program level, in [8],
the authors describe how to select a tests’ subset to be used
for regression testing. This subset is defined by using data
coverage of the test w.r.t. the changes that occurred in a
program.

In the specification-based regression testing field, a variety
of techniques can be found, based on various selection cri-
teria, such as requirement coverage [7]. In [26] the authors
use EFSM models for safe regression technique based on
dependence analysis. They select test cases and compute the
regression test suite by identifying three types of elementary
modifications applicable to a machine (addition, deletion,
modification of a transition). Our approach is grounded on
these principles, but improves them by keeping the test history.
In addition, we consider three test suites fulfilling different
purposes. In [10] the authors propose a methodology to
identify impacted part of the model. A list of all depending
operations is created for each operation modification. They
identify all parts of dynamic UML diagrams in which the
behaviour of this operation can be found. This approach can
be seen as a variation of the approach proposed here, that
does necessarily consider statecharts diagrams. The authors
present in [23] a regression testing approach based on Ob-
ject Method Directed Acyclic Graph (OMDAG) using class
diagrams, sequence diagrams and OCL code. They consider
that a change in a path of the OMDAG affects one or more
test cases associated to the path. They classify changes as
NEWSET, MODSET and DELSET, which can be identified
as the elementary modifications we consider. In [21] a model-
based selective regression technique is described, based on
UML sequence diagrams and OCL code used to describe
the system’s behavior. In [4] the author describe a regression
testing method using UML class, sequence diagrams and use
case diagrams. Changes in actions are collected by observing
sequence diagrams, while changes in the variables, operations
(OCL), relationships and classes are collected by comparing
class diagrams.

IX. CONCLUSION AND FUTURE WORKS

In this paper we have proposed a novel framework for
propagating changes between requirement and testing models.
The framework supports model-based traceability by means
of orchestration and separation of concerns between the
requirement and the testing domain.

We are planning to implement the approach into the
SeCMER tool for requirements evolution management devel-
oped in the context of SecureChange European project 2. The
core of the tool is the EMF-INCQUERY [3], an incremental
EMF model query engine for change-driven transformations.
Thus a first step for tool support is to specify the map-
pings between requirements and test conceptual models in the
declarative model query language of EMF-INCQUERY. We
would like also to investigate the applicability of our approach
to security testing. Finally, we want to run a user study with
practitioners from industry to assess the perceived usefulness
of the framework in an industrial security engineering process.

ACKNOWLEDGMENT

This work has been partially funded by the EU-FP7-ICT-
IP-SecureChange (Grant No.231101), and EU-FP7-ICT-NoE-
NESSoS project (Grant No.256980).

REFERENCES

[1] Global platform specification. http://www.globalplatform.org, May,
2011. v.2.1.1 available in March’03 and v.2.2 available in March’06.

[2] Y. Asnar, P. Giorgini, and J. Mylopoulos. Goal-driven risk assessment
in requirements engineering. REJ, pages 1–16, 2011.

[3] G. Bergmann et al. Incremental evaluation of model queries over
EMF models. In Model Driven Engineering Languages and Systems,
MODELS’10. Springer, 2010.

[4] L. Briand, Y. Labiche, and G.Soccar. Automating impact analysis and
regression test selection based on uml designs. In Proc. of ICSM ’02,
page 252, 2002.

[5] J. Bzivin, G. Dup, F. Jouault, G. Pitette, and J. E. Rougui. First
experiments with the ATL model transformation language: Transforming
XSLT into XQuery. In 2nd OOPSLA Workshop on Generative Tech-
niques in the context of Model Driven Architecture, 2003.

[6] M. Chechik, W. Lai, S. Nejati, J. Cabot, Z. Diskin, S. Easterbrook,
M. Sabetzadeh, and R. Salay. Relationship-based change propagation:
A case study. In Proc. of MISE’09, pages 7–12. IEEE Press, 2009.

[7] P. K. Chittimalli and M. J. Harrold. Regression test selection on system
requirements. In Proc. of the 1st India Soft. Eng. Conf. (ISEC’08), pages
87–96. ACM, 2008.

[8] P. K. Chittimalli and M. J. Harrold. Recomputing coverage information
to assist regression testing. TSE, 35(4):452–469, 2009.

[9] I. S. Chung, H. S. Kim, H. S. Bae, Y. R. Kwon, and D. G. Lee. Testing
of concurrent programs after specification changes. In Proc. of ICSM
’99, page 199, 1999.

[10] D. Deng, P. C. Y. Sheu, T. Wang, and A. K. Onoma. Model-based
testing and maintenance. In Proc. of ISMSE’04, pages 278–285. IEEE
Press, 2004.

[11] E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon. Selective test
generation method for evolving critical systems. In REGRESSION’11.
IEEE Press, 2011.

[12] E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon. Selective test
generation method for evolving critical systems. In Proc. of ICST’11,
2011.

[13] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements
engineering for trust management: model, methodology, and reasoning.
IJIS, 5(4):257–274, 2006.

2www.securechange.eu



[14] J. Hassine, J. Rilling, and J. Hewitt. Change impact analysis for
requirement evolution using use case maps. In Proc. of the 8th Int.
Workshop on Principles of Soft. Evolution, pages 81–90. IEEE Press,
2005.

[15] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing candidate
link generation for requirements tracing: The study of methods. IEEE
Trans. Softw. Eng., 32:4–19, January 2006.

[16] IBM Rational DOORS. http://www-
01.ibm.com/software/awdtools/doors/features/.

[17] L. Lin, S. J. Prowell, and J. H. Poore. The impact of requirements
changes on specifications and state machines. Softw. Pract. Exper.,
39:573–610, April 2009.

[18] L. Liu, E. Yu, and J. Mylopoulos. Security and privacy requirements
analysis within a social setting. In Proc. of RE’03, pages 151–161, 2003.

[19] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering trace-
ability links in software artifact management systems using information
retrieval methods. ACM Trans. Softw. Eng. Methodol., 16, 2007.

[20] S. Microsystems. Runtime environment specification. Java Card
TM

platform, Connected edition. Specification 3.0, 2008.
[21] L. Naslavsky, H. Ziv, and D. J. Richardson. Mbsrt2: Model-based

selective regression testing with traceability. In Proc. of ICST’10, pages
89–98. IEEE Press, 2010.

[22] J. Natt och Dag, B. Regnell, P. Carlshamre, M. Andersson, and J. Karls-
son. A feasibility study of automated natural language requirements
analysis in market-driven development. Requir. Eng., 7(1):20–33, 2002.

[23] O. Pilskalns, G. Uyan, and A. Andrews. Regression testing uml designs.
In Proc. of ICSM’06, pages 254–264, 2006.

[24] P. Stevens. Bidirectional model transformations in QVT: Semantic issues
and open questions. In MoDELS, pages 1–15, 2007.

[25] D. Tanabe, K. Uno, K. Akemine, T. Yoshikawa, H. Kaiya, and M. Saeki.
Supporting requirements change management in goal oriented analysis.
In Proc. of RE’08, pages 3–12, 2008.

[26] H. Ural, R. L. Probert, and Y. Chen. Model based regression test suite
generation using dependence analysis. In Proc. of the 3rd Int. Workshop
on Advances in Model-based testing, pages 54–62, 2007.

[27] A. van Lamsweerde. Elaborating security requirements by construction
of intentional anti-models. In Proc. of ICSE’2004, pages 148–157, 2004.

[28] D. Varró and A. Balogh. The model transformation language of the VI-
ATRA2 framework. Science of Computer Programming, 68(3):214–234,
2007.

[29] A. von Knethen and M. Grund. Quatrace: A tool environment for (semi-
) automatic impact analysis based on traces. In ICSM, pages 246–255,
2003.


