
After-Life Vulnerabilities:
A Study on Firefox Evolution,
its Vulnerabilities, and Fixes?

Fabio Massacci, Stephan Neuhaus, and Viet Hung Nguyen

Università degli Studi di Trento, I-38100 Trento, Italy
{massacci,neuhaus,vhnguyen}@disi.unitn.it

Abstract. We study the interplay in the evolution of Firefox source
code and known vulnerabilities in Firefox over six major versions (v1.0,
v1.5, v2.0, v3.0, v3.5, and v3.6) spanning almost ten years of develop-
ment, and integrating a numbers of sources (NVD, CVE, MFSA, Firefox
CVS). We conclude that a large fraction of vulnerabilities apply to code
that is no longer maintained in older versions. We call these after-life vul-
nerabilities. This complements the Milk-or-Wine study of Ozment and
Schechter—which we also partly confirm—as we look at vulnerabilities in
the reference frame of the source code, revealing a vulnerabilitiy’s future,
while they looked at its past history. Through an analysis of that code’s
market share, we also conclude that vulnerable code is still very much
in use both in terms of instances and as global codebase: CVS evidence
suggests that Firefox evolves relatively slowly.

This is empirical evidence that the software-evolution-as-security solution—
patching software and automatic updates—might not work, and that
vulnerabilities will have to be mitigated by other means.

1 Introduction

The last decade has seen a significant push towards security-aware software de-
velopment processes in industry, such as Microsoft’s SDL [1], Cigital’s BSIMM [2],
and many other processes that are specific to other software vendors.

In spite of these efforts, software is still plagued by many vulnerabilities and
the current trend among software vendors is to counter the risk of exploits by
software evolution: security patches are automatically pushed to end customers,
support for old versions is terminated, and customers are pressured to move
to new versions. The idea is that, as new software instances replace the old
vulnerable instance, the eco-system as a whole progresses to a more secure state.

Beside the social good (improvement of the security of the ecosystem) this
model also has some significant economic advantages for software vendors: the
simultaneous maintenance of many old versions is simply too costly to continue.

? This work is supported by the European Commission under projects EU-FET-IP-
SECURECHANGE and EU-FP7-IST-IP-MASTER.



We call the time after which a software product is no longer supported that
product’s end-of-life1. Of course, having reached the end-of-life doesn’t mean
that the product is no longer in use: entire conferences are devoted to the issue
of maintaining and wrapping legacy code. This product existence in after-life can
have interesting security implications for the security of the ecosystem because
a product should only reach end-of-life when

– the number of unpatched vulnerabilities in that product is small; or
– the number of active users of after-life code is small.

The key question that we try to address in this paper is whether there is
some empirical evidence that software-evolution-as-a-security-solution is actually
a solution, i.e., leads to less vulnerable software over time.

In this paper, we report our empirical findings on a major empirical study on
the evolution of Mozilla Firefox. After studying 899 vulnerabilities in Mozilla
Firefox from versions v1.0 to v3.6, we find:

1. Many vulnerabilities for Firefox versions are discovered when these versions
are well in their after-life. These after-life vulnerabilities account for at least
30% for Firefox v1.0.

2. Most disturbingly, there are still many after-life instances of Firefox.
3. There exists a statistically significant difference between local vulnerabilities

(i.e., those discovered and fixed in a same version) and inherited vulnera-
bilities (i.e., those discovered in version x, but applicable also to some ver-
sion y < x) or foundational (i.e., inherited from the first version). By pure
statistics change, foundational vulnerabilities are significant more than they
should be, meanwhile, inherited on are significant less than they should be.

4. A possible explanation of this phenomenon is slow code evolution: a lot of
code is retained between released versions. Code originating in Firefox v1.0
is over 40% of the code in v3.6.

These findings show that Ozment and Schechter’s notion of foundational
vulnerabilities [3] can be generalized to the more general case of inherited vul-
nerabilities. Ozment and Schechter’s limitation of to foundational vulnerabilities
(instead of the more general class of inherited ones) might be due to their partic-
ular case study, or might be due to a methodological specialty, which we analyze
in §5. However we are not able to make sharp conclusions yet: foundational vul-
nerabilities are significantly more than they should be but inherited ones are
significantly less than they should be. None of them is the majority.

These results could be explained by the quality of the slow evolution where
code of v1.0 (i.e., foundational code) largely dominates the inherited part: the
good fraction of the code is the one that is retained.

The existence of many after-life vulnerabilities (contribution 1) and many
after-life survivors (contribution 2), in spite of producers’ efforts to eradicate

1 Some companies provide security patches but not regular bugfixes for out-of-date
products. In this case end-of-life is the point when all maintenance stops.



Bug
(ID, Reported Date, 

Description, Reporter)

*

*

*

*

*

4fixes

*

4has

Vulnerable Version

(Version number)* *

BUGZILLA NVD

4has

MarketShare
(Month, Version, Share, #Users)

Revision
(File, Branch, Tag, Change Date, 

Commit Message)

CVS

Advisory
(ID, Description, Fixed Version)

MFSA

CVE

(CVE ID)

NVD

LOC
(Original Version, Inherited 

Version, #LOC)

CVS

Rectangles denote tables; icons at the top left corner of tables denote the source database.
Two additional tables (not shown) are used to trace back the evolution of individual lines
of code from CVS and Mercurial, and Firefox’s market share.

Fig. 1. Simplified database schema

them, is an interesting phenomenon by itself. It shows that security pushes during
deployment and the active life of the project cannot eliminate vulnerabilities.

Further, it shows that software-evolution-as-security-solution is not really a
solution: the fraction of vulnerable software instances that is globally present
may be too high to ever attain herd immunity [4].

The remainder of this paper is structured as follows. First, we describe our
methods of data acquisition and experiment setup (§2), after which we introduce
important concepts such as foundational or inherited vulnerability (§3). Next, we
report our detailed findings on after-life vulnerabilities (§4), revisit and challenge
the “Milk or Wine” findings (§5), and present the data on software evolution
(§6). Finally, we analyze the threats to validity (§7) and conclude by discussing
our findings (§9).

2 Data Acquisition and Experiment Setup

Here we briefly describe how to acquire aggregated vulnerability data by the
integration of a number of data sources; a more complete description is contained
in a previous work [5].

Fig. 1 presents the abstract schema of our database and shows our data
sources. The Advisory table holds a list of Mozilla Firefox-related Security Ad-
visories (MFSA).2 Rows in this table contain data extracted from MFSA (e.g.,
vulnerability title, announced date, fixed versions); it also maintains links to
Bugzilla and the CVE, captured in tables Bug and CVE, respectively. The Bug
table holds Bugzilla-related information, including bugID, reported date, and
description. Some Bugzilla entries are not publicly accessible, such as reported
but unfixed vulnerabilities. In these cases, the reported date is set to the cor-
responding advisory’s announced date. The VulnerableVersion table keeps the
National Vulnerability Database (NVD) reported vulnerable version list for each
CVE. The Revision table holds information of those code check-ins that fix bugs.

There are two additional tables that help to study the evolution of Firefox in
term of code base, table LOC, and in term of global usage, table MarketShare. In

2 Not all MFSAs relate to Firefox; some relate to other Mozilla products.



Lifetimes of Firefox Versions

2005 2006 2007 2008 2009 2010 2011

1.0

1.5

2.0

3.0

3.5

3.6

tim
e 

of
 w

rit
in

g

Fig. 2. Release and retirement dates for Firefox versions.

order to estimate the market share and hence the number of users of a particular
Firefox version, we collect data on the global evolution of Firefox usage since
November 2007 from Net MarketShare3. This website collects browser data from
visitors of about 40,000 websites. It provides monthly market share data free of
charge, but does not show the absolute number of users. For this, we use Internet
World Stats4, which gives numbers of internet users since December 1995. This
website does not provide data for every month from 2007, hence we use linear
interpolation to calculate the missing values.

3 Versions and Vulnerabilities

We looked at six major Firefox versions, namely v1.0, v1.5, v2.0, v3.0, v3.5 and v3.6.
Their lifetimes5 can be seen from Fig. 2. At the time of writing, the versions of
Firefox that were actively maintained were v3.5 and v3.6. Therefore, the rect-
angles representing version v3.5 and v3.6 actually extend to the right. There is
very little overlap between two versions that are one release apart, i.e., between
v1.0 and v2.0, v1.5 and v3.0, v2.0 and v3.5, or v3.0 and v3.6. This is evidence of
a conscious effort by the Mozilla developers to maintain only up to two versions
simultaneously.

This picture seems to show a quick pace of software evolution as in the time
span of slightly more than an year, we have a new version replacing an old one.
As we shall see, this is not the case.

In order to find out to which version a vulnerability applies, we look at the
NVD entry for a particular vulnerability and take the earliest version for which
the vulnerability is relevant. For example, MFSA 2008-60 describes a crash with
memory corruption. This MFSA links to CVE 2008-5502, for which the NVD
asserts that versions v3.0 and v2.0 are vulnerable. The intuitive expectation
(confirmed by the tests) is that the vulnerability was present already in v2.0
and that v3.0 inherited it from there.

3 http://www.netmarketshare.com/
4 http://www.internetworldstats.com/emarketing.htm
5 https://wiki.mozilla.org/Releases



Table 1. Breakdown of Cumulative Vulnerabilities in Firefox

The Total row shows the cumulative vulnerabilities for each version. Other rows display
the vulnerabilities that a version inherits from retrospective ones.

Inherit Affected Version
from v1.0 v1.5 v2.0 v3.0 v3.5 v3.6

v1.0 334 255 184 142 45 13
v1.5 — 227 119 15 0 0
v2.0 — — 149 23 1 1
v3.0 — — — 102 35 5
v3.5 — — — — 73 41
v3.6 — — — — — 14

Total 334 482 452 282 154 74

Table 1 shows the breakdown of cumulative vulnerabilities affecting to each
version of Firefox. An entry at column x and row y indicates the number of
vulnerabilities applied to version x inherits from version y. Obviously there are
vulnerabilities applying for more than one version. Thus, they are counted several
times in this table. It is a mistake if we sum all numbers and conclude about the
total vulnerabilities of Firefox.

Based on versions that a vulnerability affects to, it can be classified into
following sets:

– Inherited vulnerabilities are ones affect to a series of consecutive versions.
– Foundation vulnerabilities are inherited ones, but apply also to v1.0.
– Local vulnerabilities are known to apply to only one version.

Our definition of foundational vulnerability is weaker (and thus more general)
than the one used by Ozment and Schechter [3]. We do not claim that there
exists some code in version v1.0 that is also present in, say, v1.5 and v2.0 when
a vulnerability is foundational. For us it is enough that the vulnerability applies
to v1.0, v1.5 and v2.0. This is necessary because many vulnerabilities (on the
order of 20–30%) are not fixed. For those vulnerabilities it is impossible, by
looking at the CVS and Mercurial sources without extensive and bias-prone
manual analysis, to identify the code fragment from which they originated.

When we tabulate which vulnerabilities affect which versions, we can in
theory get N = 26 − 1 different results, depending on which of the six ver-
sions is affected.6 If all N combinations were equally likely, vulnerable ver-
sions separated by not vulnerable versions would be commonplace: there are
2n − 1−

∑n
k=0(n− k) = 2n − n(n+ 1)/2− 1 such arrangements, which we call

regressions. For n = 6, that is 42 out of 63.
Once we exclude regressions, there are 6 combinations in which a vulnera-

bility only applies to a single version, 5 combinations with foundational vulner-
abilities and 10 inherited but not foundational vulnerabilities.

6 The only combination that is not allowed is when no version is affected. If no version
is affected, why is it a vulnerability?



Table 2. Examples of inherited and foundational vulnerabilities.

A vulnerability is inherited when it appears first in some version and affects a nonempty
string of consecutive versions (and no others); it is also foundational if it applies to the
first version, v1.0. Non-consecutive affected versions point to a regression, which we did
not find in the data.

Affected Version
v1.0 v1.5 v2.0 v3.0 v3.5 v3.6 Remark

× × Inherited (from v2.0)
× × × Inherited (from v2.0)

× × × × × Inherited (from v1.5)
× × × × Foundational
× Local

× Local
× × Regression (rare)

Another definition that we will use in this paper is the notion of After-life
Vulnerability : a vulnerability which applies to a version which is no longer main-
tained. Since a vulnerability can apply to many versions, the same vulnerability
can be an after-life vulnerability for v1.0 and a current vulnerability for v3.6.

4 After-Life Vulnerabilities and the Security Ecosystem

Our first research question was whether many vulnerabilities were discovered
that affected after-life versions.

As Fig. 3 shows, this is indeed the case. This figure shows the cumulative
number of vulnerabilities for each of the six Firefox versions versus time. We
also marked the respective version’s end of life. If there were no or just a few
vulnerabilities discovered after end-of-life, the slopes of the curves should be
zero, or close to zero, after that point. Since this is clearly not the case, after-life
vulnerabilities do in fact exist.

In order to evaluate the impact of after-life vulnerabilities we consider the
market share of the various versions and the attack surface of code that is around.
The intuition is to calculate the LOC on each version that are currently available
to attackers, either by directly attacking that version or by attacking the fraction
of that version that was inherited in later versions.

Let users(v, t) be the number of users of Firefox version v at time t, and let
loc(p, c) be the number of lines of code that the current version c has inherited
from the previous version p. Then the total number of lines of code in version c
is
∑

1≤p≤c loc(p, c). In order to get an idea how much inherited code is used, we
define a measure LOC-users as

LOC-users(v, t) =
∑

1≤p≤v

users(p, t) · loc(p, v). (1)



Number of Vulnerabilities in Firefox Versions

C
um

ul
at

iv
e 

N
um

be
r 

of
 V

ul
ne

ra
bi

lit
ie

s

0
10

0
20

0
30

0
40

0
50

0

2004 2006 2008 2010

V1.0
V1.5
V2.0
V3.0
V3.5
V3.6

Cumulative number of vulnerabilities for the various Firefox versions. End-of-life for a
version is marked with vertical lines. As is apparent, the number of vulnerabilities continues
to rise even past a version’s end-of-life.

Fig. 3. Vulnerabilities discovered in Firefox versions

This is an approximation because the amount of code inherited into version v
varies with time, therefore, loc(p, v) is time-dependent. In this way, we eliminate
transient phenomena for this high-level analysis.

Fig. 4 shows the development of the number of users and of LOC-users over
time. It is striking to see the number of Firefox v1.0 go down to a small fraction,
while the LOC-users for version v1.0 stays almost constant.7

An important observation is that even the “small” fraction of users of older
versions (full of after-life vulnerabilities that will never be fixed, as we have just
shown) accounts for hundreds of thousands of users. You can imagine wandering
in Florence and each and every person that you meet in the city still uses old
Firefox v1.0.

This might have major implications in terms of achieving herd immunity as
the number of vulnerable hosts would be always sufficient to allow propagation
of infections [4].

7 A generalised linear model in which the residuals are modeled as an auto-regressive
time series gives a statistically significant slope of −0.27 million LOC-users per
month for version v1.5 (p < 0.001), and comparable numbers for the other versions.



2008 2009 2010

Firefox Users

Year

U
se

rs
 [m

ill
io

ns
]

0
10

0
20

0
30

0
40

0
50

0

V1.0
V1.5
V2.0
V3.0
V3.5
V3.6

2008 2009 2010

Firefox LOC−Users

Year

LO
C

−
U

se
rs

 [m
ill

io
ns

]

0
50

0
10

00
15

00
20

00

V1.0
V1.5
V2.0
V3.0
V3.5
V3.6

Number of Firefox users (left) and LOC-users (right). While the number of users of Fire-
fox v1.0 is very small, the amount of Firefox v1.0 code used by individual users is still
substantial.

Fig. 4. Firefox Users vs LOC Users

5 “Milk or Wine” Revisited

Ozment and Schechter in their “Milk or Wine” study [3] look at vulnerabilities
in OpenBSD and find evidence that most vulnerabilities are foundational, which
they define as having been in the software in release 2.3, the earliest release for
their study.

To verify this finding in Firefox, we need the number of foundational and
inherited vulnerabilities, which are not be able to calculate from Table 1. We
obtain these values by counting a vulnerability for once based on the version
that a vulnerability is reported, and the earliest version that it applies to.

Table 3 shows the number of vulnerability entries that were created during
the lifetime of a version x (“entered for”), where the earliest version to which
it applies is y (“applies to”). In the terms of Table 2, an entry in the table
with a particular value for x and y means that the leftmost ‘×’ symbol is in the
slot corresponding to y, and the rightmost ‘×’ symbol is in the slot for x. For
example, there were 15 vulnerabilities that were discovered during the lifetime
of v3.0, which also applied to v1.5, but not to any earlier version. Since we have
no regressions (see above), these 15 vulnerabilities also apply to the intermediate
v2.0. Therefore, the total vulnerabilities applies to version x is sum of all entries
which column is greater than x and row is lesser than x. For instance, total
vulnerabilities for v2.0 = 42 + 97 + 32 + 13 + 104 + 15 + 126 + 22 + 1 = 452.

We can now easily categorise the vulnerabilities in the table according to
the categories that interest us: inherited vulnerabilities are the numbers above
the diagonal (they are carries over from some previous version); foundational
vulnerabilities are those in the first row, excluding the first element (they are
carries over from version v1.0); and local vulnerabilities are those on the diagonal
(they are fixed before the next major release and are not carried over).



Table 3. Vulnerabilities in Firefox

Number of vulnerabilities entered for a specific Firefox version (columns) and versions in
which that vulnerability originated (rows). Since we look only at vulnerabilities that have
been fixed fixed, the entries below the diagonal are all zero.

first known entered for
to apply to v1.0 v1.5 v2.0 v3.0 v3.5 v3.6

v1.0 79 71 42 97 32 13
v1.5 — 108 104 15 0 0
v2.0 — — 126 22 0 1
v3.0 — — — 67 30 5
v3.5 — — — — 32 41
v3.6 — — — — — 14

The most important claim by Ozment and Schechter was that most vulnera-
bilities are foundational. If there were no difference between foundational vulner-
abilities and others, all numbers in the table would be equal to 899/21 = 42.8.
Out of the 21 matrix entries, 5 would be foundational and 16 nonfoundational,
so there would be 5 · 899/21 = 214 foundational and 16 · 899/21 = 685 non-
foundational vulnerabilities. We have 255 actual foundational and 565 actual
nonfoundational vulnerabilities. A χ2 test on this data rejects this null hypoth-
esis (p = 1.3 · 10−3).

We can say that the vulnerabilities are not equally distributed, yet we cannot
conclude that foundational vulnerabilities are the majority of vulnerabilities as
argued by Ozment and Schechter, because they are not. They are actually less
than a third of the total number of vulnerabilities. This is even more striking
when compared with the actual fraction of the codebase that is still foundational.

What about a weaker claim? maybe most vulnerabilities are inherited (but
perhaps not necessarily foundational)? Using the same logic as above, we should
now see 6 ·899/21 = 257 local and 15 ·899/21 = 642 inherited vulnerabilities; the
actual counts are 426 and 473, respectively. This is strongly rejected (p < 10−6).

Inherited vulnerabilities are far less than they should be, under the assump-
tion of uniform distribution. These seem to show that Mozilla Firefox developers
are doing a good job of vetting out vulnerabilities. In contrast, while we find that
foundational vulnerabilities are more than they should be, we find no evidence
that they are the majority.

We believe that the difference between our results and [3] can be explained
by two factors. As we mentioned, Ozment and Schechter use a slightly different
definition of “foundational”: for them, a vulnerability is foundational if it was in
the code when they started their study. For us, a vulnerability is foundational
when it is inherited from version v1.0. However, they start their study at version
v2.3, after a significant amount of development has already happened. Applied
to our data, this would mean truncating Table 3, where we start at a later
version, truncating all columns before, and adding all rows above that version.



More formally, if we had started our study at version v, where 1 < v < 6 we
would get a new matrix m′(v) with 6− v + 1 rows and columns where

m′jk(v) =

{∑
1≤k≤vmvk if j = 1,

mj+v−1,k+v−1 otherwise.
(2)

In this aggregated matrix, much more weight is now given to the new first
row, where foundational vulnerabilities originate, and the p-values for the cor-
responding χ2 test get less and less. This is therefore grounds to suspect that
finer resolution (more intermediate versions) and truncation (not going back to
v1.0, but to some later version) would in our study produce exactly the sort of
foundational vulnerabilities that Ozment and Schechter found. In other words,
the foundational vulnerabilities in their study might well be an artifact of the
study design, which might disappear had more accurate data been available for
releases earlier then 2.3.8

Other than that, when we repeat our tests with the data presented in their
study (their Table 1 in [3]), we get high confidence that vulnerabilities are in-
herited there also, and also that they are not foundational under the uniform
distribution assumption (p < 10−6).

6 The Slow Pace of Software Evolution

While Fig. 2 seems to give a quick turn-around of versions, the actual picture
in term of the code-base is substantially different. As Fig. 5 shows, the pace of
evolution is relatively slow. Every version is largely composed by code inherited
from old versions and the fraction of new code is a relatively small one.

Looking at this picture it is somewhat a surprise that our statistical tests
reject the idea that foundational and inherited vulnerabilities are not the ma-
jority. At the same time the presence of after-life vulnerabilities, and even the
frequency of zero-day attacks is no longer a big surprise.

The large fraction of code re-use reconciliates the seemingly contradictory
information that vulnerability discovery is a hard process with the existence of
zero-day attacks: when a new release gets out, the 40% of old code has been
already targeted for over 6 months. Therefore the zero-day attack of version v
could well be in reality a six month mounting attack on version v − 1.

Observing this phenomenon from a different angle, if we assume that vul-
nerabilities are approximately uniformly distributed, then it is clear that most
surviving vulnerabilities of version v − 1 will also be present in version v.

There is a curious dip in the lines of code development for code inherited from
v1.0. For v1.5, the number goes down, as expected, but for v2.0, it goes up again.
So far, we do not have a good explanation of this phenomenon. A preliminary
explanation is that it might be due to the way in which our algorithm calculates
versions for merged branches.

8 They did of course not choose release 2.3 arbitrarily, but rather because it was
the first release where vulnerability data was consistently and reliably documented.
Therefore, they had no real choice for their initial version.



V1.0 V1.5 V2.0 V3.0 V3.5 V3.6

Size and Lineage of Firefox Source Code

Version

Li
ne

s 
of

 C
od

e 
[m

ill
io

ns
]

0
1

2
3

4

V1.0
V1.5
V2.0
V3.0
V3.5
V3.6

V1.0 V1.5 V2.0 V3.0 V3.5 V3.6

Fraction of Inherited Code

Version

F
ra

ct
io

n 
of

 C
od

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V1.0
V1.5
V2.0
V3.0
V3.5
V3.6

Evolution of Firefox codebase in absolute terms (left) and fraction of codebase (right).
The left diagram shows the size of the Firefox releases, and the right diagram normalises
all columns to a common height.

Fig. 5. Size and lineage of Firefox source code

7 Threats to Validity

Errors in NVD. we determine the Firefox version from which a vulnerability
originated by looking at the earliest Firefox version to which the vulnerability
applies, and we take that information from the “vulnerable versions” list in
the NVD entry. If these entries are not reliable, we may have bias in our
analysis. We have manually confirmed accuracy for few NVD entries, and an
automatic large-scale calibration is part of our future work.

Bias in CVS. We only look at those vulnerabilities for which we can find fixes
in the CVS. Fixes are identified by their commit messages, which must con-
tain the Bugzilla identifier; therefore, fixes that do not have that form will
escape us. This might introduce bias in our fixes (See [6]).

Bias in data collection. In addition to threats on parsing data collected from
MFSA and CVS as described in previous work [5], we also have to extract
lifetime of each source line. The extraction might bias our analysis if the
extraction tool contains bug. We also apply the same strategy discussed
in [5] to mitigate this issue.

Ignoring the severity. We deliberately ignore the severity of vulnerabilities in
our study. Because current severity scoring system, Common Vulnerability
Scoring System (CVSS), adopted by NVD and other ones (e.g., qualitative
assessment such such as critical, moderate used in Microsoft Security Bul-
letin) have shown their limitation. In accordance to [7], these systems are
“inherently ad-hoc in nature and lacking of documentation for some magic
numbers in use”. Moreover, in that work, Bozorgi et al. showed that there
is no correlation between severity and exploitability of vulnerabilities.

Generality. The combination of multi-vendor databases (e.g., NVD, Bugtraq)
and software vendor’s databases (e.g., MFSA, Bugzilla) only works for prod-
ucts for which the vendor maintains a vulnerability database and is willing



to publish it. Also, the source control log mining approach only works if the
vendor grant community access to the source control, and developers com-
mit changes that fix vulnerabilities in a consistent, meaningful fashion i.e.,
independent vulnerabilities are fixed in different commits, each associated
with a message that refers to a vulnerability identifier. These constraints
eventually limit the application of the proposed approach.
Another facet of generality, which is also our limitation, is that whether our
findings are valid to other browsers, or other categories of software such as
operating system? We plan to overcome this limitation by extending our
study to different software in future.

8 Related Work

Fact Finding papers describe the state of practice in the field [8–10]. They pro-
vide data and aggregate statistics but not models for prediction. Some research
questions picked from prior studies are “What is the median lifetime of a vul-
nerability?”[9], “Are reporting rate declining?” [9, 10].

Modeling papers propose mathematical models for vulnerabilities properties
[11–14, 10]. Here researchers provide mathematical descriptions of the vulner-
ability evolution such a thermodynamic model [14], or a logistics model [12].
Good papers in the group will provide experimental evidences that support the
model, e.g., [11–13]. Studies on this topic aim to increase the goodness-of-fit of
their models i.e., answer the question “How well does our model fit the fact?”.

Prediction papers try to predict defected/vulnerable component [15–19, 8,
20–23]. The main concern of these papers is to find a metric or a set of metrics
that correlate with vulnerabilities in order to predict vulnerable components.

Our paper can be classified in the fact finding group and the novelty of our
approach and our findings is mostly due to our ability to dig into a database
integrating multiple sources (albeit specialized to Mozilla Firefox).

9 Discussion and Conclusions

First, for the individual, we have the obvious consequence that running after-life
software exposes the user to significant risk, which should therefore be avoided.
Also, we seem to discover vulnerabilities late, and this, together with low software
evolution speeds, means that we will have to live with vulnerable software and
exploits and will have to solve the problem on another level. Vendors shipping
patches faster will not solve the problem.

Second, for the software ecosystem, the finding that there are still significant
numbers of people using after-life versions of Firefox means that old attacks will
continue to work. This means that the penetrate-and-patch model of software
security does not work, and that systemic measures, such as multi-layer defenses,
need to be considered to mitigate the problem.

These phenomena revel that the problem of inherent vulnerabilities is merely
a small part of the problem, and that the lack of maintenance of older versions



leave software (Firefox) widely open to attacks. Security patch is not made avail-
able because it is not being deployed and because users are slow at moving to
newer version of software.

In terms of understanding the interplay of the evolution of vulnerabilities with
the evolution of software we think that the jury is still out. As we mentioned,
foundational vulnerabilities are significantly more than they should be but are
less than a third of the total number of vulnerabilities. On the other side inherited
vulnerabilities are almost half of the existing vulnerabilities but are significantly
less than they should be according a uniform distribution model.

So we cannot in any way affirm that most vulnerabilities are due to foun-
dational or anyhow past errors. We need to refine these findings by a careful
analysis of the fraction of the codebase for each version.

These results have been possible by looking at vulnerabilities in a different
way. Other studies have studied a vulnerability’s past, i.e., once a vulnerability
is known, we look at where it was introduced, who introduced it etc. In our
study, we look at a vulnerability’s future, i.e., we look at what happens to a
vulnerability after it is introduced, and find that it survives in after-live versions
even when it is fixed in the current release.

We plan to look also at fixes. In particular, CVS commit messages of the
form “Fixes bug n”, “#n”, “Bug n”, “bug=n”, or related forms, where n is a
Bugzilla identifier make it possible to find the file(s) in which the vulnerability
existed, the code that fixed it, and when it was fixed. This information is already
present in our integrated database [5] and will be the subject of future studies.

We also plan to look at other software (either open-source or commercial
products) to see whether our finding is applicable to other software. And there-
fore, should it have any significant influence on practise and give advice on how
to move towards more secure software.

References

1. Howard, M., Lipner, S.: The Security Development Lifecycle. Secure software
development. Microsoft Press (May 2006)

2. McGraw, G., Chess, B., Migues, S.: Building Security In Maturity Model v 1.5
(Europe Edition). Fortify, Inc., and Cigital, Inc. (2009)

3. Ozment, A., Schechter, S.E.: Milk or wine: Does software security improve with
age? In: Proceedings of the 15th Usenix Security Symposium, Berkeley, CA, USA,
USENIX Association, USENIX Association (August 2006)

4. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Review 42(4)
(2000) 599–653

5. Massacci, F., Nguyen, V.H.: Which is the right source for vulnerabilities studies?
an empirical analysis on mozilla firefox. In: Proc. of MetriSec’10. (2010)

6. Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., Devanbu,
P.: Fair and balanced?: bias in bug-fix datasets. In: Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, New York, NY, USA,
Association for Computing Machinery, ACM Press (August 2009) 121–130



7. Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.: Beyond heuristics: Learning to
classify vulnerabilities and predict exploits. (July 2010)

8. Ozment, A.: The likelihood of vulnerability rediscovery and the social utility of
vulnerability hunting. In: Proceedings of 2nd Annual Workshop on Economics and
Information Security (WEIS’05). (2005)

9. Ozment, A., Schechter, S.E.: Milk or wine: Does software security improve with
age? In: Proceedings of the 15th Usenix Security Symposium (USENIZ’06). (2006)

10. Rescorla, E.: Is finding security holes a good idea? IEEE Security and Privacy
3(1) (2005) 14–19

11. Alhazmi, O., Malaiya, Y., Ray, I.: Measuring, analyzing and predicting security
vulnerabilities in software systems. Computers & Security 26(3) (2007) 219–228

12. Alhazmi, O., Malaiya, Y.: Modeling the vulnerability discovery process. In: Pro-
ceedings of the 16th IEEE International Symposium on Software Reliability Engi-
neering. (2005) 129–138

13. Alhazmi, O., Malaiya, Y.: Application of vulnerability discovery models to major
operating systems. IEEE Trans. on Reliab. 57(1) (2008) 14–22

14. Anderson, R.: Security in open versus closed systems - the dance of Boltzmann,
Coase and Moore. In: Proceedings of Open Source Software: Economics, Law and
Policy. (2002)

15. Chowdhury, I., Zulkernine, M.: Using complexity, coupling, and cohesion metrics
as early predictors of vul. Journal of Software Architecture (2010)

16. Gegick, M., Rotella, P., Williams, L.A.: Predicting attack-prone components. In:
Proc. of the 2nd Internat. Conf. on Software Testing Verification and Validation
(ICST’09). (2009) 181–190

17. Jiang, Y., Cuki, B., Menzies, T., Bartlow, N.: Comparing design and code metrics
for software quality prediction. In: Proceedings of the 4th International Workshop
on Predictor models in Software Engineering (PROMISE’08), ACM (2008) 11–18

18. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE Transactions on Software Engineering 33(9) (2007) 2–13

19. Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software
components. In: Proceedings of the 14th ACM Conference on Communications and
Computer Security (CCS’07). (October 2007) 529–540

20. Shin, Y., Williams, L.: An empirical model to predict security vulnerabilities using
code complexity metrics. In: Proceedings of the 2nd International Symposium on
Empirical Software Engineering and Measurement (ESEM’08). (2008)

21. Shin, Y., Williams, L.: Is complexity really the enemy of software security? In:
Proceedings of the 4th Workshop on Quality of Protection (QoP’08). (2008) 47–50

22. Zimmermann, T., Nagappan, N.: Predicting defects with program dependencies.
In: Proceedings of the 3rd International Symposium on Empirical Software Engi-
neering and Measurement (ESEM’09). (2009)

23. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Pro-
ceedings of the 3th International Workshop on Predictor models in Software En-
gineering (PROMISE’07), IEEE Computer Society (2007)


