
The (Un)Reliability of NVD Vulnerable Versions Data: an
Empirical Experiment on Google Chrome Vulnerabilities ∗

Viet Hung Nguyen and Fabio Massacci
DISI, University of Trento, Italy

{viethung.nguyen, fabio.massacci}@unitn.it

ABSTRACT
NVD is one of the most popular databases used by researchers
to conduct empirical research on data sets of vulnerabilities.
Our recent analysis on Chrome vulnerability data reported
by NVD has revealed an abnormally phenomenon in the
data where almost vulnerabilities were originated from the
first versions. This inspires our experiment to validate the
reliability of the NVD vulnerable version data. In this exper-
iment, we verify for each version of Chrome that NVD claims
vulnerable is actually vulnerable. The experiment revealed
several errors in the vulnerability data of Chrome. Further-
more, we have also analyzed how these errors might impact
the conclusions of an empirical study on foundational vul-
nerability. Our results show that different conclusions could
be obtained due to the data errors.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Software security; vulnerability analysis; NVD reliability

1. INTRODUCTION
The last few years have seen a significant interest in em-

pirical research on data sets of vulnerabilities. Public third-
party vulnerability databases, e.g., such as Bugtraq [12],
ISS/XForce [3], National Vulnerability Database (NVD) [5],
Open Source Vulnerability Database (OSVDB) [9], are mostly
preferred by researchers due to their diversity, availability,
and popularity. Among these, NVD is one of the most popu-
lar ones. The CVE-ID, i.e. the identifier of each NVD entry,
is usually used as a common vulnerability identifier among
other third-party data sources. In this type of research,
the quality of data sources play a crucial role in empirical

∗This work is supported by the European Commission under
the project EU-SEC-CP-SECONOMICS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$10.00.

research on software vulnerabilities. If the data sources con-
tain wrong data, any conclusion derived from these data
sources may be potentially invalid.

Our research started from an abnormality in the data
when we analyzed the NVD. According to our analysis of
NVD data, all of vulnerabilities in Chrome v2–v12 were
originated from version v1.0. To explain this, the follow-
ing scenarios might occur: either yet more vulnerabilities in
newer versions have not been detected, or there is a problem
in the vulnerability data of Chrome, or both.

The analysis was based on an NVD data feature called
‘vulnerable software and versions’ (or vulnerable versions for
short). This feature remarks versions of particular applica-
tions that are vulnerable to the vulnerability described in
the entry. For example, CVE-2008-7294 lists all Chrome
versions before v3.0.195.24 in its vulnerable versions: this
means that vulnerability affects Chrome v3.0 and all ret-
rospective versions. According to an archive document1,
the information reported in this feature is “obtained from
various public and private sources. Much of this informa-
tion is obtained (with permission) from CERT, Security Fo-
cus and ISSX-Force”. Furthermore, our private communica-
tions with National Institute of Standards and Technology
(NIST), host of NVD, and software vendors, have revealed
a “paradox”: NIST claimed vulnerable versions were taken
from software vendors; whereas, software vendors claimed
they did not know about this information. In other words,
the original source of this feature is unknown to the public,
and therefore its quality is unclear.

This raises a major threat to the validity of studies explor-
ing this feature such as [4,8, 10,11,14], and possibly others.
We believe this may be a strong motivation to check for the
reliability of NVD.

1.1 Contribution
The major contributions of this work are as follows:

• We present a replicable experiment to validate the reli-
ability of “vulnerable software and versions” feature of
NVD for Chrome. This experiment can be applied for
other open source applications (e.g., Firefox, Linux).

• We show that the error rates of vulnerabilities in Chrome
versions are significant. The errors are both erroneously
reporting vulnerabilities in past and future versions.

1This page is removed, but can be accessed by
url http://web.archive.org/web/20021201184650/http:
//icat.nist.gov/icat_documentation.htm

http://web.archive.org/web/20021201184650/http://icat.nist.gov/icat_documentation.htm
http://web.archive.org/web/20021201184650/http://icat.nist.gov/icat_documentation.htm

The rest of the paper is organized as follows. We present
our research question and hypothesis (§2). After that we de-
scribe the validation method (§3) that we follow to conduct
the experiment. Next, we report our result and perform
analysis on collected data (§4). We also discuss threats to
the validity and how to mitigate them (§5). Next we briefly
review studies mostly related to our work (§6). Finally, we
conclude our paper and discuss about the future work (§7).

2. RUNNING EXAMPLE AND RESEARCH
QUESTION

We elaborate a running example on foundational vulnera-
bilities of Chrome to study the impact of the (un)reliability
of NVD data. A foundational vulnerability [10] is one that
was introduced in the very first version of a software (i.e.
v1.0), but discovered later in newer versions. In theory, foun-
dational vulnerabilities have higher chance to be exploited
than others because they are exposed to attack longer than
others. By finding these vulnerabilities in v1.0, attackers
could use them to exploit recent versions (say, v20) at the
release date. As the result, foundational vulnerabilities are
a source for zero-day exploits.

By June 2012, NVD reported 539 vulnerabilities for 12
stable versions2 of Chrome3. Out of these, 460 (85.3%) are
reported as foundational. Figure 1 depicts the fraction of
foundational vulnerabilities of Chrome. Clearly, each ana-
lyzed version of Chrome is rife with foundational vulnerabil-
ities: 99.5% on average are foundational. We find unlikely
that a lot of vulnerabilities were introduced in the first ver-
sion, but none was introduced for the subsequent 11 versions.
This motivates our research question as follows.

RQ1 To what extent is the ‘vulnerable versions’ feature of
the data reported by NVD truthworthy?

To have such knowledge, for each pair of NVD entry and
software version listed in the vulnerable versions data fea-
ture, we verify whether the NVD entry impacts the corre-
sponding version or not. If it is not, this pair is an error. The
ratio of the number of error and the number of pairs is the
error rate which we use as an indicator for the unreliability.
In many cases, a small error rate is acceptable. Depending
on the type of study the acceptable threshold of errors may
vary. Here we choose the threshold of 5% which is normally
considered a threshold for statistical significance. We con-
sider the error rate as significant if the median of error rates
in individual versions is significantly greater than 5%. We
test the median of error rates, rather than the mean because
a previous study [4] has shown that vulnerabilities do not
follow the normal distribution. Hence, we test the following
hypothesis:

H1 The median of error rates for vulnerabilities reported in
Chrome versions is greater than 5%.

We employ the non-parametric tests for the median to
check for the significance.

2http://omahaproxy.appspot.com/about, visit on July
2012. This is a web application supported by Google team
for tracking releases.
3We only consider 1+ year old versions as to allow their
vulnerability data to mature.

v2 v3 v4 v5 v6 v8 v10 v12

#v
ul

ne
ra

bi
lit

ie
s

0
10

0
30

0
50

0

Non−Foundational
Foundational

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

0
0.

2
0.

4
0.

6
0.

8
1

F
ou

nd
at

io
na

l V
ul

ne
ra

bi
lit

y
R

at
io

9−
M

ay

9−
O

ct

10
−

Ja
n

10
−

M
ay

10
−

S
ep

10
−

O
ct

10
−

D
ec

11
−

F
eb

11
−

M
ar

11
−

A
pr

11
−

Ju
n

Above it is the stack bars represent the fraction of foundational and
non-foundational vulnerabilities, below it is the release date of the
versions.

Figure 1: Foundational vulnerabilities in Chrome.

3. VALIDATION METHOD
To verify 539 vulnerabilities for 12 versions of Chrome, we

need to check 5, 158 pairs4 of vulnerability and version. Such
huge amount of pairs is impossible for a manual verification.
Additionally, the manual approach is not replicable. Thus,
our proposed method is based on a repeatable and automatic
approach [13] where security bug fixes are traced back to
the code base to locate the vulnerable code responsible for
vulnerabilities. Then we can determine whether a version
claimed as vulnerable is actually vulnerable. Our method
relies on the following assumptions.

ASS1 When developers commit a bug-fix, they denote the
bug ID in the commit message.

ASS2 If the fragment of code responsible for a vulnerability
is not there then the software is not vulnerable.

ASS3 If a vulnerability is fixed by only adding code to a
vulnerable file, all versions containing the non-fixed
revision of the vulnerable file are vulnerable.

By vulnerable files we mean the files developers changed
to fix a vulnerability. Also, by code responsible for a vul-
nerability we mean the code that developers changed to fix
the vulnerability. In some cases, the changed code might
not be the vulnerable one, but it helped to remove the vul-
nerability, despite the original buggy code not being edited.
For example, a vulnerability that could lead to SQL injec-
tion attack could be fixed by inserting a sanitizer around the
source in another module. However, missing of such sani-
tizer does not mean the application is vulnerable to the same
SQL injection attack. Even though the changed code is not
buggy in some cases, we still abuse the concept and call it
code responsible.

Figure 2 sketches the steps of the proposed method. The
input of the process is a list of vulnerabilities and the output
is list of vulnerabilities annotated with vulnerable versions.
The details are as follows:

step 1 Repository mining. This step takes the list of vul-
nerabilities and the commit log (i.e. list of commits)
generated by the repository to produce commits of se-
curity bug fixes. A commit of security bug-fixes is
one that mentions a security bug ID5 in its commit

4To check the reliability of a vulnerability affecting 12 ver-
sions of Chrome, we need to check 12 pairs of vulnerability
and version.
5Bugs appear in the input list of vulnerabilities.

http://omahaproxy.appspot.com/about

Codebase

Repository

Commit Log

List of vulnerabilities

STEP 1

Repository

mining

STEP 2

Repository

back-tracing
Annotated Source Files

STEP 3

Responsible

code scanning

Revision-annotated

Responsible Code

Codebase of Version 1

Codebase of Version 2

Codebase of Version n

List of vulnerabilities

annotated with vulnerable

versions

Commits of Security

Bug-fixes

Step

Data/artifact

Control flow
Data flow

Figure 2: Validation method overview.

$ svn diff -c 95731 url_fixer_upper.cc

@@ -540,3 +540,6 @@

 bool is_file = true;

+ GURL gurl(trimmed);

+ if (gurl.is_valid() && ...)

+ is_file = false;

 FilePath full_path;

- if (!ValidPathForFile(...) {

+ if (is_file && !ValidPathForFile(...) {

start line index and number of lines
of the left, and the right revisions

added line preceded by a ‘+’

deleted line
preceded by a ‘-’

Figure 3: An excerpt of the diff of two revisions.

message and in some special patterns. These patterns
may be vary in different software. For Chrome, they
are BUG=n(,n)*, or BUG=http://crbug.com/n where n
is the bug ID.

step 2 Repository back-tracing This step takes commits of
security bug-fixes, and the annotated source files from
the repository to produce revision-annotated responsi-
ble lines of code (LoC). For each source file f in each
commit, let rfixed be the revision of this commit. We
compare revision rfixed to revision rfixed − 1 of file
f using the diff command supported by the reposi-
tory. The comparison output is in Unify Diff format,
as exemplified by Figure 3, where we compare revision
r95730 and r95731 of file url_fixer_upper.cc. By
definition, responsible LoC appears in rfixed − 1, but
not in rfixed. For instance, from Figure 3, the respon-
sible LoC is {542}. We ignore trivial responsible LoC
such as empty lines, or lines that contain only ’{’ or
’}’.
Next, we execute annotate command for rfixed − 1 of
file f to obtain the revisions of responsible LoC. Fig-
ure 4 presents an excerpt of the annotated file url_fixer
_upper.cc. We see that the revision of LoC 542 is r15.

There is a special case where the comparison between
rfixed and rfixed−1 contains no line preceded with the
minus sign. It means developers fixed the vulnerability
by adding code only (e.g., security check). In this case
we assume that all versions containing revision rfixed−
1 and lower are vulnerable (see ASS3).

step 3 Responsible code scanning. This step looks for each
revision-annotated responsible LoC in the code base
of every version. If found, we append the correspond-
ing version and the LoC to a list of version-annotated
responsible LoC (see ASS2). From this list, we can
identify vulnerable versions for each vulnerability.

Notice that there are unverifiable vulnerabilities for which
the method can not verify the corresponding vulnerable ver-
sions. This could be due to a couple of reasons. First, there

$ svn annotate -c 95730 url_fixer_upper.cc

...

537: 15 initial.commit PrepareStringForFile...

538: 15 initial.commit

539: 15 initial.commit bool is_file = true;

541: 8536 estade@chromium.org FilePath full_path;

542: 15 initial.commit if (!ValidPathForFile(...)) {

543: 15 initial.commit // Not a path as entered,

...

committed revision committer

Figure 4: An excerpt of the annotation.

is no corresponding security bug for a vulnerability. Second,
step 1 may not be always able to determine the commit for
security bug-fixes of vulnerabilities.

Table 1 shows a few examples of Chrome vulnerabilities
where we apply the method to verify their vulnerable ver-
sions. The two first columns indicate the input of the method
where we have list of NVD entries and their corresponding
bug. We additionally annotate the vulnerable versions re-
ported by NVD for each entry next to the CVE-ID. The next
columns show the outputs of the steps. The dash line indi-
cates the data is not available. It means the corresponding
NVD entry is not verifiable.

For a better understanding, we describe how the NVD
entry 2011-2822 is verified as in Table 1. This vulnerability
is reported to affect Chrome v1 up to v13. Its corresponding
bug is 72492. In step 1, by scanning the log, the bug fix
is found at revision r95731 of file url_fixer_upper.cc. In
step 2, we diff revision r95730 and r95731 of this file (see
Figure 3). The responsible LoC is determined as {542}.
Then we annotate r95730 of the file to get the revision of
the responsible LoC, which is {r15} (see Figure 4). In step
3, we scan for this line in the code base of all versions, and
found it in v1 to v13. Finally, we identify the vulnerable
versions for this vulnerability, which are v1–v13.

In additional, we manually checked the verification out-
put of some NVD entries (e.g., 2011-1120, 2011-3087, and
2011-1124) for the correctness of the method. The detail
validation of these entries is provided in [7]

4. RESULTS AND EXAMPLE REVISED
We apply the proposed method to verify vulnerabilities of

major versions of Chrome from v1 to v12. By June 2012,
NVD reported 539 entries that allegedly affect these versions
of Chrome. Out of these, 503 entries have links to 552 secu-
rity bugs in Chrome Issue Tracker in their references section.
The method took 16 hours on a 3 x quad-core 2.83GHz Linux
machine with 4GB of RAM to complete.

As the result, 167 NVD entries (31%) are verifiable, and
372 (69%) are unverifiable. Among the verifiable ones, 134
(81%) have errors, i.e. their verified vulnerable versions
are different than reported ones. Among the unverifiable,
36(10%) do not have corresponding bugs, and for 336(90%)
we could not locate their commits of security bug fixes. We
have done a qualitative analysis on these entries and found
that they are bugs in external projects used in Chrome, e.g.,
WebKit – the HTML rendering engine, V8 – the java script
engine, and so on. Therefore, their commits of bug fixes do
not exists in the repository of Chrome. Later we will discuss
how to work around this problem as a part of future work.

In the following, we analyze the difference of vulnerabil-
ities in individual Chrome versions. Let cve be an NVD
entry, and v be the version in analyzed, we define:

• V (cve): is a set of reported vulnerable versions of cve.

Table 1: The execution of the method on few Chrome vulnerabilities.

input Output of step 1 Output of step 2 Output of step 3

CVE-ID of NVD
entry

Corresponding
Bug

Commits for Bug-fixes Revision-annotated
responsible LoC

Version-annotated responsible
LoC

Verified vulnerable
versions

2011-2822 (v1–v13) 72492 url fixer upper.cc1 (r95731) 〈r15, 542〉 〈v1− v13, 542〉 v1–v13
2011-4080 (v1–v8) 68115 media bench.cc2 (r70413) 〈r26072, 352〉, 〈r53193, 353〉 〈v3− v8, 352〉, 〈v5− v8, 353〉 v3–v8
2012-1521 (v1–v18) 117110 – – – –

1: chrome/browser/net/url_fixer_upper.cc 2: media/tools/media_bench/media_bench.cc

ER ER'

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Pe
rc

en
ta

ge

(a) Error Rate

P−Error F−Error B−Error

0.
00

0.
10

0.
20

0.
30

P
er

ce
nt

ag
e

(b) Types of Error

In the whicker-box plot, the whickers represent the min and max
value, the bold line in the middle is the median value, and the lower
and upper part of the box are the quartile of the distribution. The
blue dash line at 0.05 shows the threshold of error rate.

Figure 5: The errors in vulnerable version data of
NVD entries for Chrome.

• V ′(cve): is a set of verified vulnerable versions of cve.
If cve is unverifiable, V ′(cve) = ⊥.

• verified(v) = {cve|v ∈ V ′(cve)}: is the cve which re-
sponsible code is detected in version v.

• erroneous(v) = {cve|v ∈ V (cve) ∧ v 6∈ V ′(cve)}: is the
set of verifiable cve which responsible code is not de-
tected in version v.

• unverifiable(v) = {cve|v ∈ V (cve) ∧ V ′(cve) = ⊥}: is
the set of unverifiable cve of version v.

For example, according to Table 1, V (2011-4080) = {v1− v8},
V ′(2011-4080) = {v3− v8}. Then, 2011-4080 is a verified
cve in v3 (i.e. 2011-4080 ∈ verified(v3)), but an erroneous
cve in v1 (i.e. 2011-4080 ∈ erroneous(v1)).

By ignoring the unverifiable vulnerabilities, the error rate
of a version v of Chrome is defined as the ratio of the number
of erroneous vulnerabilities of v by the number of verifiable
vulnerabilities of v, as shown in the following formula:

ER(v) =
|erroneous(v)|

|verified(v)|+ |erroneous(v)| (1)

Being more optimistic, we assume all unverifiable vulnera-
bilities are all correct. The error rate is rewritten as follows:

ER′(v) =
|erroneous(v)|

|unverifiable(v)|+ |verified(v)|+ |erroneous(v)|
(2)

Figure 5(a) shows the box plots for the distribution of the
error rates in Chrome versions. In a box plot, the whickers
represent the min and max values, the bold line in the mid-
dle is the median, and the lower and upper parts of the box
are the quartiles of the distribution. According to the fig-
ure, since the median of both error rates ER,ER′ are much
greater than 5%. It remarkably denotes that the number of
erroneous vulnerabilities is not negligible. This is confirmed

v2 v3 v4 v5 v7 v9 v12

#v
ul

ne
ra

bi
lit

ie
s

0
50

10
0

15
0

20
0

Non−Foundational
Foundational

● ● ● ●
● ●

● ● ● ● ●● ● ● ●
● ●

● ● ● ● ●

0
0.

2
0.

4
0.

6
0.

8
1

F
ou

nd
at

io
na

l V
ul

ne
ra

bi
lit

y
R

at
io

v2 v3 v4 v5 v7 v9 v12

#v
ul

ne
ra

bi
lit

ie
s

0
50

10
0

15
0

20
0

Non−Foundational
Foundational

●

●
●

●
● ●

● ● ●

● ●

●

●
●

●
● ●

● ● ●

● ●

0
0.

2
0.

4
0.

6
0.

8
1

F
ou

nd
at

io
na

l V
ul

ne
ra

bi
lit

y
R

at
io

Figure 6: Verifiable (left) vs. Verified (right) vul-
nerabilities.

in the one-sided Wilcoxon rank-sign test where the null hy-
pothesis is “the median of error rates is 5%”, and the alter-
native hypothesis is H1. The returned p-value for ER and
ER′ are almost zero (2.44·10−4, and 1.22·10−4respectively).
It means the error rates (both ER and ER′) did not ran-
domly happen and therefore are significantly greater than
5%.

We break down erroneous vulnerabilities into following
categories:

• stretched-past error (P-error): is the set of erroneous
vulnerabilities whose version v is older than all versions
that the NVD entries are verified to impact to.

P-error(v) =
{

cve ∈ erroneous(v)|v < min(V ′(cve))
}

• future-version error (F-error): is the set of erroneous
vulnerabilities whose version v is newer than all ver-
sions that the NVD entries are verified to impact to.

F-error(v) =
{

cve ∈ erroneous(v)|v > max(V ′(cve))
}

• beta error (B-error): is the set of erroneous vulnera-
bilities whose corresponding NVD entries only impact
non-official versions, i.e. V ′(cve) = ∅.

B-error(v) =
{

cve ∈ erroneous(v)|V ′(cve) = ∅
}

Similarly to (1), we calculate the stretched-past error rate,
future-error rate, and beta error rate. Figure 5(b) reports the
distributions of these rates. The P-error is slightly greater
than F-error, and both of them are much greater than B-
error. B-error seems to be negligible. We employ Wilcoxon
rank-sum test to compare each pair of error categories. Since
one category is compared with two other ones, the Bonfer-
roni correction is applied i.e. the significance level is di-
vided by 2: α =0.05 /2 = 0.025. The test result confirms
that both P-error and F-error are significantly greater than
B-error since the returned p-values are less than α. The
p-value = 0.03 > α of the comparison between P-error and
F-error can be considered an evidence (even if not signifi-
cant) that P-error is greater than F-error.

Hereafter we revise the running example about founda-
tional vulnerability in Chrome. We assume that the same

Month since released

V
ul

ne
ra

bi
lit

y
co

un
t

0 10 20 30 40

0
5

10
15

20

0 10 20 30 40

−
4

−
2

0
2

4

Month since released

La
pl

ac
e

fa
ct

or

●●●●

●

●●●
●
●●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●
●

●●●●●●

●

●●●
●
●●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●
●

●

●

(a) Verifiable vulnerabilities

Month since released

V
ul

ne
ra

bi
lit

y
co

un
t

0 10 20 30 40

0
5

10
15

20

0 10 20 30 40

−
4

−
2

0
2

4

Month since released

La
pl

ac
e

fa
ct

or

●●●●●●●●
●

●
●

●

●●●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●

●●●●●●●●●●●
●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●

● ●
●

●

(b) Verified vulnerabilities

Figure 7: Trends in foundational vulnerability dis-
covery.

ratio of errors would be applied in the unverifiable vulnera-
bilities. Therefore, in following analysis we study the impact
of error in verifiable vulnerabilities when we study the trend
of foundational vulnerability.

We have two data sets: Verifiable and Verified. The for-
mer is the set of verifiable vulnerabilities that we could verify
by the proposed method. Their vulnerable versions are re-
ported by NVD. The latter is also the same set, but their
vulnerable versions are verified.

Figure 6 illustrates the fraction of foundational vulnera-
bilities in each version. Left is based on Verifiable, and right
is based on Verified. In this figure, The circles denote the
percentage of foundational vulnerabilities. By looking at
the left picture, even though the absolute number of foun-
dational vulnerabilities decreased, their fractions are almost
unchanged. Additionally, as aforementioned, it is strange
that vulnerabilities are only introduced in v1.0, but none
are introduced in later versions. However, by looking at the
right side, this phenomenon disappears. Moreover, there is a
decreasing trend in the foundational vulnerabilities fractions
from v2.0 to v12.0. We additionally employ the Wilcoxon
rank-sum test on the absolute number and the fraction of
foundational vulnerabilities in each version. The test results
show that the difference between the left and the right is in-
deed not random since the returned p-values are almost zero
(i.e. 3.82 · 10−3, and 3.84 · 10−3 respectively).

Furthermore, we replicate the analysis on the trend of
foundational vulnerability discovery as described in [10]. Fig-
ure 7 exhibits the analysis result on Verifiable (Figure 7(a))
and Verified(Figure 7(b)). In the figure, left is the discov-
ery rate of foundational vulnerabilities discovered monthly
since the release date, right is the Laplace test for trend in
monthly discovered foundational vulnerabilities. Two dot-
ted horizonal lines at value 1.96 and−1.96 indicate the range
such that if a value of Laplace factor is out of this range,
it is significant evidence for either an increasing (> 1.96) or

a decreasing (< −1.96) trend in the data. Such values are
indicated as green (gray) circles. Again we see a clearly dif-
ference between two discovery rates between two data sets.
The p-value of the Wilcoxon rank-sum test is almost zero
(0.0008): this indicates that the difference is significant. We
can also see the difference in the trend of discovery. By
using Verifiable, we might observe several significant trends
(both increasing and decreasing) of foundational vulnerabil-
ity discovery. Some of these trends, however, disappear in
Verified.

In short, our experiment provides evidence that the error
in the vulnerable versions feature of NVD entries for Chrome
is not negligible. Among the errors, NVD tends to commit
more stretch-past error than others. It is one of the reasons
for the abnormality that 99.5% vulnerabilities of Chrome are
foundational. This error in NVD has significantly impact to
the analysis of foundational vulnerabilities where different
conclusions can be drawn.

5. THREAT TO VALIDITY
Construct validity includes threats affecting the approach
by means of which we collect and verify vulnerabilities. Threats
in this category come from the assumptions as follows.

By making the assumption ASS1, we delegate the com-
pleteness of our method to the responsibility of developers
and the quality control of the software vendor. According
to [2], there are two types of mistakes: the developers do not
mention the bug ID in a bug-fix commit; and the developers
mention a bug ID in a non-bug-fix commit. Also in [2], the
authors showed that the latter is negligible, while the former
does exist. To evaluate the impact of the latter mistakes,
we have done a qualitative analysis on bug-fix reports, and
we found that all analyzed bug-fix commits are actually bug
fixes. As for the former mistakes, we check the completeness
of the bug-fix commits for vulnerabilities. As discussed, we
found a large portion of vulnerabilities for which we could
not locate the bug-fix commits. Our qualitative analysis on
these vulnerabilities reveals that they originate from exter-
nal projects used in Chrome. We discuss a potential solution
addressing this threat in future work.

The second assumption ASS2 is apparently syntactical
and might not cover all the cases of bug fixes since it is
extremely hard to automatically understand the root of vul-
nerabilities. The assumption also means that if a version
contains at least one line of responsible code, this version
is vulnerable. Together with the assumption ASS3, our
method might overestimate the vulnerable versions by clas-
sifying safety code as buggy (error type I, false positive).
However, since most Chrome vulnerabilities are reported as
foundational, if we overestimate the vulnerable version, the
reported error rate is a lower bound of the actual one.

Besides, a technical threat to construct validity may be
the buggy implementation of the method. To minimize
such problem, we employ multi-round test-and-fix approach
where we ran the program on some vulnerabilities, then we
manually checked the output, and fixed found bugs. We re-
peated this until no bug was found. Finally, we randomly
checked the output again to ensure there was no mistake.
Internal validity concerns the causal relationship between
the collected data and the conclusion. Our conclusions are
based on statistical tests. These tests have their own as-
sumptions. Choosing tests which assumptions are violated
might end up with wrong conclusions. To reduce the risk we

carefully analyzed the assumptions of the tests: for instance,
we did not apply any tests with normality assumption since
the distribution of vulnerabilities is not normal.
External validity is the extent to which our conclusion
could be generalized to other applications. Our experiment
is based on the vulnerability data of Chrome. So, to have
a more generalized conclusion, a replication of this work on
other applications should be done.

6. RELATED WORK
Śliwerski et al [13] proposed a technique that automati-

cally locates fix-inducing changes. This technique first lo-
cates changes for bug fixes in the commit log, then de-
termines earlier changes at these locations. These earlier
changes are considered as the cause of the later fixes, and
are called fix-inducing. This technique has been employed in
several studies [13, 15] to construct bug-fix data sets. How-
ever, none of these studies mention how to address bug fixes
which earlier changes could not be determined. These bug
fixes were ignored and became a source of bias in their work.

Bird et al [2] conducted a study the level bias of techniques
to locate bug fixes in code base. The authors have gathered
a data set linking bugs and fixes in code base for five open
source projects, and manual checked for the biases in their
data set. They have found strong evidence of systematic
bias in bug-fixes in their data set. Such bias might be also
existed in other bug-fix data set, and could be a critical
problem to any study relied on such biased data.

Antoniol et al [1] showed another kind of bias that the
bug-fixes data set might suffer from. Many issues reported
in many tracking system are not actual bug reports, but
feature or improvement requests. Therefore, this might lead
to inaccurate bug counts. However, such bias rarely happens
for security bug reports. Furthermore, Nguyen et al [6], in
an empirical study about bug-fix data sets, showed that the
bias in linking bugs and fixes is the symptom of the software
development process, not the issue of the used technique.
Additionally, the linking bias has a stronger effect than the
bug-report-is-not-a-bug bias.

7. CONCLUSION AND FUTURE WORK
In this paper we have conducted an experiment to ver-

ify the reliability of the vulnerable versions data of Chrome
vulnerabilities reported by NVD. The experiment has re-
vealed that the error in the vulnerable versions data is no-
table. Among verifiable vulnerabilities of individual Chrome
version, approximately 25% of them are erroneous. If we
assume that all unverifiable vulnerabilities are all correct,
still more than 7% are erroneous in overall. We also demon-
strated how these erroneous vulnerabilities could potentially
impact the conclusion of foundational vulnerability study.
Another study on the impact of erroneous vulnerabilities is
further discussed in [7] . This experiment has shed a light
into the (un)reliability of the NVD, and allows researchers
to revisit the reliability of existing vulnerability databases.

However about two-third of Chrome vulnerabilities are
unverifiable because they are vulnerabilities of the external
projects used in Chrome. To be able to verify them, extra
effort is required. First, we need to link the unverifiable vul-
nerabilities to the bug ID of the external projects. This could
be done by parsing the Chrome bug report. Our qualita-
tive study on several unverifiable vulnerability reports shows

that all of them have links to bug reports of the external
projects. Second, we apply the proposed method to iden-
tify vulnerable revisions of the external projects. Finally,
we link these vulnerable revisions to the version of Chrome
by looking at the repository of Chrome where the revisions
of external projects used in individual versions of Chrome
are mentioned. For example, Chrome v12.0 uses WebKit
revision 80695, V8 revision 7138. A more detail discussion
can be found in [7] .

Also as a part of future work, we plan to evaluate the
robustness of the proposed method in identifying vulnerable
revisions correctly. We also plan to repeat the experiment
on other open source software like Firefox to have a better
insight about the reliability of NVD.

8. REFERENCES
[1] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and

Y. Guhneuc. Is it a bug or an enhancement? a
text-based approach to classify change requests. In
Proc. of CASCON’08, pages 304–318, 2008.

[2] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
balanced? bias in bug-fix datasets. pages 121–130.
ACM, 2009.

[3] IBM. Internet Security System/X-Force, 2012.
http://xforce.iss.net/.

[4] F. Massacci, S. Neuhaus, and V. H. Nguyen. After-life
vulnerabilities: A study on firefox evolution, its
vulnerabilities and fixes. In Proc. of ESSoS’11, 2011.

[5] National Institute of Standards and Technology.
National Vulnerability Database, August 2012.
http://web.nvd.nist.gov/.

[6] B. H. A. Nguyen, T.H.D.; Adams. A case study of bias
in bug-fix datasets. In Proc. of WCRE’10, 2010.

[7] V. H. Nguyen and F. Massacci. The (un)reliability of
nvd vulnerable versions data: an empirical experiment
on google chrome vulnerabilities. CoRR, 2013.
http://arxiv.org/abs/1302.4133.

[8] V. H. Nguyen and F. Massacci. An independent
validation of vulnerability discovery models. In Proc.
of ASIACCS’12, May 2012.

[9] OSVDB. The Open Source Vulnerability Database.
http://www.osvdb.org.

[10] A. Ozment and S. E. Schechter. Milk or wine: Does
software security improve with age? In Proc. of
USENIX’06, 2006.

[11] E. Rescorla. Is finding security holes a good idea?
IEEE Sec. and Privacy, 3(1):14–19, 2005.

[12] Security Focus. Bug Traq, 2012.
http://www.securityfocus.com.

[13] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proc. of MSR’05, pages
24–28, 2005.

[14] A. Younis, H. Joh, and Y. Malaiya. Modeling
learningless vulnerability discovery using a folded
distribution. In Proc. of SAM’11, pages 617–623, 2011.

[15] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse. pages 9–15. IEEE
Computer Society, 2007.

	Introduction
	Contribution

	Running Example and Research Question
	Validation Method
	Results and Example Revised
	Threat to Validity
	Related Work
	Conclusion and Future Work
	References

