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ABSTRACT
Recent years have seen a trend towards the notion of quanti-
tative security assessment and the use of empirical methods
to analyze or predict vulnerable components. Many papers
focused on vulnerability discovery models based upon either
a public vulnerability databases (e.g., CVE, NVD), or ven-
dor ones (e.g., MFSA). Some combine these databases. Most
of these works address a knowledge problem: can we under-
stand the empirical causes of vulnerabilities? Can we predict
them? Still, if the data sources do not completely capture
the phenomenon we are interested in predicting, then our
predictor might be optimal with respect to the data we have
but unsatisfactory in practice.

In our work, we focus on a more fundamental question:
the quality of vulnerability database. We provide an an-
alytical comparison of different security metric papers and
the relative data sources. We also show, based on exper-
imental data for Mozilla Firefox, how using different data
sources might lead to completely different results.

1. INTRODUCTION
Recent years have seen a growing interest in a Quanti-

tative Security Assessment : a number of books on secu-
rity metrics [11] and economics of security [10], a workshop
on security and economics (WEIS), a practitioner workshop
at USENIX (MetriCon), a more scientific one at CCS and
ESEM (QoP, now Metrisec) and a number of papers that
analyze vulnerability trends and correlate them with the
evolution and characteristics of software components.

Most of these works address a knowledge problem: can
we predict the presence of vulnerabilities? For example, Me-
neely and Williams provide some preliminary evidence that
unfocussed contributions are a potential cause for the intro-
duction of vulnerabilities in Linux [14].

If we could attain this knowledge, then developers and
testers could concentrate their efforts on components pre-
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dicted to have vulnerabilities in order to eliminate them.
Figure 1 illustrates the common schema for most research

papers. The experimenter analyzes the code for source code
metrics, ~S, and then samples one or more vulnerability databases
to determine information of vulnerable code entities, ~V . The
~S and ~V vectors are associated with timestamps, ~t. Most
economics of security papers stops here and plots data of
correlating information. Security metric papers go a step
further and feed this information to a black box (i.e., sta-
tistical correlation, machine learning trainer) that produces
a “law of vulnerability” i.e., a predictor. The final software
engineering step is then feeding other fragments of the code
base to the predictor to check whether the predictor is ac-
tually accurate on new data.

Almost all studies focus on predicting or understanding
vulnerabilities, but only few provide some claims about the
quality of the data source they used in their experiments.

1.1 The Contribution of this paper
It is clear that if the data sources do not completely cap-

ture the phenomenon, the predictor may be optimal with
respect to the data, but unsatisfactory in practice.

In this work we analyze the data sources used in past stud-
ies in order to understand which databases and database fea-
tures are used to address key research questions. We further
make a deeper analysis on the Mozilla Firefox vulnerability
databases to see the data quality of past papers. The experi-
ment shows many papers proposing vulnerability prediction
methods might have used an incomplete data source.

In the next section we discuss our research question more
in details and how its answer can impact the “traditional”
research questions in quantitative security assessment. Then
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we present a comprehensive classification of the public Data
Sources for vulnerabilities (§3). This information is the
stepping stone to understand on which data a number of
related works in quantitative security assessment has ad-
dressed their own research questions (§4). We then discuss
an experimental set-up that integrates these data sources
(§5) in order to see whether a broader picture can show the
(un)suitability of different data sources for the analysis (6).
It turns out that this is indeed the case. Finally we discuss
the threats to the validity of our experimental findings (§7)
and conclude (§8).

2. RESEARCH QUESTIONS
Below we present some of the most popular topics.

Fact Finding (RQ1). Describe the state of practice in the
field [19, 21, 22]. They provide data and aggregate
statistics but not models for prediction. Some research
questions picked from prior studies are “What is the
median lifetime of a vulnerability?” [21], “Are report-
ing rate declining?” [21, 22].

Modeling (RQ2). Find mathematical models for vulnera-
bilities propose [1–4, 22]. Working on this topic, re-
searchers raise mathematical descriptions of the evolu-
tion of vulnerability, and collect facts to validate them.

Prediction (RQ3). Predict defected/vulnerable component
[6, 9, 12, 15, 17, 19, 23, 24, 28, 29]. The main concern of
these papers is to find a metric or a set of metrics
that correlate with vulnerabilities in order to predict
vulnerable components.

If we look at the issue of the median lifetime of vulner-
ability, papers in the first group will produce statistics on
various software and the related vulnerability lifetime. Pa-
pers in the second group will identify a mathematical law
that describes the lifetime of a vulnerability e.g., a thermo-
dynamic model [4], or a logistics model [1]. The good papers
in the group will provide experimental evidences that sup-
port the model, e.g., [1–3]. Studies on this topic aim to
increase the goodness-of-fit of their models i.e., try to an-
swer the question “How good does our model fit the fact?”.

The last group will identify a software characteristics (or
metrics) that correlate with the existence of the vulnerabil-
ity, and then use this metrics to predict whether a software
component will exhibit a vulnerability during its lifetime.
These papers usually use statistics and machine learning
methods and back up their claim with some empirical evi-
dence. These studies focus on the attribute and the quality
of prediction, and they aim to answer the question “How
good we are at predicting?”

Most papers gave no or little space for the data sources
that their researches are built on. In fact, the quality of
data sources directly affects the goodness-of-fit as well as
the quality of predictions.

The preliminary study that we have done on Mozilla Fire-
fox shows a number of phenomena in the evolution of code
and vulnerabilities that make the choice of the data source
critical: the natural data source might turn out to be good
for answering a research question (e.g., the time-to-discovery-
time-to-fix) but totally inadequate to answer another closely
related question (e.g., the total vulnerabilities of a compo-
nent). This motivates our research question:

Data Quality(RQ0) : The discussion on the quality of
vulnerability sources. On other words, we want to an-
swer “Which features of vulnerability databases are
needed (useful) to answer some research questions?”,
and “Is their used data adequate for their purpose?”.

3. DATA SOURCES
There are hundreds of databases that keep track of se-

curity related issues for different software applications: on
SecurityTracker (www.securitytracker.com), we found over
157 databases and security advisories. Unfortunately, many
of them lack detailed information and are out of date, which
significantly restrict the choice of data sources to assess.
Hereafter, we describe some of the most popular (and us-
able) vulnerability databases and some of the less popular
ones that are related to our study.

We classify databases in three classes based on their tar-
get products: multi-vendor databases, vendor databases, and
others. Here, we just briefly present these databases.

Multi-vendor databases include:

• Bugtraq is an electronic mailing list about computer
security, which publishes vulnerability information of
many products, regardless of the vendor response.

• Common Vulnerabilities Exposure (CVE) is just a global
identifier dictionary for vulnerability.

• National Vulnerability Database (NVD) provides ex-
panded information and references to vulnerable soft-
ware for CVE vulnerability.

• Open Source Vulnerability Database (OSVDB) is an-
other public open vulnerability database created by
and for the security community.

• ISS/XForce is another multi-target vulnerability database
run by IBM. Each entry of ISS/XForce contains almost
the same information as Bugtraq.

The second class includes databases maintained by soft-
ware vendors, in which they announce bug and security in-
formation about their product:

• OpenBSD errata bulletin for OpenBSD.

• Microsoft Security bulletin for many products of Mi-
crosoft e.g., Windows, IE.

• Mozilla Foundation Security Advisories (MFSA) is the
vulnerability report for Mozilla products

• Bugzilla keeps track of programming bugs. In this
work, we consider two instances of Bugzilla, which are
Mozilla Bugzilla and RedHat Linux Bugzilla. The for-
mer is a defect database of all Mozilla products, and
the later includes RedHat Linux.

The third class includes all other databases. Mostly, they
are sanitized defected data of anonymous applications for
testing purpose. These databases include:

• Predictor Models In Software Engineering (PROMISE)
is a public repository that hosts many sanitized data
sets used in many prediction models.
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# ID/Title x x x x x x x x x x x x x

R
ef

. R1 Reporter x x x x x x
R2 CVE ID x x x x x x x x x
R3 References Link x x x x x x x x x

T
im

e

T1 Injection date x x
T2 Discovery date x x x x x
T3 Fixed date x x x x
T4 Published Date x x x x x x x x x x
T5 Exploit publish date x
T6 Updated Date x x x x x

Im
p
a
ct I1 Description x x x x x x x x x x x x

I2 Classifcation/Category x x x x
I3 Impact/Severity/CVSS Score x x x x x x x x
I4 Solution x x x

C
o
d
e

C1 Version at discovery x x x* x x
C2 First vulnerable version x x
C3 Other affected versions x x x x x x x x
C4 Non Vulnerable/Fixed versions x x x x x
C5 Reference to codebase x x x
C6 Source code metrics x x

*: this information is depend on software vendor e.g., in RedHat Bugzilla, this feature is the software version. Meanwhile, in Mozilla Bugzilla,
this feature is the branch version in source control.

Table 1: The common features of vulnerability databases

• NASA IV&V Facility Metrics Data Program (MDP)
is a sanitized repository that stores defected data and
metrics data for several products.

• OpendBSD Vulnerability Database (NVDB): is a vul-
nerability database of OpenBSDB constructed for study-
ing vulnerability discovery process.

To sum up this section, a comparison of databases’ fea-
tures is shown in Table 1. The features fall into four groups,
except the very basic ID/Title one.

The first one, Reference, describes the source of the vul-
nerability or cross references to other databases. All databases
credit vulnerability reporters and some have a reference to
the global dictionary, CVE.

The second group, Time, includes several features describ-
ing life-cycle of vulnerabilities. It starts with the time when
the vulnerable code is inserted into code base (T1, a.k.a.
birthday), the time when the vulnerability is first discovered
(T2), the time when the vulnerability exploit is reported
(T5), and the time when it is fixed (T3). We also denote
the time when the vulnerability is publicly announce (T4),
and the time when its information is updated (T6) e.g., new
affected version is added.

Among these time features, the Published date is avail-
able in most databases. This time is dependent on the
database maintainers and do not provide meaningful infor-
mation about the vulnerability. More interesting features
such as T1, T2, T3 only appear in some databases. There
are two databases: OSVDB and NVDB that claim to pro-
vide many time features. However, one only provides little
data (OSVDB) and one is no longer supported (NVDB).

The third group, Impact, depicts the impact of a vulnera-
bility, which are the short description (I1), the classification
(I2), the severity (I3) and the solution (I4) for the vulnera-
bility. Currently, I3 is described in both qualitative assess-
ment (i.e., low, moderate, high, critical), and quantitative
assessment (e.g., Common Vulnerability Scoring System).

The last group, Code, describes the software versions and
code base related to a vulnerability. Software version data
includes version where a vulnerability is discovered (C1);
the earliest vulnerable version (C2), and the list of ver-
sions which are/are not affected (C3, C4). The references
to source modules (C5) e.g., classes, files containing a fix,
and static code metrics of defected code (C6). None of multi-
vendor databases like Bugtraq, NVD provides this data since
it requires the permission to access code base. Observably,
vendor and multi-vendor databases only focus on C1 and C3
(vendor databases provide C1, and multi-vendor ones pro-
vide C3), and almost say nothing about others. None of
them supports the connection between vulnerabilities and
code base (C5, C6).

4. DATA USAGE BY RESEARCHERS
The work by Frei and others [7] can be easily described

as the representative of the security and economics fields. It
offers a detailed landscape of which security vulnerabilities
affect which systems but does not provide a concrete answer
to any of the research questions we have listed in Section 2.

The two first research topics (RQ1, RQ2) have a close re-
lationship. Normally, researchers observe the world (finding
facts) then introduce models describing the observed phe-
nomena and predicting future trends.
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Among the papers in these area, Rescorla [22] focuses on
the discovery of vulnerability. Although Rescorla points out
many shortcomings of NVD, his study heavily relies on it.
By studying vulnerability reports of several applications in
NVD, Rescorla introduces two mathematical models, called
Linear model and Exponential model, to identify trends in
vulnerability discovery.

Alhazmi et al. [1, 3] observe vulnerabilities of Windows
and Linux systems from different sources. For Windows sys-
tems, the data sources are mostly from NVD, other papers,
and private sources. For Linux systems, data come from
CVE and Bugzilla for Linux. The authors try to model the
cumulative vulnerabilities of these system into two models:
the logistic model and the linear model. Based on the good-
ness of fit on each model, the authors give a forecast about
the number of undiscovered vulnerabilities, and emphasize
the applicability of the new metric called vulnerability den-
sity obtained by dividing the total of vulnerabilities by the
size of the software systems. Also based on these vulner-
ability data, in [2] Alhazmi et al. compare their proposed
models with Rescorla’s [22] and Anderson’s [4]. The result
shows that their logistic model has a better goodness of fit
than others. It is an interesting topic for applying these
two approaches to various vulnerability databases and see if
conclusion changes by changing databases.

Ozment [21] points out many problems that NVD database
suffered, which are chronological inconsistency, inclusion,
separation of events and documentation. The chronologi-
cal inconsistency refers to the inaccuracy in the versions af-
fected by a vulnerability. The second problem is that NVD
does not cover every vulnerability detected in a software sys-
tem. In fact, only vulnerabilities that are discovered after
1999 and assigned CVE identifiers are included. The third
problem refers to the duplication of vulnerabilities. The last
problem is the lack of documentation. Many data fields of
NVD are not well documented, particularly, the meaning of
the data field and how the data is collected or calculated.
The papers discuss technique to address the first problem,
in which the actual bug’s birth date is obtained by analyzing
the log of the source version control. As a demonstration,
the authors set up a vulnerability database of OpenBSD.
Based on this data, Ozment [19] conducts an experiment to
test the fitness of various vulnerability discovery models.

Works focusing on prediction capability (RQ3) are the
most frequent ones. Hereafter, we briefly review studies on
this area after 2005. For older studies, interested readers
can find more detail in the review of Cata and Diri [5].

Nagappan and Ball [16] present a prediction model using
code churn for system defect density. The experiment data
come from source version control log and the defected data
of Windows 2003.

Neuhaus et al. [17] construct a tool called Vulture to pre-
dict vulnerable components for Mozilla products with the
accuracy of 50%. Vulture uses a vulnerability database for
Mozilla products for training its predictor. This database is
compiled upon three main different sources: MFSA, Mozilla
Bugzilla and CVS archive. Vulture collects the import pat-
terns and function-call patterns in many known vulnerable
modules and then applies a machine learning technique (i.e.,
Support Vector Machine) to classify new modules.

Menzies et al. [15] claim that choosing attribute metrics
is less significant than choosing how to use these metric val-
ues. In the experiment on MDP data sets, they rank differ-

ent metrics by using InformationGain values to select the
metrics for the predictor. The ranking value of a metric is
different across projects. The accuracy of the predictor is
evaluated by a probability of prediction ( pd), and a proba-
bility of false alarm (pf ). However, Zhang et al. [26] point
out that assessment using the IR notion of precision and
recall rate is better than pd,pf. Zhang et al. [27] replicate
the work in [15], with a combination of three function-level
complexity metrics to do the prediction.

Olague et al. [18] make the comparison of the predic-
tion power of three different metric suites: CK, MOOD
and QMOOD. Their experiment is conducted on six ver-
sions of Rhino, an open-source JavaScript implementation of
Mozilla. The defect data are collected from Mozilla Bugzilla.
The authors use logistic regression methods to perform the
prediction for each metric suite. In the result, the CK suite
is the superior prediction metrics for Rhino.

Zimmerman et al. [29] build a logistic regression model to
predict post-release defects of Eclipse using several metrics
on different levels of code base i.e., methods, classes, files
and packages. The defect data are obtained by analyzing
the log of the source version control. This method is detailed
in [30], and used by [17]. The final dataset is put in the
PROMISE repository. In an other work, Zimmerman and
Nagappan [28] exploit program dependencies as metrics for
their predictor. However, they did not state clearly where
the defect data come from in their study.

Shin and Williams [23,24] raise a research question about
the correlation between complexity and software security.
In order to validate these hypotheses, the authors conduct
an experiment on the JavaScript Engine (JSE) component
of the Mozilla Firefox browser. They mine the code base
of four JSE’s versions for complexity metric values. Mean-
while, faults and vulnerabilities for these versions are col-
lected from MFSA and Bugzilla. Their prediction model
is based on the nesting level metric and logistic regression
methods. Although the overall accuracy is quite high, their
experiment still misses a large portion of vulnerabilities.

Jiang et al. [12], in their work, study the prediction power
of machine learning based vulnerability discovery models.
Their experiments are based on the MDP data sets, using
many metrics belonging to three categories: code level, de-
sign level and combination of code and design level, as well
as several machine learning methods. The experiment re-
sults show that the metrics strongly impact the power of the
models, while, there is not much difference among learning
methods. Also, the most powerful metric is the combination
of both code and design level metrics, and the design metrics
are the most inferior ones.

Gegick et al. [8,9] employ automatic source analysis tools
(ASA) warnings, code churn and total line of code to im-
plement their prediction model. However, the conducted
experiments are based on private defected data sources and
they thus are difficult to reproduce.

Chowdhury and Zulkernine [6] combine complexity, cou-
pling and cohesion metrics for a vulnerability prediction
model. These values are fed to a trained classifier to deter-
mine whether the source code is vulnerable. In their exper-
iment, the authors used a vulnerability dataset for Firefox,
which is assembled from MFSA and Bugzilla.

5. INTEGRATING EMPIRICAL DATA
We first retrieve all advisories for Mozilla Firefox to ex-
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tract their features. Since these advisories are written man-
ually, one HTML page for each advisory entry, they are not
organized. Therefore, information extraction is done by a
crawler application that parses and extracts data from web
pages. An MFSA entry itself does not provide much value
information, but the announced date when the vulnerabil-
ity goes to public and the references to Bugzilla and CVE.
Next, more detail are extracted from the bug detail in the
Bugzilla as in [17,30]. Here, the interesting features are bug
identifier, CVE identifier (optional), status, resolution and
reported date. The reported date is the discovery date in
the bug life cycle.

Neither MFSA nor Bugzilla provides a full list of vulnera-
ble versions. These information can be obtained by exploit-
ing the CVE identifiers cited in each MFSA entry. Using
these CVE, we can collect the missing information on the
NVD. However, to find out affected version list of each bug
in each MFSA entry, we need to determine which NVD entry
is about which bug. We call this task CVE-to-bug mapping.

This mapping is obtained in two ways: automatic mapping
and manual mapping. The automatic mapping is relied on
the explicit CVE references in bug details, or implicit one
described in the MFSA which contains only one bug and one
CVE closed together. The manual mapping requires human
effort to understand the links between bug and CVE, and
map them together if relevant. These cases happen to the
MFSA entries that have more than one bug and CVE.

In the following, we describe common layouts in which
bugs and CVEs usually appear in an MFSA entry. To clarify,
we use the term BUG to denote a link to bugzilla, and term
CVE for link to CVE. If more than one similar term appears
in sequence, we use the star symbol (*) e.g., BUG*.

• BUG*: there is no reference to CVE, so we could not
make the mapping. This only appears in Firefox 1.0
MFSAs.

• BUG CVE: only one bug and one CVE. It is truly the
case that this bug refers to this CVE, and the map-
ping is done automatically. This occurs in most MFSA
entries.

• (CVE BUG*)*: a CVE entry is followed by many bugs,
and then other CVE and bugs. In most cases, the
CVE refers to the immediately bugs following it, some
manual efforts are needed to check the details of CVE
and relevant bugs. This layout is common to MFSAs
reported before March 2008 (mostly for Firefox 1.5).

• (BUG* CVE)*: there are many bugs followed by a CVE,
and other bugs and other CVE entries. Similar to
the prior case, the CVE is usually referred by pre-
ceding bugs, but a manual check is necessary. This
layout occurs in MFSA entries reported after March
2008 (mostly for Firfox 2.0 and higher).

The vulnerable modules in code base can be located by
mining the code archive repository, CVS - in case of Mozilla.
CVS is a source control which records all versions (a.k.a re-
visions) of source files. Each source file revision (revision
for short) is annotated with a committer name, date time
when the revision is committed to the repository, tags and
branches the revision belongs to, and a short description de-
scribing the difference between this revision and its nearest

Revision

(File, Branch, Tag, Change Date)

Bug

(ID, Dates, Description, Reporter)

Sec. Advisory
(ID, Vul., Fixed Date)

CVE

(ID, Impact, Date)

* *

*

*

*

*
CVS *

4originates

*

Affected Version

(Version number, Strategy)

4fixes *

*

Vulnerable Version

(Version number)

*

*

BUGZILLA

MFSA

NVD

NVDNVD, CVS

Figure 2: Simplified schema of our vulnerability
database. Rectangles denote tables; icons at the top
left corner of tables denote the source database.

ancestor. In case of bug fix, the description usually men-
tions the bug identifier with some special keyword such as
Fixes, Fixed, or Bug. Thank to this meaningful and seri-
ous description style, we are able to construct the bridge
from a reported bug to source modules. The approach map-
ping source modules and bugs by parsing the commitment
description is detailed in [25] and used in [17] to predict
vulnerable software components.

The next cumbersome task is to identify original revi-
sions introduced the bugs, and the bugs’ birthdays. In our
database, we gathered data according to a number of differ-
ent strategies. We maintain separated fields for birthdays,
since we do not know which strategy is more appropriate
than others. In addition, collecting all of them might help
increasing the data accuracy.

By finding the bug’s birthday, we also found the origi-
nal revisions that contain vulnerable code. Further track-
ing on software release tags, we are able to determine vul-
nerable versions of the software. For example, considering
a source file jsapi.c, the CVS reports that revision 3.214
of this file has the tag FIREFOX_2_0_RELEASE, and revision
3.220 has the tag FIREFOX_2_0_0_1_RELEASE. We can then
assume that revisions 3.x where x = 215..220 belong to ver-
sion 2.0.0.1.

In practice, a bug is often fixed in many source files. Each
of these files could have many original revisions as discussed
above. So, these files may be scattered over many versions,
and one may belong to a version which is different from
others. If it is truly the case, the similar birthday-detection
strategies can be employed to deal with the conflict. We
then obtain a list of affected software versions, a.k.a list of
vulnerable versions, or CVS-reported vulnerable list.

This CVS-reported list is then compared with one re-
ported in NVD, the NVD-reported list. If there is any
vulnerable version reported in NVD, but not in the CVS-
reported list but it exists in the potential CVS-reported list,
then we include this version into the final vulnerability list.
The potential CVS-reported list is exactly the CVS-reported
list in which the pessimistic strategy is applied.

To sum up, Figure 2 illustrates the general schema of our
vulnerability database for the specific case of Firefox.

6. DATA ANALYSIS
In order to understand the impact of a low data quality on

the research claims we first compare how data has been used
in Table 2. The Table 2 illustrates the favorite databases and
feature of past papers depended on their research problem.
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Alhazmi et al. [3] x T4,
C1, C3

T2,
C1

?

Ozment et al. [19] † x R3,
T4, C3

# R3,
T4, C3

T4,
C1

R1,
T4

T1, C2 ?

Nagappan et al. [16] x ?

Rescorla [22] † x x T4, C3

Manadhata et al. [13] # # #

Menzies et al. [15] x C6

Neuhaus et al. [17] x R3 #

Olague et al. [18] x T2,
C1

Ozment et al. [20, 21] x R3,
T4, C3

R3,
T4, C3

R3,
T4, C3

R3,
T4, C3

T4,
C1

T1,T2,T4,
C2,C4

Zhang et al. [27] x C6

Zimmerman et al. [29] x C6

Alhazmi et al. [2] x T4,
C1, C3

T2,
C1

?

Jiang et al. [12] x C6

Shin et al. [23, 24] x R3,
C1

C5

Gegick et al. [8, 9] x ?

Zimmerman et al. [28] x ?

Chowhury et al. [6] x R3,
C1

C5

Ours C3 T4,
C4

R3,
T2,
C5

†: Papers that explicitly discuss about which features are used. #: Counting of total number of vulnerability reports. ?: unknown features.

Table 2: Databases as used in recent works.

The table has two parts: the research question of each pa-
per, and the features of which database are used in each
paper. The used features are listed at the junction between
database and paper. Most of the papers only discuss the
few of the database features they use.

It is easy to see that, on the one hand, papers focusing on
fact finding, modeling prefer to time and code features, par-
ticular published time (T4) and affected versions (C3). And
most of them retrieve this data from NVD. Obviously, these
studies wish to have the vulnerability discovery time (T2),
but it is not supported by NVD, except some other vendor
databases like Bugzilla. As discussed, OSVDB has T2, but
this feature still remains empty in the majority of database
entry. This is the reason that papers in the field reluctantly
use T4 as a surrogate. Unfortunately, the connection be-
tween T2 and T4 is very weak, because T4 is completely
depended on the database maintainers. Therefore the same
vulnerability but reported in two different databases e.g.,
NVD, Bugtraq, would have different value of T4. This might
be the case that if we replay the experiments in past studies
in different databases, we would receive different conclusions
which may contradict each other.

Most papers focusing on vulnerability prediction, are in-
terested in vendor-databases. These studies need the ref-
erences from the security bugs to the corresponding code
base (feature C5) which are not supplied in any multi-vendor
database. The Table 2 shows that the data sources used in
prediction mostly come from two different groups. Databases

in the first group come from vendor bug-tracking database
[6, 17, 18, 23, 24], some analyze the source version control to
detect source files that contain bug fixes, [17, 18]. The vul-
nerability databases constructed in this way could be repro-
duced by others, and thus they are able to be cross-validated.
At opposite side, the databases of the second group are
obtained from private sources i.e., closed source like Mi-
crosoft [16], Cisco or other private companies [8, 9], or pub-
lic repository (e.g., NASA MDP, PROMISE). We have no
access to these sources and therefore we cannot say whether
each type of information was present or not.

None of papers in our survey has seriously used any im-
pact features (I1-I4). We speculate that this has two rea-
sons. First, existing research studies actually do not need
these features. Second, even if researchers need impact fea-
tures, they do not want to use them because their quality is
unknown and depended on human judgement.

In order to see the impact that a wrong data model can
have on researches, we consider here the data used for the
studies focusing on Mozilla Firefox [6,17,23]. Figure 3 shows
the three different pictures of the vulnerability landscape for
Firefox. We can easily concludes that:

• Figure 3(a) shows that the security of Firefox has sig-
nificantly worsened from version 1.0 and has moder-
ately improved from 2.0. In order words, Mozilla de-
velopers are not doing enough to secure their product.

• Figure 3(b) leads to a different conclusion that: Fire-
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(a) Fixed bugs according to MFSA (b) Present bugs according to NVD (c) Bugs reported by integrated data

Figure 3: The number of security bugs of different Firefox versions reported by MFSA and our database.

fox has significantly worsened from 1.0 and has sig-
nificantly improved from version 2.0 drop of. This is
rather the opposite of the previous one.

• Figure 3(c) again brings up a new conclusion that: a
large share of vulnerabilities of 1.5 and 2.0 has not
been fixed while only a small share of 3.0 has not been
fixed1. So not only 3.0 has less vulnerabilities but most
of them have been fixed.

Now, if we used the data of Figure 3(a) to identify code
metrics that correlate with vulnerabilities we could say that:
all data used for the training have ignored between 17% to
43% of the vulnerabilities present in the software. Particu-
larly, [6, 17, 23] might suffer from this issue if they use the
code base of 2.0 by the modest recall rates for the missing
portion of vulnerabilities. Also, the work in [18] only uses
Bugzilla as its source, it may be suffered from a similar issue.
Then its conclusion might be unsound.

Bugzilla keeps track of all vulnerabilities even if they are
not fixed, but only authorized people are able to access to
them. When a vulnerability is fixed and patch is released, an
entry about this vulnerability is appeared in MFSA. There-
fore only vulnerabilities discovered during support phase and
fixed in a patch are recorded in MFSA, other ones will not
be published and are considered to be vulnerabilities of fu-
ture versions (if any). This causes only 253 security bugs
are reported in version 2.0, meanwhile the number is actual
423 (more than 67%) and may increase.

If we use these biased data to construct predictors that
could identify unknown vulnerability we could even say that
they have been trained on the completely wrong dataset: the
vulnerabilities that have been already fixed.

7. VALIDITY
In this section we discuss about both internal and external

threats that can affect the validity of our data.

Bug in data collection. We collect data from various sources.
Some of them, MFSA and CVS, requires parsing. The
code that downloaded and parsed MFSA pages and
the code that read the CVS log, parsed for history
data, could contain bugs and thus might produce er-
rors. However, these risks were mitigated by manually

1The number of unfixed bugs in each version are determined
by the difference between MFSA and NVD.

checking for a small amount of data and then correct
the code. After collecting all data, a random check was
carried out to validate the data. If the random check
found an error, the code was then fixed. And then the
collection and random check were repeated until there
was no error.

Missing information in CVS. The mapping between bugs
and code base relies upon conventional patterns in
CVS committed messages. These patterns might be
missed in some messages due to developers’ mistakes.
However, we believe this phenomenon, if exists, rarely
happens and can be ignored since we were able to lo-
cate the corresponding code base for every fixed bug.

Generality. The combination of multi-vendor databases (e.g.,
NVD, Bugtraq) and software vendor’s databases (e.g.,
MFSA, Bugzilla) only works for products for which the
vendor maintains a vulnerability database and is will-
ing to publish it. Also, the source control log mining
approach only works if the software vendor grant com-
munity access to the source control, and developers
commit changes that fix vulnerability in a consistent,
meaningful fashion i.e., independent vulnerabilities are
fixed in different commits and each of these commits
is associated with a message that refers to a vulnera-
bility identifier. These constraints eventually limit the
application of the proposed approach.

Mapping between CVE and Bugzilla. The Bugzilla and
MFSA themselves do not contain enough information
about affected versions (both“retrospective”and“prospec-
tive”). We found this data in NVD, but not all bugs
refer explicitly to CVEs. The missing data is filled by
manually looking at the MFSA. This task, as discussed
in section 5, are laborious, time consuming and may
contain mistakes.

8. CONCLUSION
In this work, we analyzed different research problems in

the emerging trend towards to the quantitative security as-
sessment and the use of empirical methods to analyze or
predict vulnerable components. We identified the databases
used by recent studies, and identified which database fea-
tures are often used to answer the key research questions in
vulnerability studies.
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We setup an experiment in which we integrated numerous
data sources on Mozilla Firefox. This database was a step-
ping stone to analyze prior work. Based on it, we noticed
that many papers focusing on Mozilla Firefox might based
their analysis on a data set that missed a large portion of
vulnerabilities. This weakens the prediction power of their
models.
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