TESTREX: a Testbed for Repeatable Exploits

Stanislav Dashevskyi
Security & Trust, FBK-Irst
DISI, University of Trento

Fabio Massacci
DISI, University of Trento

Abstract

Web applications are the target of many known exploits
and also a fertile ground for the discovery of security vul-
nerabilities. Those applications may be exploitable not
only because of the vulnerabilities in their source code,
but also because of the environments on which they are
deployed and run. Execution environments usually con-
sist of application servers, databases and other support-
ing applications. In order to test whether known exploits
can be reproduced in different settings, better understand
their effects and facilitate the discovery of new vulnera-
bilities, we need to have a reliable testbed. In this paper,
we present TESTREX, a testbed for repeatable exploits,
which has as main features: packing and running appli-
cations with their environments; injecting exploits and
monitoring their success; and generating security reports.
We also provide a corpus of example applications, taken
from related works or implemented by us.

1 Introduction

Vulnerable web applications are one of today’s tar-
gets [19] that are very hard to identify by traditional
black-box approaches for security testing [13 16, 21]. In-
dustry approaches to black-box application security test-
ing (e.g., IBM AppScan) or academic ones (e.g., Secu-
bat [[L1] or BugBox [15]) require security researchers to
write down a number of “general-purpose” exploits that
can demonstrate the (un)desired behavior. Such exploits
can then be tested on one’s application of choice.

As a matter of fact, web applications can be de-
ployed and run in many different execution environ-
ments, consisting of operating systems, application
servers, database servers and other sorts of supporting
applications in the backend, as well as different config-
urations in the frontend [13]. Two illustrative examples
are SQL injection exploits (which depend on the capa-
bilities of the underlying database and the authorizations

Daniel Ricardo dos Santos
Security & Trust, FBK-Irst
DISI, University of Trento

Antonino Sabetta
SAP Labs France

of the user who runs it [20]), and XSS exploits (which
depend on the browser being used and its rules for ex-
ecuting or blocking JavaScript code [22]). These differ-
ent environments may transform failed attempts into suc-
cessful exploits and vice versa. The information about
the configuration is an intrinsic part of the vulnerability
description. Since the operating system and supporting
applications in the environment can also have different
versions, this easily escalates to a huge number of com-
binations which can be hard to manually deploy and test.

If we want to experiment with web-application secu-
rity testing, then building a corpus of vulnerabilities and
exploits (e.g., BugBox [15] or WebGoat [18]]) is just
the first step because each “vulnerability” might be suc-
cessfully exploited only for the particular configuration
used to build the corpus. We also need a way to auto-
matically switch configurations and re-test the exploit to
check whether they worked with a different configura-
tion. Such data should also be automatically collected
so that a researcher can see how different exploits work
once the configuration changes. Such automatic process
of “set-up configuration, run exploit, measure result” was
proposed by Allodi et al. [1]] for testing exploit kits but it
is not available for testing web-applications.

Our proposed solution, TESTRE combines pack-
ing applications and execution environments that can be
easily and rapidly deployed, scripted exploits that can
be automatically injected, useful reporting and an iso-
lation between running instances to provide a real “play-
ground” and experimental setup where security testers
and researchers can run their tests and experiments and
get reports at various levels of detail.

We also provide a corpus of vulnerable web applica-
tions to illustrate the usage of TESTREX over a variety of
web programming languages. The vulnerability corpus
is summarized in Tablelll Some of them are taken from
other sources (e.g., BugBox [15] and WebGoat [13]),

Uhttp://securitylab.disi.unitn.it/doku.php?id=testrex



while others are developed by us. For the latter cate-
gory, we focused on server-side JavaScript (JS), because
of its growing popularity in both open-source and indus-
trial usage (e.g., Node.js and SAP HANA) and, to the
best of our knowledge, the lack of vulnerability bench-
marks. We are currently extending TESTREX to cover
also SecuriBench [12].

Source Language Exploits
BugBox [15] PHP 83
WebGoat [[18]] Java 10
Our examples | Server-side JS 7

Table 1: Summary of the exploits in the corpus

This paper is organized as follows: Section [2] intro-
duces related work while Section [3| presents an overview
of the proposed testbed; Section [] details the exploits
and vulnerabilities that we used; Section [3]discusses im-
plementation details; Section@ shows some usage exam-
ples; Section [/ discusses the lessons learned; Section
presents our ideas for applying the testbed in an indus-
trial setting; finally, SectionE]is the conclusion.

2 Related work

Empirical security research has been recognized as very
important in recent years [7, 14, 5]. However, a number
of issues should be tackled in order to correctly imple-
ment it. These issues include isolation of the experimen-
tal environment [3} [1, 4} [15]], repeatability of individual
experiments [7,1]], collection of the experimental results,
and justification of the collected data [14].

The use of a structured testbed can help in achiev-
ing greater control over the execution environment, iso-
lation among experiments and reproducibility. How-
ever, most proposals for security research testbeds fo-
cus on the network level (e.g., DETER [3]], ViSe [2] and
vGrounds [9]]).

On the application level there are significantly less ex-
perimental frameworks. The BugBox [[15] framework is
one of them. It provides the infrastructure for deploying
vulnerable PHP-MySQL web applications, creating ex-
ploits and running these exploits against applications in
an isolated and easily customizable environment. As in
BugBox, we use the execution isolation and environment
flexibility concepts. However, we needed to have more
variety in software configurations and process those con-
figurations automatically. We have broaden the configu-
rations scope by implementing software containers for
different kinds of web applications, and automatically
deploy them along the line of the MalwareLab by Allodi
etal. [1].

The idea of automatically loading a series of clean

configurations every time before an exploit is launched
was also proposed by Allodi et al. in their Malware-
Lab [[1]]. They load snapshots of virtual machines that
contain clean software environment and then “spoil” the
environment by running exploit kits. This eliminates the
undesired cross-influence between separate experiments
and enforces repeatability. So we have incorporated it
into TESTREX. For certain scenarios cross-influence
might be a desired behavior, therefore TESTREX makes
it possible to run an experiment suite in which the exper-
imenter can choose to start from a clean environment for
each individual exploit/configuration pair or to reuse the
same environment for a group of related exploits.

Maxion and Killourhy [14] have shown the impor-
tance of comparative experiments for software security.
It is not enough to just collect the data once, it is also
important to have the possibility to assess the results of
the experiment. Therefore TESTREX includes function-
alities for automatically collecting raw statistics on suc-
cesses and failures of exploits.

3 Overview

The testbed should help security researchers to answer
(semi) automatically a number of security questions.
Given an exploit X that successfully subverts an appli-
cation A running on an environment E:

1. Will X be successful on application A running on a
new environment E’?

2. Will X be successful on a new version of the appli-
cation, A’, running on environment E?

3. Will X also be successful on a new version of the
application, A’, running on a new environment E’?

These questions can be exemplified in the following
situation:

Example 1 We have a working SQL injection exploit for
WordPress 3.2 running with MySQL and we would like to
know whether (i) the same exploit works for WordPress
3.2 running with PostgreSQL; (ii) the same exploit works
for WordPress 3.3 running with MySQL; and (iii) the
very exploit works for WordPress 3.3 and PostgreSQL.

We use this example throughout the paper to illustrate
the concepts and components used in the testbed.

The main inner loop of the testbed is the obvious to
run an experimental suite and namely:

1. Pack and extract applications with their environ-
ments

Deploy an application in a suitable configuration
Run the application

Inject an exploit in the running application

Identify the success or the failure of the exploit
Report the result and store the execution log

A



The process can be performed manually, without in-
jecting automated exploits, or can be performed automat-
ically by running several applications and exploits in a
batch.

One of the main targets of TESTREX is to make this
process as automatizable as possible. Another important
feature, that we already mentioned, is that the execution
of the application and the exploit can happen in an iso-
lated and clean environment. In this way every test is run
on a clean slate. A side benefit of this testing mode is
that different tests can be run in parallel.

Figure[I|shows an overview of the testbed architecture.
The main component is the Execution Engine, which takes
as input a Configuration and an Exploit and outputs a Re-
port. The inputs listed in the Figure|[T]are further detailed

o

Testbed

Application
/ Execution Engine
Config
Container Packing module Report
Exploit
Utilities

Figure 1: Overview of the testbed architecture

below:

e AnApplication is simply a set of files containing the
code of the system under test.

e A Container is the representation of the execution
environment. It is an image of the system on which
the application must be run, containing an operating
system and supporting applications, like an applica-
tion server and a database management system.

e A Configuration is a set of files used to bind an Ap-
plication to a Container. It describes the setup re-
quired for a given application to run in a given con-
tainer, like preloading a database, creating users and
starting a server.

e An Exploit is a sequence of steps that must be taken
in order to cause unintended behavior, taking advan-
tage of a vulnerability in the application [S]].

e A Report contains as main information a result (suc-
cess/fail) of the execution of an exploit on a config-
uration. Metadata about the exploit and logs of its
execution can be attached to the report, in order to
provide further details that allow, in a closer man-
ual inspection, to determine why an exploit was not
successful in a given environment.

The tester then chooses one configuration against
which the exploit is going to be run. The Execution En-
gine is invoked with the chosen configuration and the ex-
ploit as inputs and outputs the result of the execution. It
builds and loads an execution environment (application
and its container), injects the exploit in the running appli-
cation, monitors the success of the exploit execution and
later destroys the loaded environment (if a clean-slate ap-
proach is sought).

TESTREX also includes some additional utilities. The
Packing Module allows testers to package the applications
and execution environments in a compressed archive file
that can be easily deployed in another system running
the testbed. The Utilities are a collection of scripts to
import applications and exploits from other sources, such
as BugBox, and to manage the containers.

Example 2 The inputs for Example(l|are instantiated as
follows

Application: There are two, each one is a set of . html,
.php and . js files in a Wordpress folder.

Container: There are two, one with Ubuntu, Apache and
MySQL and one with Ubuntu, Apache and PostgreSQL.

Configuration: There are four, one for WP3.2 with MySQL,
one for WP3.3 with MySQL, one for WP3.2 with Post-
greSQL and one for WP3.3 with PostgreSQL.

Exploit: There is only one, it is a script that navigates to the
vulnerable page, interacts with it and injects a payload,
simulating the actions of an attacker.

A key requirement was that the architecture should be
easily extensible to allow for the inclusion of new ex-
ploits, applications and execution environments. To this
extent we have organized exploits in classes and tried to
use some of the properties of inheritance hierarchies (we
detail this in the next Section).

4 Exploits

In our setting, exploits are unit tests: (1) every exploit
is self-contained and can be executed independently; and
(2) every exploit is targeted to take advantage of a certain
vulnerability in a certain application.

When using the testbed in a specific application, the
exploit can be written by the tester or taken from a public
source, but in any case, it must be compliant with what
we expect from an exploit (detailed in Section [3).

In order to verify the applicability of our testbed, we
have taken the WebGoat vulnerable application [18] and
developed 10 example exploits for it. We have also de-
veloped exploits for 7 specially crafted vulnerable ap-
plications, to demonstrate SQL injection, NoSQL injec-
tion, stored and reflected XSS, path traversal and code in-
jection vulnerabilities in Node.js [L0] applications. The



path traversal and the code injection examples take ad-
vantage of recently discovered vulnerabilities in Node.js
modules [16, [17]].

The testbed also supports the possibility of importing
applications and exploits from BugBox by running a sin-
gle script on a BugBox package. The script copies the
applications and exploits into the corresponding folders
under the testbed and creates identical configuration files
for every application, using Apache as a web server and
MySQL as a database server. We are able to run most of
the BugBox native exploits and collect statistics without
modifying their source code.

Table Q2] shows detailed information on all of the ex-
ploits that we have implemented. In the table, Source in-
dicates where we took the exploits from, Language is the
language in which the vulnerable applications are imple-
mented, Applications lists the application taken from that
source, Containers shows which containers were used to
run the applications and Exploits is the number of ex-
ploits of each type that are successfully run.

5 Implementation

The testbed is implemented in Python, mainly because of
the possibility of fast and easy prototyping and integra-
tion with other technologies, such as Docker and Sele-
nium. In the next subsections, we describe in details the
implementation of each component of the testbed.

5.1 Execution Engine

The Execution Engine is the main Python module that
binds all the modules and features together. It supports
three modes of operation: single, batch and manual runs.

The single mode allows testers to specify and run a de-
sired exploit against a chosen application just once. This
is useful if a tester wants to quickly check whether the
same exploit works for a few different applications, dif-
ferent versions of the same application or the same appli-
cation in different environments. A .csv report is gener-
ated at the end of the run.

To run applications and exploits in the batch mode,
we loop through a folder containing exploit files and in-
ject them in their respective configurations, generating a
summary .csv report in the end. In this mode, the Exe-
cution Engine maps exploits to applications by scanning
the metadata in each exploit for the appropriate targets.

To manually test the applications, we simply stop
the Execution Engine when the environment is built and
loaded, and return to the tester a browser that he/she can
use to test the application in a safe environment. No re-
port is generated in this case.

5.2 Applications

Applications are packaged as .zip files containing
all their necessary code and supporting files, such as
database dumps.

Unpacked applications must be located under the
<testbed_root>/data/targets/applications folder to
be accessible by the Execution Engine.

As an example, we provide some applications with
known vulnerabilities, presented in Table Most of
them are known real-world applications, but there are
also some small examples developed to explore issues in
server-side JavaScript applications. We developed these
examples because we are unaware of known benchmarks
or vulnerable examples of this kind of applications.

5.3 Containers

Instead of creating virtual machines for the applications
and their software configurations, we employ Linux Con-
tainersﬂ which is a technology that provides virtualiza-
tion capabilities on the operating system level. Contain-
ers are sandboxed filesystems that reuse the same Linux
kernel, but have no access to the actual operating system
where they are deployed.
Dockeﬂ provides a format for packing, shipping and
running applications with a lightweight file repository,
all on top of Linux Containers. We use Docker to im-
plement our two types of containers, software-specific
and application-specific, and build our testbed on top of
these, with scripts to build and control the containers.
However, Docker has no means to automatically run our
exploits on a desired system.
Downloading generic software components and build-
ing a Docker container every time an application has to
be run might be resouce- and time-consuming. There-
fore, we maintain software-specific containers that con-
sist of generic software components required for certain
types of web applications. Such containers encapsulate
operating system, server and database engine, and have
to be built only once.
These software-specific containers are described
in Dockerfiles (a format defined by the Docker
project), named as: <operating_system>-<webserver>
-<database>-<others>. We provide some predefined
containers for common environments, such as:
ubuntu-apache-mysql A classic LAMP server, con-
taining the Ubuntu distro, the Apache web server,
the MySQL database and the PHP programming
language;

ubuntu-node-mongo Containing the Ubuntu distro, the
Node.js web server and the MongoDB database;

Zhttps://linuxcontainers.org/
3https://www.docker.io/



Source Language Applications Containers Exploits
WordPress, CuteFlow, Horde, PHP Address
Bgok, Dmpal,A Proplayer, Famlly Connections, XSS (46), SQLi (17), Code Execu-
AjaXplorer, Gigpress, Relevanssi, PhotoSmash, ubuntu-apache- tion (7), Authentication Bypass (4)
BugBox PHP WP DS FAQ, SH Slideshow, yolink search, CMS P » Authe P ’
. . mysql Information Disclosure (2), LFI (2),
Tree page view, TinyCMS, Store Locator Plus, ph- CSRF (2), Denial of Service (1)
pAccounts, Schreikasten, eXtplorer, Glossword, ?
Pretty Link
ubuntu-tomeat- SQLi (2), XSS (2), Authentication
WebGoat Java WebGoat . Flaws (3), Database Backdoor (1),
java .
Parameter Tampering (2)
Our  exam. CoreApp, JS-YAML,  NoSQLInjection, EEEEEE:ESZ XSS (3), NoSQLi (1), SQLi (1),
les Server JS ODataApp, SQLInjection, ST, WordPress3.2, moneo. ubuntu- Path traversal (1), Code Injection
P XSSReflected, XSSStored &0, 0
node-mysql

Table 2: Details of the exploits in the corpus

ubuntu-node-mysql Containing the Ubuntu distro, the
Node.js web server and the MySQL database.

Application-specific containers are built on top of
software-specific containers every time the Execution En-
gine runs an application. The Execution Engine clones a
corresponding software-specific container and adds the
application files to the clone - building a new container
this way is just a matter of seconds. When the Execution
Engine finishes the run, the used container is deleted to
free disk space.

5.4 Configurations

Every application must have a set of configuration files
that specify how to deploy and set up the application
within the corresponding application-specific container.

Each configuration consists of at least two files: the
Dockerfile that is used to build the application’s con-
tainer and a shell script file with additional commands
that must be executed within the container (like running
a server instance or starting a database server). This file
is usually called run.sh.

The configuration files must be placed in a separate
folder under the configurations root folder (<testbed_
root>/data/targets/configurations). We use certain
naming conventions to make it possible for the Execution
Engine to match applications with corresponding config-
uration files: <app-name>__<app-container-name>.

Example 3 A configuration folder for the appli-
cation Wordpress_3.2, might have the names
Wordpress_ 3. 2_ _ubuntu-apache-mysql or
Wordpress_ 3. 2_ _ubuntu-apache-postgresql, de-

pending on the container used for it.

Listings [T] and [2] present an example of a Dockerfile
and a run.sh file, used to configure a WordPress appli-
cation in the ubuntu-apache-mysql container.

In Listing [I] line 1 specifies that the container for this
application is built on top of the ubuntu-apache-mysql
container. In lines 2 and 3, the application is imported
to the /var/www/wordpress folder in the container and
in lines 4 and 5, the run.sh script is invoked inside the
container.

FROM ubuntu—apache—mysql

RUN mkdir /var/www/wordpress

ADD . /var/www/wordpress

RUN chmod +x /var/www/wordpress/run.sh
CMD cd /var/www/wordpress && ./run.sh

Listing 1: Dockerfile example

#!/bin/bash

mysqld_safe &

sleep 5

mysql < database.sql

mysqladmin —u root password toor
apache2ctl start

Listing 2: Shell script file example

In Listing[2] lines 2-5 are used to start the database server
and preload application data. Line 6 starts the Apache
web server.

5.5 Exploits

The exploits are implemented as Python classes that
share common properties: (1) every exploit contains
metadata describing its characteristics such as name, de-
scription, type, target application and container; (2) log-
ging and reporting capabilities - exploit classes maintain
logging information and results of the run, passing this
information to the Execution Engine.

The Selenium Web Drive}E] automates web browsers,
supporting visualization, JavaScript execution and DOM
interaction [15]]. BugBox uses Selenium and, since the
mentioned features are important for our work, we also
used it to create our own exploits.

“http://docs.seleniumhg.org/projects/webdriver/



Every Selenium-based exploit in the testbed is sub-
classed from the BasicExploit class, which encapsulates
generic functionality: the way Selenium is used to auto-
mate the web browser, setUp () and tearDown () routines,
logging and reporting, etc.

In order to create a new exploit, the tester has to create
a new exploit class, specify the exploit-specific metadata
and override the runExploit() method by adding a set
of actions required to perform an exploit.

Verifying the success of an exploit is also done within
the runExploit () method - differently for every exploit.
This allows us to handle complex exploits that are not
always repeatable, such as heap spraying. For such cases,
the exploit can be specified to run a certain number of
times until it is considered a success or a failure.

5.6 Report

A report is a .csv file that the Execution Engine creates
or updates every time it runs an exploit. Every report
contains one line per exploit that was executed. This line
consists of: names of the exploit and the target applica-
tion, application-specific container, type of the exploit,
the exploit start-up status and the overall result and other
data. Along with this report the Execution Engine main-
tains a log file that contains information which can be
used to debug exploits.

Example 4 The listing below shows a single entry from
the Wordpress_3_2_XSS exploit that was run against the
WordPress 3.2 application.

Wordpress_3_2_XSS, Wordpress3.2, ubuntu—apache—-mysql,
XSS, CLEAN, SUCCESS, SUCCESS, 30.345, Exploits
for ”XSS vulnerability in WordPress application”

Listing 3: An example of the report file entry after the exploit
run

6 Example usage

In this Section, we describe in details the steps needed to
add an experiment to the testbed, given an existing ap-
plication. The steps consist of: adding the application;
creating the configuration files; building containers; cre-
ating and running the exploits. Again we use WordPress
3.2 as the example application.

6.1 Deploying the application

The code of the application must be copied into a sepa-
rate folder under the applications root “<testbed_root>
/data/targets/applications”. The folder name must
correspond to a chosen name of the application in the
testbed.

To deploy the WordPress 3.2 application, copy all of
its files to the folder “<testbed_root>/data/targets/
applications/WordPress_3_2".

6.2 Creating configuration files and build-
ing containers

Due to our naming conventions, the name of the con-
figuration folder must be the same as the name of the
corresponding Docker image (please see Section[5.3).

If there is no software-specific container that might
be reused by the application, this container must be cre-
ated in the first place. Configuration files for software-
specific containers are located under the “<testbed_
root>/data/targets/containers” folder.

In our example, we create a software-specific con-
tainer with the ubuntu-apache-mysql name, since the
application requires Apache as a web server and MySQL
as a database engine. To do this, we create a Docker-
file under <testbed_root>/data/targets/containers/
ubuntu-apache-mysql that contains the code shown in
Listing [4] and build it with the script in <testbed_root>
/util/build-images.py.

FROM ubuntu:raring

RUN apt—get update

RUN DEBIAN_FRONTEND=noninteractive apt—get —y install
mysql—client mysql—server apache2 libapache2 —mod
—php5 php5—mysql php5—Idap

RUN chown —R www-data:www-data /var/www/

EXPOSE 80 3306

CMD [”mysqld”]

Listing  4: The Dockerfile for building the
ubuntu-apache-mysql software-specific container

As a next step, we create the configuration
files for the application-specific container. We
create a Dockerfile and a shell script file under
the “<testbed_root>/data/targets/configurations/
Wordpress_3_2__ubuntu-apache-mysql” folder (please
see Section [5.4] for the explanation and Listings [T and
for the code examples).

There is no need to build this container, since it is done

by the Execution Engine for every run.

6.3 Creating and running the exploit

Finally, we create an exploit for the Wordpress 3.2 ap-
plication by creating a file with a Python class under the
“<testbed_root>/data/exploits” folder. The new ex-
ploit class must be subclassed from the already existing
BasicExploit class. As a last step, we specify the ex-
ploit’s metadata in the attributes dictionary and put the
exploit steps into the runExploit () method. Listing [5]
shows the exploit class.

The attributes dictionary contains exploit metadata
and the runExploit () method contains the steps required



to reproduce the exploit and to check its success. List-
ing [6] shows the list of commands available to run the
newly created application with the Execution Engine.

from BasicExploit import BasicExploit
class Exploit(BasicExploit):
attributes = {
’Name’ *Wordpress_3.2_XSS ",
*Description’ : XSS attack in Wordpress
application”,

*Target’ ”Wordpress3 .27,
*Container’: ’ubuntu—apache—mysql’,
*Type’ : ’XSS’

}

def runExploit(self):
wp = self.wrapper
wp.navigate ("http ://localhost:49160/wordpress/
wp—admin/post—new.php?post_type=page”)
[...]

self.assertIn (”XSS”, alert_text , ”XSS”)

Listing 5: Wordpress_3_2_Exploit.py file contents

#1: Single mode
./run.py —target Wordpress_3_2__ubuntu—apache—mysql
—exploit Wordpress_3_2_Exploit.py

#2: Batch mode
./ run.py

#3: Batch mode only for Wordpress3.2 app
./run.py —target Wordpress_-3_2__ubuntu—apache—mysql

#4: Manual mode
./run.py —manual WordPress_3_2__ubuntu—apache—mysql

Listing 6: Running exploits against the WordPress 3.2
application

By default, the execution report is saved into the
“<testbed_root>/reports/ExploitResults.csv’ file.
In order to specify a different location for the results, a
tester has to add additional parameter to the run com-
mand: --results new/location/path.csv.

7 Lessons Learned

During the design and development of TESTREX, the
key lessons learned were: the value of building on top of
existing approaches; the importance of having a simple
and modular architecture; and the necessity of reliable
information on applications, exploits and execution en-
vironments.

Building on top of the related work, like we did with
BugBox for the format of our exploits and MalwareLab
for the design of our experiments, was extremely valu-
able. This reduced our design and development time, and
allowed us to quickly have a large corpus of applications
and exploits on which we could test our work.

Having a simple architecture and being able to add
small modules to it was crucial in the development of
TESTREX, because this way we could test many options
for the supporting frameworks we used (like Selenium
and Docker) and select those that best fit our purposes.

When adding the experiments to the TESTREX, we
soon learned that the hardest part is writing the config-
uration files that allow an application to run on top of a
container. This is because the information on how to con-
figure an application for a certain environment usually is
not detailed enough. Also, many times the descriptions
of exploits that are available are vague, limited to a proof
of concept or unreliable.

8 Industrial Usage

There are several uses of TESTREX that we are exploring
in an industrial setting, covering different phases of the
software development lifecycle and fulfilling the needs
of different stakeholders. In the following we summarize
the directions that we deem more promising.
“Executable documentation” of vulnerability find-
ings. When a vulnerability is found in a product, being
able to reproduce an attack is key to investigate the root
cause of the issue and to provide a timely solution. It
is current practice to use a combination of natural lan-
guage and scripting to describe the process and the con-
figuration necessary to reproduce an attack. The results
of which are erratic, complicating the task of the security
response department.

TESTREX exploit scripts and configurations can be
thought of as “executable descriptions” of an attack. The
production of exploits and configurations could not just
be the task of the security validation department, but also
of external security researchers, for which the company
might set up a bounty program requiring that vulnerabil-
ities are reported in the form of TESTREX scripts.
Automated validation and regression testing. As part
of the software development lifecycle, TESTREX can be
used to check the absence of known vulnerabilities or to
perform regression tests to verify that a previously fixed
vulnerability is not introduced again.

To this end, a corpus of exploits and configurations
is stored in a corporate-wide repository and is used to
perform automated tests all along the development cycle.
In large corporations, the results of these tests are part of
the evidence needed in order to pass quality assurance
gates. Currently, much of the process to produce such
evidence relies on manual work, which increases cost,
errors and unpredictability of the process. TESTREX can
be used to accelerate and improve the effectiveness and
the predictability of quality assurance processes.
Support for penetration testing. An important problem
arising in pen-testing large systems is the complexity of
setting-up and reproducing the conditions of the target
system — typically involving many hosts and software
components, each of which may need to be configured
in a specific way. A key strength of our framework is the
ability to capture these configurations as reusable scripts;



this requires a non-negligible effort, but the results can
be reused across different pen-testing sessions. This has
the advantage of providing automation, reproducibility,
and the ability to proceed stepwise in the exploration of
the effect of different configurations and versions of the
software elements on the presence (or absence) of vul-
nerabilities in the system.

9 Conclusion and Future work

In this paper, we presented TESTREX, a Testbed for Re-
peatable Exploits that combines a way of packing appli-
cations and execution environments, automatic execution
of scripted exploits, and reporting to provide an exper-
imental setup for security testers and researchers. We
also provided a corpus of applications and exploits, taken
from related works or developed by us, to show the range
of applications that can be handled by TESTREX.

Besides expanding our corpus, we intend to apply
TESTREX for several research activities, such as large-
scale testing of static analysis tools and semi-automatic
generation of test cases for web applications.

To move towards the generation of test cases, we will
refine our implementation of exploits into a hierarchy
of exploit classes. For instance, a WordPress SQLi ex-
ploit will extend SQLInjectionExploit, subclassed from
BasicExploit. This will help to write exploits faster, by
factoring common attributes of exploit types and alter-
ing the exploit attributes in case if a given exploit did not
work.

Another possibility of future development is helping
testers in finding minimum necessary environment sets
required for an exploit to succeed against an application.

Acknowledgments.  The work of the University of
Trento was partly supported by the EU under grants
FP7-ICT-NESSOS, FP7-PEOPLE-SECENTIS, and FP7-SEC-
SECONOMICS, and the Italian MIUR under grant PRIN-
TENACE.

References

[1] ALLODI, L., KOTOV, V., AND MASSACCI, F. Malwarelab: Ex-
perimentation with cybercrime attack tools. Proc. of CSET 13
(2013).

[2] ARNES, A., HAAS, P., VIGNA, G., AND KEMMERER, R. Dig-
ital forensic reconstruction and the virtual security testbed vise.
In Detection of Intrusions and Malware & Vulnerability Assess-
ment, R. Bschkes and P. Laskov, Eds., vol. 4064 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2006, pp. 144—
163.

[3] BENZEL, T. The science of cyber security experimentation: The
deter project. In Proceedings of the 27th Annual Computer Secu-
rity Applications Conference (New York, NY, USA, 2011), AC-
SAC 11, ACM, pp. 137-148.

[4] CALVET, J., Davis, C. R., FERNANDEZ, J. M., GUIZANI, W.,
KACZMAREK, M., MARION, J.-Y., ST-ONGE, P.-L., ET AL.

(5]

(6]

(7]

(8]

(91

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Isolated virtualised clusters: testbeds for high-risk security exper-
imentation and training. In Proceedings of the 3rd international
conference on Cyber security experimentation and test (Berkeley,
CA, USA, 2010), CSET (2010), vol. 10, pp. 1-8.

CARROLL, T. E., MANZ, D., EDGAR, T., AND GREITZER,
F. L. Realizing scientific methods for cyber security. In Proceed-
ings of the 2012 Workshop on Learning from Authoritative Se-
curity Experiment Results (New York, NY, USA, 2012), LASER
12, ACM, pp. 19-24.

CURPHEY, M., AND ARAWO, R. Web application security as-
sessment tools. Security Privacy, IEEE 4, 4 (July 2006), 32—41.
EIDE, E. Toward replayable research in networking and systems.
Position paper presented at Archive (2010).

FONG, E., GAUCHER, R., OKUN, V., BLACK, P. E., AND
DALcI, E. Building a test suite for web application scanners.
2014 47th Hawaii International Conference on System Sciences
0 (2008), 479.

JIANG, X., XU, D., WANG, H., AND SPAFFORD, E. Virtual
playgrounds for worm behavior investigation. In Recent Ad-
vances in Intrusion Detection, A. Valdes and D. Zamboni, Eds.,
vol. 3858 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2006, pp. 1-21.

JOYENT, INC. Node.js. http://nodejs.org/, 2014.

KALS, S., KIRDA, E., KRGEL, C., AND JOVANOVIC, N. Secu-
bat: a web vulnerability scanner. In WWW (2006), pp. 247-256.

LIVSHITS, B. Defining a set of common benchmarks for web
application security. In Workshop on Defining the State of the Art
in Software Security Tools (August 2005).

LuccA, G. A. D., AND FASOLINO, A. R. Testing web-based
applications: The state of the art and future trends. Information
and Software Technology 48, 12 (2006), 1172 — 1186. Quality
Assurance and Testing of Web-Based Applications.

MAXION, R. A., AND KILLOURHY, K. S. Should security re-
searchers experiment more and draw more inferences? In Work-
shop on Cyber Security Experimentation and Testing (August
2011), CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT
OF COMPUTER SCIENCE.

NILSON, G., WILLS, K., STUCKMAN, J., AND PURTILO, J.
Bugbox: A vulnerability corpus for php web applications. In
Presented as part of the 6th Workshop on Cyber Security Experi-
mentation and Test (Berkeley, CA, 2013), USENIX.

NODE SECURITY PROJECT. Js-yaml deserialization code exe-
cution. https://nodesecurity.io/advisories/JS-YAML_
Deserialization_Code_Execution, 2013.

NODE SECURITY PROJECT. st directory traversal.
https://nodesecurity.io/advisories/st_directory_
traversal, 2014.

OWASP. Webgoat. https://www.owasp.org/index.php/
Category:0WASP_WebGoat_Project,

SCHOLTE, T., BALZAROTTI, D., AND KIRDA, E. Quo vadis?
a study of the evolution of input validation vulnerabilities in web
applications. In Proceedings of the 15th International Confer-
ence on Financial Cryptography and Data Security (Berlin, Hei-
delberg, 2012), FC’11, Springer-Verlag, pp. 284-298.
STUTTARD, D., AND PINTO, M. The Web Application Hacker’s
Handbook: Discovering and Exploiting Security Flaws. John
Wiley & Sons, Inc., New York, NY, USA, 2007.

TRIPP, O., FERRARA, P., AND PISTOIA, M. Hybrid security
analysis of web javascript code via dynamic partial evaluation.
In International Symposium on Software Testing and Analysis
(2014).

ZALEWSKI, M. The Tangled Web: A Guide to Securing Modern
Web Applications, 1st ed. No Starch Press, San Francisco, CA,
USA, 2011.


http://nodejs.org/
https://nodesecurity.io/advisories/JS-YAML_Deserialization_Code_Execution
https://nodesecurity.io/advisories/JS-YAML_Deserialization_Code_Execution
https://nodesecurity.io/advisories/st_directory_traversal
https://nodesecurity.io/advisories/st_directory_traversal
https://www.owasp.org/index.php/Category: OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category: OWASP_WebGoat_Project

	Introduction
	Related work
	Overview
	Exploits
	Implementation
	Execution Engine
	Applications
	Containers
	Configurations
	Exploits
	Report

	Example usage
	Deploying the application
	Creating configuration files and building containers
	Creating and running the exploit

	Lessons Learned
	Industrial Usage
	Conclusion and Future work

