
DEMO: Enabling Trusted Stores for Android

Yury Zhauniarovich
∗

University of Trento
via Sommarive 14

Trento, Italy
yury.zhauniarovich@unitn.it

Olga Gadyatskaya
University of Trento
via Sommarive 14

Trento, Italy
olga.gadyatskaya@unitn.it

Bruno Crispo
University of Trento
via Sommarive 14

Trento, Italy
bruno.crispo@unitn.it

ABSTRACT
In the Android ecosystem, the process of verifying the in-
tegrity of downloaded apps is left to the user. Different
from other systems, e.g., Apple App Store, Google does not
provide any certified vetting process for the Android apps.
This choice has a lot of advantages but it is also the open
door to possible attacks as the recent one shown by Blue-
box [4]. To address this issue, this demo presents how to
enable the deployment of application certification service,
we called TruStore, for the Android platform. In our ap-
proach, the TruStore client enabled on the end-user device
ensures that only the applications, which have been certified
by the TruStore server, are installed on the user smartphone.
We envisage trusted markets (TruStore servers, which can
be, e.g., corporate application markets) that guarantee se-
curity by enabling an application vetting process. The Tru-
Store infrastructure maintains the open nature of the An-
droid ecosystem and requires minor modifications to An-
droid stack. Moreover, it is backward-compatible and trans-
parent for developers, and does not change the application
management process on a device.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls, cryptographic controls, authentication

Keywords
Android, application markets, trusted installation

1. MOTIVATION
One of the recent attacks on Android, which is discovered

by BlueBox, demonstrates that an attacker might be able
to inject malicious code into a legitimate application with-
out damaging the digital signature of the original developer
[4]. This type of attacks is quite dangerous considering the

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS’13, November 4–8, 2013, Berlin, Germany.
ACM 978-1-4503-2477-9/13/11.
http://dx.doi.org/10.1145/2508859.2512496.

open nature of the Android platform, which allows a user
to download applications not only from the official Google
Play market, but virtually from everywhere. Thus, users
shopping at a third-party market cannot be reassured by
just checking that the desired app comes from a trusted de-
veloper and has good reviews. And while the biggest phone
manufactures claim to have fixed this vulnerability in their
currently supported phones, minor providers might simply
ignore it. Moreover, unsupported devices of major players
are still the target for this attack. Anyway, the issue of
repackaging Android apps is more general and still open [5].

While other players, such as Apple and RIM, addressed
the problem by running their certification schemes and vet-
ting each application before being published on their own
(unique) market, Google chose a different path. In the spirit
of openness to third-party developers, Android apps do not
need to be certified before being published in any market.

This demo shows how to enable and support an appli-
cation certification service for the Android ecosystem. We
describe in details how to set up TruStores. A TruStore
is a market that publishes only certified applications. Im-
portantly, TruStores can certify existing applications and
new ones without posing any constraints to developers and
without changing the process of Android application devel-
opment. The client side of TruStore relies on the current
platform architecture and requires only minor modifications
of the Android sources to enable the protection.

2. TRUSTORE
This section overviews the main components needed to

run TruStore in Android. The TruStore architecture con-
sists of two main parts: a server and a client.

TruStore Server.
On the server side TruStore, besides offering the standard

app publishing and provisioning functionality, is responsi-
ble for the application vetting process. Applications provi-
sioned by TruStore are trusted with respect of the declared
vetting process. This process can include static analysis of
application executables and source code (if provided), dy-
namic analysis, permission analysis, application files veri-
fication (for instance, to check for the “Master Key” vul-
nerability [4]), etc. What the TruStore server certifies and
which technology uses for this is outside the scope of this
work. However, the interested reader can refer to, e.g., [3,
1, 2] for examples of app verification frameworks.

Operationally, the process of application certification looks
in the following way. A developer builds and signs (using

1345

her own certificate) an application and uploads it to the
TruStore server.

The server performs the analysis of the provided resources
(executables and/or source code). If the app has passed the
vetting process, the server signs the application with its own
certificate and places it in the market to be accessible by
users. It should be mentioned that this process is completely
transparent for application developers and does not change
current development and publishing workflow.

Application Multisigning.
Most of Android apps are sealed with a developer-signed

certificate (notice that for Android “certificate” and “signa-
ture”are used interchangeably). This certificate assures that
the code of the original application and its update come from
the same place, and establishes trust relationships between
applications of the same developer. To perform these checks
Android simply compares binary representations of certifi-
cates, corresponding private keys of which were used to sign
an application and its update (in the first case) and collab-
orating applications (in the second).

This check is implemented in PackageManagerService in
the method ‘checkSignaturesLP’, which takes as parame-
ters two arrays of Signature. In Android it is possible to
sign the same application with several different certificates.
This explains why the method takes the arrays of signatures.
Despite the fact that this method takes the central place in
the Android security provision, its behaviour strongly de-
pends on the version of the platform. In the newer ver-
sions (starting from Android 2.2) this method compares two
sets of Signature, and if both sets are equal returns SIG-

NATURE_MATCH value, and SIGNATURE_NO_MATCH otherwise or
if an array is equal to null. Before the version 2.2, this
method checked if the first set is contained in the second.
That behaviour allowed the system to install upgrades even
if they had been signed only with a subset of certificates of
the original application.

Today there are no benefits of signing an application with
multiple certificates and this functionality can be easily sup-
pressed. However, we believe that for compatibility reasons
Google will not change it in the near future. This multisign-
ing functionality is the cornerstone of the TruStore client.

TruStore Client.
The client part is based on a modified Android system; it

allows a device holder to make use of TruStore.
Figure 1 summarises the architecture of the TruStore client.

We implemented our proof-of-concept prototype for the Google
Nexus S phone using 4.1.2 r2 version of AOSP. The TruStore
modifications touch two levels of the Android software stack:
the Application and the Android Framework levels; at both
of these levels our implementation changes the standard An-
droid components, as well as adds new parts.

The TruStore management process starts with the acti-
vation of the TruStore protection in the standard Android
Settings application. In this application we added two pref-
erences: the first activates the TruStore protection, while the
second allows a user to see the list of installed trusted store
certificates (see Figure 2a). If a user wants to activate the
TruStore protection she checks the added checkbox (step a
in Figure 1). The value of this setting is written into the Set-
tings.Secure content provider, and is later used by different
components to detect if the TruStore protection is enabled.

Modified Android components
TruStore components

PackageManager
Service

PackageInstaller

TruStoreService

KeyStore

Unmodified Android components

Settings

Application

TruStoreList

Android
Framework

5
6

7

8 a b
c

d

e

4

3
2

1

f

Figure 1: The TruStore architecture: the steps with letters represent
the TruStore management process; those ones with numbers describe
the checks during application installation.

After the activation of the TruStore protection a user is able
to see the list of TruStores X.509 certificates installed in the
system (step b). In this screen a user has an option of adding
a new TruStore certificate (see Figure 2b). The Settings ap-
plication shares its UID with the system server. So as it is
prohibited to read the content of the external storage from
the system process, the functionality to display and select
the available certificates (step c) is passed to an additional
application TruStoreList (Figure 2c), which is launched from
Settings using an explicit intent.

To securely preserve a certificate with the additional data
the system KeyStore component is used. This is the stan-
dard way to store credentials on Android. This component
automatically encrypts the stored information and grants
access to it (based on UID) only to the component that orig-
inally initiated preservation of the data. As TruStoreService
is a part of the system server, only the Android components
with UID equal to 1000 can read and modify these data.
To distinguish the TruStore information from other creden-
tials stored in the credential storage we add a special prefix
(TRUSTORE). Thus, TruStoreService selects from the stor-
age only the appropriate credential data.

Currently there are several ways to start the installation
of a new application on a device. This can be done using
the Google Play or PackageInstaller applications, or using
the adb install command. The app installation process
with the activated TruStore protection does not differ from
the normal one. A user launches the installation using our
modified version of PackageInstaller and executes the usual
app installation steps (step 1). In our prototype we modified
the PackageInstaller application, because this component is
open-source. However, similar modifications can be easily
be incorporated into the proprietary Google Play app.

After the initial steps the installer notifies PackageMan-
agerService to start the actual installation of the package into
the system. This is a special service in the Android system
responsible for package management. From this point Pack-
ageManagerService performs the job, while PackageInstaller
waits for the installation report. To perform the TruStore
check we add a hook into the method installPackageLI of
PackageManagerService. This hook extracts the certificates
of the installed package and compares them against the list
of trusted store certificates using TruStoreService (step 3).
The hook is embedded in the place when Android Package-
ManagerService has finished all verification steps. In this
way, we are sure that the private keys corresponding to the

1346

(a) (b) (c) (d)
Figure 2: Screenshots of TruStore: (a) Settings to enable TruStore, (b) The certificate list of trusted stores, (c) TruStoreList application,
(d) PackageInstaller error when a package is not signed by the TruStore certificate

certificates extracted from the package to be installed have
been used to sign the package (thus, verifying the integrity
of the signatures). TruStoreService matches the obtained
list against the list of TruStore certificates; the result of this
comparison is passed back to PackageManagerService (step
4). If a match is found then the service finishes the instal-
lation and notifies PackageInstaller about the success, oth-
erwise it generates a special error that is displayed to the
user (Figure 2d) by the installer application (steps 7, 8).
PackageInstaller modifications constitute only in the ability
to correctly display the explanation of this error.

App Management with TruStore.
Let us we consider how the process of application man-

agement has been changed with the TruStore modifications.
There are three main points in the lifecycle of each applica-
tion: install, update and delete. The process of application
deletion from a user or developer point of view is not changed
by TruStore, so it is not considered.

The installation process of an application was considered
in details in the previous section; it is not altered from the
developer perspective, but is changed from the user angle
(installation may fail now). However, it is worth mention-
ing that if an app is installed from a TruStore market, all
consequent updates must come from the same store. Oth-
erwise, the Android system will cancel the update which is
not signed by the TruStore certificate.

At the same time, the TruStore approach does not reduce
the app update capabilities for a developer. In our approach,
she has to submit a new version of her app to the TruStore
server as usual, where it will be analysed and redistributed to
users. The “kill switch” functionality can also be supported
via TruStore.

The TruStore modifications influence interactions between
app components protected with the signature and sig-

natureOrSystem types of Android permissions, and on the
sharedUserId interactions. The TruStore modifications will
prohibit such kind of interactions between applications that
are installed from different trusted markets, although they
may have been implemented by the same developer. This
limitation comes from the fact that the applications installed
from different TruStore markets will have different set of sig-
natures (although the developer signature may be the same).
However, this restriction enables more security: TruStore
ensures safety of the apps loaded via itself, while safety of
apps on other third-party markets cannot be guaranteed (es-

pecially, in the light of the attack discussed in §1), and the
interactions between trusted and untrusted apps may lead
to information leaks and privilege escalation attacks.

3. CONCLUSIONS
We have presented how to support application certifica-

tion in Android. TruStore aims at enhancing security of the
Android ecosystem by adding the market signature to ap-
plication packages upon a successful vetting process. The
concept of market signatures is not novel, as it is used,
e.g., by Apple. The main contribution of our approach
is the backward-compatibility with the Android ecosystem.
TruStore is fully transparent to legitimate application de-
velopers and does not require major modifications to the
firmware. It may be adopted immediately by phone produc-
ers with their own markets, for example, Samsung; and, if
being incorporated into the Android distribution released by
Google, may become a valuable feature for corporate appli-
cation markets to enable BYOD policies.

Acknowledgments.
This work has been partially supported by the FP7-ICT

SecCord Project 316622 funded by the EU and the TENACE
PRIN Project 20103P34XC funded by the Italian MIUR.

4. REFERENCES
[1] W. Enck, M. Ongtang, and P. McDaniel. On

lightweight mobile phone application certification. In
Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, pages 235–245,
New York, NY, USA, 2009. ACM.

[2] P. Gilbert, B. Chun, L. Cox, and J. Jung. Vision:
automated security validation of mobile apps at app
markets. In Proc. of MCS’2011, pages 21–26, 2011.

[3] V. Rastogi, Y. Chen, and W. Enck. Appsplayground:
automatic security analysis of smartphone applications.
In Proc. of CODASPY ’13, pages 209–220, 2013.

[4] T. SecurityLedger. Exploit code released for android
security hole https://securityledger.com/2013/07/

exploit-code-released-for-android-security-hole/,
Jul. 2013.

[5] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou.
Fast, scalable detection of ”piggybacked” mobile
applications. In Proc. of CODASPY ’13, pages
185–196, 2013.

1347

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20131003092407
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 3
 AllDoc
 3

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 2
 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20131003092407
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 3
 AllDoc
 3

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 2
 3
 2
 3

 1

 HistoryList_V1
 qi2base

