Early Dealing with Evolving Risks in Long-Life
Evolving Software Systems*

Le Minh Sang Tran

University of Trento, Italy
tran@disi.unitn.it

Abstract. Existing risk assessment methods often rely on a context of
a target software system at a particular point in time. Such contexts of
long-living software systems tend to evolve over time. Consequently, risks
might also evolve. Therefore, in order to deal with evolving risks, decision
makers need to select an appropriate risk countermeasure alternative
that is more resilient to evolution than others. To facilitate such decision,
we propose a pioneer method taking the uncertainty of evolutions and
outputs of a risk assessment to produce additional information about the
evolution resilience of countermeasure alternatives.

Keywords. risk assessment, evolving risk, max belief, deferral belief.

1 Introduction

Long-life software systems keep evolving to continuously satisfy changing busi-
ness needs, new regulations, or the introduction of new technologies. Such evo-
lutions might expose the software systems to new risks, and might make the
output of the current risk analysis on the software systems become partially
obsoleted. Consequently, the software systems might be no longer secure.

Risk assessment methods compatible with ISO 31000:2009 typically rely on a
context of the target software system at a particular point of time. These meth-
ods help to identify risks and countermeasure alternatives (i.e. set of counter-
measures). Decision makers then need to select the most appropriate alternative
to implement to mitigate unacceptable risks. However, when the context evolves,
risks might also evolve. Previously acceptable risks might become unacceptable
or vice versa, or new risks emerge [1, Chap. 15]. For example, any risk miti-
gated by SHA-0 based countermeasure was acceptable before 2004, but might
be unacceptable later since SHA-0 was efficiently attacked!. Thus, a current
countermeasure alternative may no longer be appropriate and it is necessary to
develop new ones to address the evolving or newly emerging risks. Obviously,
implementing new ones to replace for obsoleted ones may be more expensive
than having a one that still be appropriate. Decision makers then need to take
into account the evolution of risks while selecting countermeasure alternative.

* This work is supported by the European Commission under the project EU-FP7-
NoE-NESSOS
! http://en.wikipedia.org/wiki/SHA-0#SHA-0, site visited on March, 2013

While there are lots of risk assessment methods e.g., [1,3-6,9], few supports
a systematic selection on risk countermeasure alternatives [4,6, 9], and even
less mentioning evolving risks [2]. Traditional risk assessment methods typically
perform on a context at a particular point of time and hence could not guarantee
the risk assessment results in an evolving context. Concerning to evolutions,
in [2], the authors proposed a general technique and guideline for managing risk
in changing systems. However, they did not mention the uncertainty of evolutions
(i.e. likelihoods of occurrences), and how to use these information to support
the decision making process.

The approach in this paper is an effort to fill some of that void. The focus of
this paper is not on how to obtain the uncertainty information, but rather on how
to make use of them to produce additional factors to support the decision making
process. In particular, we propose a method to take the potential changes, their
uncertainty, and risk assessment outputs to quantitatively evaluate the evolution-
resilience of a countermeasure alternative.

2 Terminology

— Contezt: includes all required information to do risk assessment such as
assumptions about the working environment, requirements model, targets to
be protected and so on. It is the premises for and the background of the risk
analysis, as well as the purposes of the analysis and to whom the risk analysis
is addressed [1, Chap. 5]. According to ISO 31000:2009, a context includes
all external factors (e.g., regulatory, environment) and internal factors (e.g.,
business process, policies, standards, system functions, reference models).

— Before context: is the current context at the current time.

— After context: is the future context with potential changes.

3 The Proposed Method

Our proposed method includes following steps:

— STEP 1 Identify evolving contexts: identify the current context and all its
possible evolutions.

— STEP 2 Perform risk assessment: do risk assessment on identified contexts.

— STEP 3 Model context evolution: describe the context evolution model based
on identified contexts and their corresponding risk assessment outputs.

— STEP 4 Perform evolution analysis: perform analysis on the context evo-
lution model to calculate the quantitative evolution metrics to support the
selection of an appropriate countermeasure alternative to address risks.

3.1 Step 1 — Identify Evolving Contexts

This step takes all documents about the planned and potential changes of the
system as inputs. We consider four different evolution perspectives: maintenance,

context name R
e IdME 5| Context: Before Changes comparing
to the before context

Context: | C:?rteer)it: . Context: After,,
Before e
e Change #1 ® Change #(m-1)
Context: After; | | Context: After; Context: After,
. ul o Change #2 e Change #m

o Change #1 o Change #3 === [+ Change #(m-1) }

o Change #2 e Change #4 e Change #m (time to) (time t,) (time t,)
(a) Before-after evolution (b) Continuous evolution

Fig. 1. The evolution perspectives of contexts

before-after, continuous evolution, and hybrid evolution. The first three perspec-
tives were discussed in [1, Chap. 15]. The maintenance perspective relates to the
outdate of a risk document of an existing system. Hence it is not the focus of
this work. The before-after perspective predicts future contexts by anticipating
planned and unplanned changes in the current context. The continuous evolu-
tion perspective predicts the evolution of the current context over time based on
planned gradual changes. The hybrid evolution perspective is the combination
of before-after and continuous ones where both planned and unplanned changes
are considered in a sequence of time.

We abuse the notation of before and after contexts to represent these evo-
lution perspectives (except the maintenance one). Fig. 1(a) demonstrates the
before-after evolution perspective. A context is depicted as a rectangle with
child compartments. The first compartment shows the context name, and the
second compartments exhibits the changes comparing to the before context. In
this perspective, a before context might have many possibilities to evolve to
other after contexts, denoted as evolution possibility. At the end of the day,
exact one possibility materializes. Each evolution possibility associates with an
evolution probability which is the likelihood that a possibility materializes. This
uncertainty is because “the only certainty is that nothing is certain” (Pliny the
Elder?). Fig. 1(b) illustrates the continuous evolution perspective where changes
happen continuously. The before context at current time tg might evolve an after
context at time ¢; which might continuously evolve at time ¢5, and so forth.

After contexts can be identified by using any input document that describes
potential changes (either planned or unplanned) in the current context. Un-
planned changes could be anticipated by domain experts by using several tech-
niques such as brainstorming with chalk and blackboard, or techniques for re-
quirements changes anticipation. Readers are referred to [10, Chap. 6] for a more
detailed discussion of these techniques. The evolution probabilities are the ex-
perts’ belief that evolution possibilities might happen. The probability semantic
is accounted by using the game-theoretic approach described in [8].

3.2 Step 2 — Perform Risk Assessment

In this step, we employ a state-of-the-art risk assessment method (e.g., Attack
Trees [5], Cause-Consequence Diagrams [3], and CORAS [1]) to perform risk

2 Gaius Plinius Secundus (23 — 79), a Roman naturalist, and natural philosopher.

assessment for identified contexts. The outcome of this step is list of risk coun-
termeasure alternatives, which are also the output of a risk assessment method.

A risk countermeasure alternative includes a list of countermeasures, and the
residual risks (with residual risk level) of a system after implementing the coun-
termeasures. A countermeasure could be a security controls (e.g., technology,
policy), or a high level security requirement that mitigates risks. A risk level is
a pair of the likelihood by which a risk might occur, and its impact. Based on
risk level, a risk is categorized, such as acceptable or unacceptable. A residual
risk level is the risk level after implementing countermeasures.

When performing risk assessment on after contexts, we can do either a full
risk assessment from scratch, or an incremental risk assessment taking advantage
on the risk assessment on the before context. Needless to say, the former strategy
does not use resources efficiently. The latter is better since it only addresses the
changed parts of the after context comparing to the before context [1, Chap.15].

3.3 Step 3 — Model Context Evolution

This step takes the identified contexts and their corresponding risk counter-
measure alternatives to establish the context evolution model. We employ the
approach described in [8] to model the context evolution in terms of evolution
rules. There are two kinds of rules: observable rule and controllable rule. The
former captures the way how the context evolves. The latter captures different
alternatives to address risks in each context. An evolved context, as aforemen-
tioned, is foreseen with a certain evolution probability. To the sake of simplicity,
we assume that the evolving contexts identified in STEP 1 are complete and
mutual exclusive. In other words, exact one of the after contexts materializes at
the end.

Let C be an context, and C; be the i*" after context of C, and CA; be a risk
countermeasure alternative of C. The observable rule (r,) and controllable rules
(rc) are described as follows.

7o(C) = {c 2 e

sz' = 1} (1)
=1
r(C) ={C = CA;|j =1..m} (2)

where n is the number of after contexts of C; p; is the evolution probability for
which C evolves to C;; m is the number of risk countermeasure alternatives of C.
The sum of all p; is 1 since the after contexts are complete and mutual exclusive.

The before-after evolution perspective is represented by an observable rule.
The continuous and hybrid evolution perspectives are represented as a sequence
of observable rules where the current context of an observable rule is the after
context of another observable rule, so on and so forth.

Fig. 2 shows a graphical visualization of the context evolution model of the
hybrid evolution perspective. The observable rule is denoted by connections from
a before context to after contexts. The decorators on the connections are the evo-
lution probabilities. To denote the controllable rule, the rectangles representing

Context: After;

* No change happens Context: After,

o No change happens

(Alternative 1] (Alternative 2}

[Pa Alternative 2

Context: After,

Context: Before

 Change #1 |

Context: Afters

(Alternative 1) (Alternative 2) P2 e 2 Ps
o Change #3
P3
Context: Afters Alternative 3

o Change #2

Risk countermeasure

alternative 7 Alternative 2 || Alternative 3

Fig. 2. The context evolution model.

context are extended with a new compartment containing risk countermeasure
alternatives which are represented by round rectangles. The controllable rule
then is understood as different risk countermeasure alternatives of a context.

3.4 Step 4 — Perform Evolution Analysis

This step performs an evolution analysis on the context evolution model to cal-
culate evolution metrics that support the decision making process. In particular,
the evolution metrics aim to answer the question that to what extent a risk
countermeasure alternative can resist the evolution. This analysis relies on two
quantitative metrics: maz belief and deferral belief [8]°.

Max Belief (MazB): is the maximum belief that a risk countermeasure alter-
native will be appropriate if evolutions happen. By term appropriate, we
mean the residual risks after applying the countermeasure alternative in the
evolved contexts will still be acceptable. So, the system will still be safe.

Deferral Belief (DefB): is the belief that a risk countermeasure alternative
will be inappropriate after evolutions happen. It is also the belief by which
the implementation of the risk countermeasure alternative should be delayed
until the context is clearly known.

We define a binary function appropriate() that takes two inputs: a context
C, and a risk countermeasure alternative CA, to produce 1 if CA is appropriate
within C, or 0 otherwise. The mazx belief and deferral belief of CA for the before-
after evolution of the context C are as follows.

MazB(CA|c) = ‘ max Di (3)
{(cp—%ci)e“ (C)|appropriate(C;,CA)}

DefB(CA|¢) =1— Z b)
{(C5Ciyero(C)[appropriate(Ci, CA) }

To the perspective of evolution-resilience, a better alternative is one that has
a higher max belief and a lower deferral belief.

3 We rename the Residual Risk metric in [8] to deferral belief to avoid naming conflict.

4 Conclusion and Future Work

The context in long-life evolving software systems might evolve over time. As
the result, the risks of software systems might also evolve. Under the evolution
of risks, the systems might be no longer secure. Therefore, new countermea-
sures need to be implemented to mitigate new risks. This however is much more
expensive than addressing these risks at development time.

We are aware of only one study in the field [2] that introduced general tech-
niques and guidelines for managing risk in evolving systems, but did not men-
tion to the uncertainty of evolutions. Our work is pioneer in filling in the gap
by proposing a method inspired from metrics in [8] to evaluate the evolution-
resilience of the risk countermeasure alternatives which are the outputs of risk
assessment. This provides more insights about the evolving risks to support de-
cision makers in selecting the most appropriate alternative. We refer interested
readers to [7] for a more detail discussion.

In future, we plan to extend the proposed method to provide quantitative
metrics combining the maz belief, and the deferral belief with the risk assessment
output to facilitate the selection of countermeasure alternative. A promising
approach is to employ the Overall Cost metric described in [9]. Also as a part of
future work, we aim to develop a technique exploiting these quantitative metrics
to suggest the countermeasure alternative that efficiently address the evolving
risks with (or without) an optimal cost.

References

1. M. S. Lund, B. Solhaug, and K. Stglen. Model-Driven Risk Analysis. The CORAS
Approach. Springer, 2011.
2. M. S. Lund, B. Solhaug, and K. Stglen. Risk Analysis of Changing and Evolving
Systems Using CORAS. In FOSAD, 2011.
3. S. Mannan and F. Lees. Lees’ Loss Prevention in the Process Industries, volume 1.
Butterworth-Heinemann, 3rd edition, 2005.
4. T. L. Norman. Risk Analysis and Security Countermeasure Selection. CRC Press,
Taylor & Francis Group, 2010.
5. B. Schneier. Attack Trees: Modeling Security Threats. Dr. Dobbs Journal of
Software Tools, 24 (12):21-29.
6. G. Stoneburner, A. Goguen, and A. Feringa. Risk Management Guide for Infor-
mation Technology Systems. Tech. report, NIST, 2002.
7. L. M. S. Tran. Early Dealing with Evolving Risk in Long-life Evolving Software
Systems. Tech. report, University of Trento, 2013. http://disi.unitn.it/~tran.
8. L. M. S. Tran and F. Massacci. Dealing with Known Unknowns: Towards a Game-
theoretic Foundation for Software Requirements Evolution. In CAiSE’11, 2011.
9. L. M. S. Tran, B. Solhaug, and K. Stglen. An Approach to Select
Cost-effective Risk Countermeasures Exemplified in CORAS. CoRR, 2013.
http://arxiv.org/abs/1302.4689.
10. A. van Lamsweerde. Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, 2009.

http://disi.unitn.it/~tran

	Early Dealing with Evolving Risks in Long-Life Evolving Software Systems
	Introduction
	Terminology
	The Proposed Method
	Step 1 – Identify Evolving Contexts
	Step 2 – Perform Risk Assessment
	Step 3 – Model Context Evolution
	Step 4 – Perform Evolution Analysis

	Conclusion and Future Work

