
Computer-Aided Support for Secure Tropos

Fabio Massacci (massacci@dit.unitn.it), John Mylopoulos

(jm@dit.unitn.it) and Nicola Zannone (zannone@dit.unitn.it)

Dep. of Information and Communication Technology - University of Trento

Abstract. In earlier work, we have introduced Secure Tropos, a requirements

engineering methodology that extends the Tropos methodology and is intended for

the design and analysis of security requirements. This paper briefly recaps the

concepts proposed for capturing security aspects, and presents an implemented

graphical CASE tool that supports the Secure Tropos methodology. Specifically,

the tool supports the creation of Secure Tropos models, their translation to formal

specifications, as well as the analysis of these specifications to ensure that they

comply with specific security properties. Apart from presenting the tool, the paper

also presents a two-tier evaluation consisting of two case studies and an experimental

evaluation of the tool’s scalability.

Keywords: Security Requirements Engineering, CASE tools, Automated Reason-

ing

1. Introduction

Requirement Engineering is the phase of the software development

process that aims at understanding the organizational context of a

system, the goals of organizational and system actors, and social rela-

tionships among them (Nuseibeh and Easterbrook, 2000). This phase is

particularly critical, because misunderstandings may lead to expensive

errors during later phases.

c© 2008 Kluwer Academic Publishers. Printed in the Netherlands.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.1

2 Massacci, Mylopoulos and Zannone

Graphical modeling has been recognized as an important aspect

in Software Engineering in general, and Requirements Engineering in

particular, because it facilitates and promotes understanding between

designers and stakeholders. Graphical models are thus being widely

used to design systems and capture their functional properties, as well

as those of the environment within which the system-to-be will operate.

Unfortunately, graphical notations are often informal, and generally

lack the expressiveness of logic-based requirements modeling languages.

This issue has spurred the development of many formal frameworks that

combine elements of graphical notations and logic. In addition, there

have been many proposals for verifying requirements, ranging from

automated reasoning (Fickas and Nagarajan, 1988; Maiden and Sut-

cliffe, 1992) to requirements animation (Gravell and Henderson, 1996).

Together with analysis techniques, CASE tools have been developed

in order to support such techniques and drive requirements elicitation

and analysis.

Recent years have seen an increasing awareness that security plays

a key role within organizations and their IT systems. Consequently,

many research efforts are focusing on the introduction of security con-

cerns into the system development process (Basin et al., 2006; Jürjens,

2004), also, modeling and analysis of security requirements along-side

functional requirements (Haley et al., 2005; Liu et al., 2003; McDermott

and Fox, 1999; Sindre and Opdahl, 2005; van Lamsweerde, 2004).

These proposals tackle the problem of designing secure systems from

different perspectives. Some proposals model attackers along with their

capabilities (Liu et al., 2003; van Lamsweerde, 2004), whereas others

define the undesirable behaviors that a system should prevent (McDer-

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.2

Computer-Aided Support for Secure Tropos 3

mott and Fox, 1999; Sindre and Opdahl, 2005). There are also proposals

that focus on security related features such as confidentiality and ac-

cess control (Basin et al., 2006; De Landtsheer and van Lamsweerde,

2005; Jürjens, 2004; Onabajo and Jahnke, 2006). However, most of

such proposals focus on system security aspects, rather than social and

organizational ones.

In the context of socio-technical systems – reflected in our past

work – security requirements are mostly social requirements rather than

technical solutions (Giorgini et al., 2006). To understand the problem

of security engineering we need to model and analyze organizational

settings, in terms of relationships between relevant actors, including

the system-to-be. Modeling only digital protection mechanisms is not

sufficient. Indeed, several studies have revealed how security is often

compromised by exploiting weaknesses at the interface between proce-

dures and policies adopted by an organization and the system that

support them (Anderson, 1994; House of Lords, 1999; Promontory

Financial Group et al., 2003).

The Tropos methodology (Bresciani et al., 2004) is an agent-oriented

software engineering methodology intended to support the modeling

and analysis of both the system-to-be and its organizational environ-

ment through different phases of the system development process. One

of its main features is the prominent role given to early requirements

analysis phase that concerns the understanding of the domain by study-

ing the organizational context within which the system-to-be will even-

tually operate. The main advantage in having such a phase is that one

can capture not only the “what” or the “how”, but also the “why”

system functionalities are required. This methodology has already been

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.3

4 Massacci, Mylopoulos and Zannone

used to model security requirements by offering facilities for analyzing

threats, vulnerabilities, and countermeasures (Liu et al., 2003). This

approach supports the representation of design decisions relevant to

security by modeling internal and external attackers along with their

goals and design solutions that prevent their fulfillment. However, Tro-

pos lacks fundamental concepts necessary to deal with certain aspects

of security (Giorgini et al., 2006).

In (Giorgini et al., 2005b), the authors propose Secure Tropos, an

agent-oriented security requirements engineering methodology, that ex-

tends Tropos with concepts specific to security and supports formal

analysis. The methodology aims at assisting system designers in the

acquisition of requirements and the verification of their compliance

with security properties. Though it is possible within this framework to

model and analyze the behavior and objectives of attackers similarly

to the work in (Liu et al., 2003), the main focus of formal analysis

in this paper is the exploitation of security-specific concepts to ver-

ify the correctness and consistency of procedures and policies in their

use of assets. In particular, it provides support for verifying that ac-

tor objectives will be fulfilled and that their entitlements will not be

misused. Moreover, the framework provides facilities for verifying the

compliance of organizational policies with the need-to-know principle

that is a fundamental requirement established by privacy legislation in

many countries (e.g., Data Protection Directive, 95/46/EC). Together

with a modeling language and a methodological framework, the authors

propose a formal framework based on Answer Set Programming (ASP)

(Leone et al., 2006) to assist designers during security requirements

verification.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.4

Computer-Aided Support for Secure Tropos 5

Though several existing Requirements Engineering methodologies

are often coupled with CASE tools, such coupling is far less frequent for

Security Requirements Engineering. The application of the Secure Tro-

pos methodology to some real case studies (Asnar et al., 2006; Massacci

and Zannone, 2006; Massacci et al., 2005) has shown the need for such

tools. This application has also revealed the need for such tools to not

only support requirements engineers through requirements elicitation,

but also to offer formal methods for requirements analysis.

This paper presents ST-Tool, a CASE tool developed to support the

Secure Tropos methodology. The main objectives behind the design of

the tool are:

− Graphical environment : a framework to assist requirements engi-

neers in the creation of graphical models of early security require-

ments using Secure Tropos concepts.

− Formalization: support for translating graphical models into for-

mal specifications;

− Analysis facilities: a front-end to state-of-the-art, off-the-shelf ASP

solvers that support the analysis of these specifications to ensure

that desirable security properties are satisfied.

In the next section (§2) we provide an overview of Secure Tropos

along with the concepts it is founded on. We then present the tool

supporting this methodology (§3) and describe how the tool assists

designers during requirements modeling and analysis (§4). In order to

evaluate the tool, we next present the application of the methodology

and tool to industrial case studies, as well as experimental results on

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.5

6 Massacci, Mylopoulos and Zannone

its scalability (§5). Finally, we discuss related work (§6) and conclude

the paper with discussion on future directions for this research (§7).

For pragmatic reasons, the scope of the evaluation of the tool does

not include usability, nor we have tried to evaluate the effectiveness of

the tool in supporting requirements engineers in the design of secure

systems. Moreover, although the paper clearly identifies what security

properties can be formally verified by the ST-Tool, it does not include

a general discussion of security properties that are not handled by our

tool.

2. Secure Tropos

Tropos (Bresciani et al., 2004) is an agent-oriented software engineering

methodology tailored to model both the system-to-be and its organi-

zational environment. Secure Tropos (Giorgini et al., 2005b) extends

Tropos in order to model and analyze security requirements along-

side functional requirements. The methodology provides a requirements

analysis process that drives system designers from the acquisition of

requirements up to their verification.

Secure Tropos adopts from Tropos and i* (Yu, 1995) the concepts

of actor, goal, task, resource, and introduces the concepts of objective,

entitlement, capability, delegation and trust. An actor is an inten-

tional entity that performs actions to achieve goals. A goal represents

a strategic interest of an actor. A task represents a course of actions for

satisfying a goal. A resource represents a physical or an informational

entity. For the sake of brevity, we use the term “service” to refer to

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.6

Computer-Aided Support for Secure Tropos 7

a goal, task, or resource when it is not necessary to distinguish them.

Objectives, entitlements and capabilities of actors are modeled through

relationships between an actor and a service, namely request, own,

and provide. Request identifies goals intended to be achieved, tasks

intended to be executed or resources required by actors; own represents

the authority of controlling the achievement of a goal, execution of a

task, or delivery of a resource; and provide represents the capability of

achieving a goal, executing a task, or furnishing a resource.

Moreover, Secure Tropos uses the notion of delegation of permis-

sion and delegation of execution. Delegation of permission indicates

that one actor authorizes another actor to achieve a goal, execute a

task, or furnish a resource. As consequence, the delegatee is entitled to

achieve the goal, execute the task, or furnish the resource. Moreover,

the delegatee may also re-delegate the granted permission (or part of

it) to other actors. Delegation of execution (or execution dependency)

indicates that one actor appoints another actor to achieve a goal, ex-

ecute a task, or furnish a resource. As consequence, the delegatee is

responsible to achieve the goal, execute the task, or furnish the resource.

Moreover, the delegatee may also re-delegate the assigned responsibility

(or part of it) to other actors. System designers might need to model

situations where an actor must delegate the execution of his objectives

or the permission on his entitlements to actors he does not trust. Thus,

it is necessary to separate the concept of trust from the concept of

delegation. In particular, the concepts of trust of permission is used to

model the expectation of an actor about the fair behavior of another

actor and trust of execution to model the expectation of an actor about

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.7

8 Massacci, Mylopoulos and Zannone

the achievement of a goal, execution of a task, or delivery of a resource

by another actor.

The above constructs allow designers to capture the requirements

model of organizations together with their IT systems. In the graphical

representation of this model, objectives, entitlements, and capabilities

are represented using request (R), ownership (O), and provide (P) re-

lations, respectively. Permission delegations are represented with edges

labeled Dp and execution dependency with edges labeled De. Finally,

trust of permission and trust of execution are represented with edges

labeled Tp and Te respectively.

The Secure Tropos methodology proposes the following modeling

activities for representing the requirements model:

Actor modeling consists of identifying and analyzing domain stake-

holders and system actors along with their objectives, entitlements

and capabilities.

Trust modeling consists of modeling the expectation of actors about

the performance and fair behavior of other actors on a certain

goal, task, or resource. Such expectations are modeled using trust

of execution and trust of permission links.

Execution Dependency modeling consists of identifying transfers

of responsibilities from an actor to another. Such transfers are

modeled using delegation of execution links.

Permission Delegation modeling consists of identifying transfers

of authority from an actor to another. Such transfers are modeled

using delegation of permission links.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.8

Computer-Aided Support for Secure Tropos 9

Figure 1. Requirements Model

Their outcome is a number of graphical models that together constitute

a requirements model. In particular, each diagram type corresponds to

a different view of the requirements model, respectively an actor, trust,

execution dependency, and permission delegation view.

EXAMPLE 1. An advisor wants to have his PhD students attend con-

ferences in order to present their research work, and delegates the ex-

ecution of this goal to them. PhD students need authorization for the

mission and request it from the Doctoral School Secretary. The Doctoral

School Secretary is appointed by the University to comply with Univer-

sity procedures and regulations. These duties include checking that every

student is in compliance with University and Doctoral School regula-

tions and procedures. Thereby, the Doctoral School Secretary requires

students to ensure compliance with mission procedures. The require-

ments model is presented in Figure 1.

Goal/Task modeling refines and enriches a requirements model with

further details. This modeling activity is conducted from the per-

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.9

10 Massacci, Mylopoulos and Zannone

Figure 2. The Mission Procedure at UNITN

spective of single actors using AND/OR refinement, means-end

analysis, and contribution analysis (Bresciani et al., 2004).

A graphical representation of goal/task modeling is given through goal

diagrams.

EXAMPLE 2. Figure 2 refines the model presented in Figure 1 by

focusing on the mission procedure for PhD students according to ICT

International Doctoral School’s regulation at the University of Trento

(UNITN) – see “Regulations & Procedures” at http://ict.unitn.it/ict/services/faq.xml.

In particular, to achieve the goal comply with mission procedure, the stu-

dent has to get informal approval for the mission for which he depends on

his advisor, fill request mission, and (possibly) get advance payment and

get payment of expenses for which he depends on the Administration De-

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.10

Computer-Aided Support for Secure Tropos 11

partment. In order to achieve goal fill request mission, the student has to

provide mission information, choose means of transportation, and provide

funds information. The achievement of this goal requires the fulfillment

of goals decide funding and require authorization for the use of funding.

Depending on the chosen funding account, the student shall ask for

authorization either from the Doctoral School Dean or his advisor. To

achieve their duties, the Doctoral School Secretary and Administration

Department need some documents from the student, such as mission

request form, advance reimbursement form, and payment of expenses form

with original receipts.

Once designers have elaborated a first version of a requirements

model, the methodology supports them in verifying its compliance with

specific security properties. In particular, the framework allows one to

verify the availability, authorization, and privacy of the designed system

using the properties presented in Table I. These properties partially

cover the security and privacy requirements identified in a number

of authoritative classifications from widely accepted ISO standards,

such as ISO 17799 and ISO 15408, a recent survey by Avizienis et al.

(2004), the classical paper by Jerome Saltzer and Michael Schroeder

Saltzer and Schroeder (1975), and a seminal paper on Hippocratic

databases (Agrawal et al., 2002). However, a detailed discussion about

the positioning of the properties we can verify with respect to these

classifications go beyond the scope of this paper.

Security properties may be classified as safety properties and liveness

properties. Intuitively, safety properties are properties stating “noth-

ing bad will happen” and liveness properties are properties stating

“something good will happen” (Alpern and Schneider, 1986). Most

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.11

12 Massacci, Mylopoulos and Zannone

Table I. Desirable Properties

Availability

Pro1 Actors delegate the execution of their (direct or indirect) objectives only to actors

that they trust.

Pro2 Requesters can satisfy their objectives; that is, they have assigned their objectives

to actors that have the capabilities to achieve them.

Pro3 Requesters are confident their objectives will be satisfied; that is, they have assigned

their objectives to actors that have the capabilities to achieve them and are trusted.

Authorization

Pro4 Actors delegate permissions on their (direct or indirect) entitlements only to actors

they trust.

Pro5 Owners are confident that their entitlements are not misused; that is, permission on

their entitlements is assigned only to actors they trust.

Pro6 Actors, who delegate permissions to achieve a goal, execute a task, or furnish a

resource, have the right to do so.

Availability & Authorization

Pro7 Requesters can achieve their objectives; that is, they have assigned their objectives

to actors that have both the permissions and capabilities to achieve them.

Pro8 Requesters are confident to achieve their objectives; that is, they have assigned their

objectives to actors that have both the permissions and capabilities to achieve them

and are trusted.

Pro9 Providers have the permissions necessary to accomplish assigned duties.

Privacy

Pro10 Permission has been granted to actors who actually need it to perform their duties.

This is an important property to fulfill EU legislative privacy requirements on need-

to-know.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.12

Computer-Aided Support for Secure Tropos 13

security properties rely on the fact that attackers cannot compromise

the system. Therefore, they can be characterize as safety properties.

For instance, authentication, access control, confidentiality, integrity

and non-repudiation are safety properties (Germeau and Leduc, 1997).

Each of these security services require that a particular situation will

not occur. The only security liveness property is availability and, in

particular, non-denial of service (Bauer et al., 2002; Germeau and

Leduc, 1997). Nonetheless, this classification is not rigid. Indeed, it

is known that any property, including security properties, can be ex-

pressed as the conjunction of a safety and a liveness property (Bauer

et al., 2002; Schneider, 1987). The properties in Table I can roughly

be classified as follows: Pro1, Pro4, Pro5, Pro6 and Pro10 are safety

properties and Pro2, Pro3, Pro7, Pro8, and Pro9 are combinations of

safety and liveness properties. For instance, Pro5 is a safety property

because there is a bad thing that may occur (e.g., an untrusted actor

can have permission to achieve a goal).

The development of systems with high security needs requires method-

ologies that support the definition and verification of defense-in-depth

strategies, which are practical strategies for achieving information as-

surance (National Security Agency, 2002, Chap. 4). Design for defense-

in-depth can be supported by this or other methodologies by having

the analyst explicitly add or remove trust assumptions (trust relations

in our case) and verify that he still gets a successful verification of the

security properties. In our case this simply means that the designer

needs to remove a trust relation or a combination of these relations

and check that all properties (e.g., confidence in satisfaction) still hold,

then restore those relations, remove others and check the properties

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.13

14 Massacci, Mylopoulos and Zannone

Data−layer
Manager

Graphical−layer
Manager

Integrity
Checker

AR
Front−end

FormalTropos
Translator

ASP
Translator

GUI

Editor

Data Model

Solvers

ST−Tool

Formal Languages & Analysis

Figure 3. Architecture Overview

again. Since the decision on whether any actor is trustworthy is up to

the designer, such a procedure will likely remain manual though it is

possible to add rules that define single points of failure in a trust chain.

3. ST-Tool

The Secure Tropos methodology is supported by the ST-Tool (http://sesa.dit.unitn.it/sttool/).

The tool consists of three parts: the modeling kernel, the visual model

interface, and the reasoning interface. In Figure 3, the modules of

ST-Tool are shown, along with their interrelations.

3.1. Visual Modeling

To manage visual editing features and data management consistency

at the same time, we have adopted an architecture that includes a

graphical layer and a data layer. At the graphical layer, models are

presented as graphs where actors and services are nodes, and relations

are arcs. Each visual object refers to a data object. The collection of

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.14

Computer-Aided Support for Secure Tropos 15

Figure 4. ST-Tool Graphical User Interface

data objects is managed by the data layer. Distinguishing the data

layer from the graphical layer allows designers, for example, to draw

Tropos models and then build on top of them Secure Tropos models

by reusing common concepts. Moreover, it permits the association of

more than one graphical object to the same data object. This feature

is essential for dealing with situations where a service is re-delegated

by some actor. It should be noted that the Tropos graphical notation

is similar, but not identical, to a subset of the Secure Tropos notation.

Implementation-wise, the ST-Tool provides a graphical user inter-

face (GUI), through which all its graphical components are managed.

The screen is divided into four main areas: the menu of entities and

relations at the top, the graphical editor in the middle, the menu

for choosing different representations of requirements models at the

bottom, and the property viewer and editor at the left (Figure 4).

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.15

16 Massacci, Mylopoulos and Zannone

The GUI’s key component is the Editor module. This module allows

designers to visually insert, edit or remove graphical objects in the

graphical layer by selecting the desired entity or relation from the top

menu, and specifying entity and relation attributes in the data layer on

the left menu. In particular, for every Tropos element, it is possible to

specify temporal properties according to the syntax of Formal Tropos

(Fuxman et al., 2004) by selecting the corresponding panel on the left

menu.

A second component of the tool is the Graphical-layer Manager

(GM) module that manages graphical objects. For instance, it supports

goal modeling by associating a goal diagram with each actor. Corre-

lated with this feature, GM supports two types of collapsing nodes,

namely collapsing services and actors. When a service is collapsed, its

sub-services, decomposition arcs and relations having subservices as

dependum are hidden. When an actor is collapsed, the entire rationale

of that actor is hidden. GM also allows designers to activate one or

more views of the requirements model (i.e., dependency diagram for

Tropos (Bresciani et al., 2004), and trust, execution dependency, and

permission delegation views for Secure Tropos) at the same time. Es-

sentially, when a view is activated/deactivated, all elements related to

that particular view are shown/hidden. For instance, deactivating trust

view will hide all trust relation links in the requirements model.

The Data-layer Manager (DM) module is responsible for building

and maintaining data corresponding to graphical objects. For example,

DM manages misalignment between social relations and their graphical

representation. Essentially, this module rebuilds Tropos and Secure

Tropos relations by linking the appropriate graphical objects (e.g., two

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.16

Computer-Aided Support for Secure Tropos 17

trust links, two actor nodes representing the trustor and the trustee,

and a service node representing the trustum) to the same data object

(the trust relation).

Finally, the tool uses the Integrity Checker module to detect errors

during the modeling phase. In particular, this module is responsible to

identify designers’ misapplications such as “isolated nodes” (i.e. services

not involved in any relation), “orphan relations” (i.e. relations where an

arc is missing), and bad-typed relations, by parsing the requirements

model stored in the DM module.

3.2. Automated Reasoning Support

In order to perform formal analysis, the ST-Tool supports the auto-

matic transformation of graphical models into formal specifications.

Currently, two logics are supported: temporal logic for behavioral spec-

ification (Fuxman et al., 2004) and Answer Set Programming (ASP)

for security verification (Giorgini et al., 2005b). These transformations

are automatically performed, respectively, by two modules: the For-

mal Tropos Translator module and the ASP Translator module. These

modules are responsible for the translation of graphical models into the

corresponding formal specifications. The resulting specifications can be

displayed by selecting the corresponding panel in the bottom menu

(Figure 5).

Supporting languages based on first order logic and languages based

on temporal logic allows system designers to perform different types

of analysis, so they can evaluate the system-to-be along with the en-

vironment where it will act from different perspectives. As already

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.17

18 Massacci, Mylopoulos and Zannone

Figure 5. ST-Tool: The ASP specification

mentioned, in this paper we focus on the formal analysis performed

using the ASP paradigm. Basically, this analysis is addressed to verify

the compliance of system requirements with the properties given in

Table I.

Apart from choosing different formal languages, there are also dif-

ferent types of analysis one may want to perform. For example, one

may focus on verifying the correctness of the current setting of an

organization. For the analysis of an enterprise-wide privacy policy, we

cannot simply reason at the level of generic concepts (e.g., “the user”,

“the General Director”, “the member of the CERT team”), but we

must instantiate these concepts to specific individuals playing those

roles (Massacci et al., 2005). Towards this end, ST-Tool supports the

instantiation of the requirements model at the organizational level with

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.18

Computer-Aided Support for Secure Tropos 19

Figure 6. Automated Reasoning Front-end

an arbitrary number of instances by associating a number of individuals

with a role.

The Automated Reasoning Front-end (ARF) module provides de-

signers with functionality tailored to complete and check requirements

models expressed in form of ASP specifications using different external

ASP solvers. This permits designers to select the properties to be veri-

fied and the information to be visualized in the output (Figure 6). This

information allows designers to understand the “where” and “why” of

system vulnerabilities. Designers may also need to specify and derive

additional information about the domain under analysis. To this end,

the ARF module provides support to add rules, properties, or facts

that will be analyzed together with the intuitive description of the

system, axioms, and selected properties. The tool supports the use of

different ASP solvers, namely ASSAT (Lin and Zhao, 2002), Cmodels

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.19

20 Massacci, Mylopoulos and Zannone

(Lierler, 2005), Smodels (Niemelä et al., 2000), and DLV (Leone et al.,

2006). Cmodels and ASSAT use SAT solvers as inference engines, while

Smodels uses a general-purpose answer set solver. All these solvers

work with grounded logic programs generated by Lparse (Niemelä and

Simons, 1996). Lparse grounds a logic programs by transforming it into

an equivalent ground logic program (i.e., a logic program whose rules

do not containing variables) where equivalence is defined as having the

same set of stable models. Finally, DLV is a deductive database system.

The ARF module is responsible for passing the ASP specification corre-

sponding to the graphical requirements model to the chosen ASP solver

for verifying consistency. Once the solver completes its task, it returns

the minimal Herbrand model (i.e., a set of ground literals) satisfying

the program itself (Gelfond and Lifschitz, 1991). This model is parsed

and presented in a user-readable format by the ARF module.

In order to optimize the analysis, we have implemented the for-

mal framework underlying Secure Tropos as a locally stratified logic

program (Gelfond and Lifschitz, 1988). Such programs consist of rules

that do not have arbitrary recursion through negation. Specifically,

predicates of locally stratified programs can be partitioned into disjoint

sets called strata such that there is no negative dependency between

predicates in the same stratum. A predicate p depends on predicate q

if q occurs in the body of the rule in which p occurs as head. A locally

stratified program has to satisfy two conditions:

1. if predicate p is at stratum i and depends positively on predicate

q, then q must be in a stratum j such that j ≤ i, and

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.20

Computer-Aided Support for Secure Tropos 21

2. if predicate p is at stratum i and depends negatively on predicate

q, then q must be in a stratum j such that j < i.

Intuitively, intensional predicates are completely computed without

relying via negation on other predicates that are not in a lower stra-

tum. This restriction implies that recursive iterations can be resolved

in a finite number of steps. Locally stratified logic programs have a

unique stable model and a well-founded semantics (Gelfond and Lif-

schitz, 1988). Moreover, van Gelder (1989) has proved that the unique

stable model can be computed in quadratic time complexity. While

the use of locally stratified logic programs may seem like a limitation

in expressiveness, they were sufficient for expressing the semantics of

Secure Tropos concepts.

4. Requirements Analysis Support

This section presents how the ST-Tool assists system designers in the

use of the Secure Tropos methodology. The main activities supported

by the tool are: (1) requirements elicitation and modeling; (2) model

transformation; (3) formal requirements analysis.

4.1. Requirements Elicitation and Modeling

Requirements elicitation and modeling activities aim to capture re-

quirements and represent them in terms of Secure Tropos diagrams.

During requirements elicitation, domain stakeholders and system

actors are identified along their properties; their inter-dependencies are

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.21

22 Massacci, Mylopoulos and Zannone

also captured and represented in terms of social relations. Requirements

specifications are usually provided by stakeholders in natural language.

We have defined a requirements collection schema designed to capture

requirements in a semi-structured way (Asnar et al., 2006). This form-

based document is intended to bridge the gap between requirements

specified in natural language and the formal requirements specification.

It provides a number of tables that drive requirements engineers during

requirements elicitation.

Once the requirements collection schema has been completed, re-

quirements modeling proceeds using the graphical Editor. Indeed, there

is a one-to-one relation between Secure Tropos concepts and the tables

in the template.

4.2. Model Transformation

The semantics of all Secure Tropos concepts are defined using the An-

swer Set Programming (ASP) paradigm (Gelfond and Lifschitz, 1991).

Roughly speaking, the ASP paradigm is a variant of Datalog with nega-

tion as failure. This paradigm supports specifications expressed in terms

of facts and Horn clauses, which are evaluated using the stable model

semantics. A fact consists of a relation symbol, called predicate, together

with an appropriate number of well-formed arguments. In ASP, as in

Datalog, predicates are distinguished into two types: extensional and

intensional. A predicate is extensional if it does not appear on the

left-hand side of any clause. Extentional predicates represent primitive

concepts in Secure Tropos. All other predicates are called intentional,

and they are used for requirements verification.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.22

Computer-Aided Support for Secure Tropos 23

(1) owns(student ,mrf)

(2) owns(student , arf)

(3) owns(student , pef)

(4) owns(project coordinator , authorize the use of the funding)

(5) delegate perm(student , dss,mrf)

(6) delegate perm(student , ad , arf)

(7) delegate perm(student , ad , pef)

(8) delegate perm(advisor , student , authorize the use of the funding)

Figure 7. Extensional Description of the System in ASP

The ST-Tool supports the translation of Secure Tropos diagrams to

ASP clauses through the ASP module.

EXAMPLE 3. Figure 7 shows the list of facts (limited to permission)

corresponding to the intuitive description of the system given in Exam-

ple 2. We use literal owns(a, s) to represent that actor a is the legitimate

owner of service s, and delegate perm(a, b, s) for modeling the transfer

of authority on service s from actor a to actor b.

4.3. Formal Requirements Analysis

To verify the correctness of requirements, the framework supports for-

mal analysis of rules and constraints (i.e., rules where the head is

empty). Rules (or axioms) are used to complete specifications in or-

der to derive the information needed for requirements verification. For

instance, designers need to identify who is entitled to achieve goals,

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.23

24 Massacci, Mylopoulos and Zannone

perform tasks and access resources. To this intent, Secure Tropos uses

the following axioms (Giorgini et al., 2005b):

(Ax1) has perm(A,S) ← owns(A,S)

(Ax2) has perm(B,S) ← delegate perm(A,B,S) ∧ has perm(A,S)

Ax1 states that actors are entitled to access their own services, and

Ax2 that actors authorized by someone who is entitled to access the

service, are in turn entitled to access that service. It should be noted

that in this paper, we have reported a simplified version of axioms

where delegation is assumed to be transitive. We refer to (Giorgini

et al., 2006) for a discussion on how delegation depth and conditions

can be used to control (re-)delegation.

EXAMPLE 4. Applying such axioms to our example, one can infer

that the student is entitled to access all her own forms, the Doctorate

School Secretary is entitled to access student mission request form, and

the Administrative Department is entitled to access student advance

reimbursement and payment of expenses forms and original receipts.

The reasoning system also infers that only the project coordinator can

use project funding.

The complete specification can be used by designers to verify if

the model complies with desirable security properties. To this intent,

the framework supports requirements engineers through the use of

constraints (Gelfond and Lifschitz, 1991). Constraints encode the prop-

erties presented in Table I into a form that is supported by external ASP

solvers. In particular, constraints specify conditions which must not be

true in the model. In other words, constraints are formulations of pos-

sible inconsistencies. If all constraints are not simultaneously satisfied,

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.24

Computer-Aided Support for Secure Tropos 25

weaknesses or vulnerabilities may occur in the actual implementation

of the system or in the policies adopted by the organization (Massacci

and Zannone, 2006). In such situations, it is up to the designer to

decide whether or not such failures compromise the system and adopt

the adequate countermeasures. This decision depends on several factors

such as risk, cost of the solution, compliance with legislation, etc.

EXAMPLE 5. To verify the compliance of the requirements model with

Pro4 and Pro6 in Table I, Secure Tropos uses the following constraints:

(Pro4) ← delegate perm(A,B,S) ∧ not trustChain perm(A,B,S)

(Pro6) ← delegate perm(A,B,S) ∧ not has perm(A,S)

The analysis reveals the presence of weaknesses in the mission proce-

dure. Pro6 is not satisfied since the advisor has authorized the use of the

funding without the consent of the project coordinator. Consequently,

the student cannot receive the reimbursement. This is also detected by

the reasoning engine in the form of violations of availability require-

ments. In particular, the student cannot achieve his goal since he has

delegated part of it to an actor that does not have the permission to

achieve assigned obligations (Pro7).

Other inconsistencies come up since the trust model is not considered

in the regulation. Actually, trust relations are implicitly defined in the

employment contract that actors draw up with the University. The lack

of an explicit trust model makes Pro4 not satisfied.

Inconsistencies of properties might be due to either unspecified re-

quirements or conflicting requirements. Thus, detecting and solving

inconsistencies helps requirements engineers to detect implicit and un-

specified requirements, understand system vulnerabilities, and identify

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.25

26 Massacci, Mylopoulos and Zannone

and evaluate solutions for mitigate vulnerabilities. We note that if such

inconsistencies are not resolved, weaknesses or vulnerabilities might

occur in the deployed system. For instance, appointing an untrusted

actor to achieve critical tasks increases the risk of their failures. Thus,

requirements analysis drives the designer in revising and refining the

requirements model.

EXAMPLE 6. The analysis shows how inconsistencies due to the fail-

ure of Pro6 can be solved by modifying the mission procedure. In partic-

ular, the student shall not depend on the advisor for the use of funding,

but he shall ask for authorization directly from the project coordinator.

5. Tool Evaluation

The Secure Tropos methodology and ST-tool have been used to model

and analyze several industrial case studies (Asnar et al., 2006; Massacci

et al., 2005; Massacci and Zannone, 2006). In this section we report

two of these experiences: compliance by the University of Trento with

Italian legislation on Privacy and Data Protection (Massacci et al.,

2005) and analysis of a fraud to the detriment of Allied Irish Bank

(Massacci and Zannone, 2006). An important objective for both case

studies was to evaluate the expressiveness of the modeling language and

validate the formal framework and analysis. The section also includes

an experimental evaluation of the scalability of the proposed automated

reasoning techniques.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.26

Computer-Aided Support for Secure Tropos 27

5.1. Compliance by the University of Trento with Italian

legislation on Privacy and Data Protection

In (Massacci et al., 2005) we have used the tool to model and analyze a

comprehensive case study on the compliance of the University of Trento

with Italian privacy and data protection legislation. The Italian Data

Protection Act requires public administrations, which include univer-

sities, to set up adequate security and privacy policies. The Act also

includes a technical annex that is similar to the ISO-17999 standard.

This annex defines the minimal precautionary security measures that

should be implemented by administrations, such as authentication and

authorization facilities, antivirus protection, as well as data backup and

restore mechanisms.

The University has enforced the Data Protection Act through an

Internal Privacy Regulation that delegates responsibilities of the data

controller (the Chancellor) concerning the processing of personal data

to Faculty Deans, Heads of Departments, and Central Directorate Man-

agers. These actors are responsible for fulfilling all obligations relating

to personal data processed within the University, with support from the

ICT Directorate with regard to the adoption of minimal precautionary

security measures for electronic data processing.

Requirements elicitation for the case study was based on the analysis

of 300-page documentation, which required three months of work and

several interactions with the Information Security Office Manager of

the University. The entire requirements model specifies 11 actors, 5

of them were expanded with a total of 90 model elements – 77 goals

and 13 resources. These 79 elements were linked through a total of 114

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.27

28 Massacci, Mylopoulos and Zannone

a. Execution Dependency Diagram b. Permission Delegation Diagram

Figure 8. Requirements Model

links including 25 execution dependencies, 13 permission delegations,

and 72 decomposition links. Figures 8.a and 8.b present the execution

dependency diagram and permission delegation diagram of a fragment

of the case study.

Requirements analysis of these models identified revealed a number

of pitfalls. For instance, the analysis of procedures and policies adopted

by the University pointed out that they do not provide information that

is essential for their verification. The most notable omission was the ab-

sence of relationships between the Chancellor and the General Director,

who is actually responsible for managing the University administration.

Another omission in official documentation was the lack of a defi-

nition of the data collection process adopted by the University. This

process, and in particular the need for data subject consent, is consid-

ered fundamental in privacy legislation. Moreover, documentation did

not identify who is really allowed to perform a specific data processing

task. Consequently, it was not possible to analyze availability require-

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.28

Computer-Aided Support for Secure Tropos 29

ments. This omission also affected the analysis of the need-to-know

principle. Indeed, without a precise knowledge about who has the ca-

pability to execute a certain data processing task, it was not possible

to identify who had actually taken responsibility for its execution. It

is worth noting that this problem is not confined to the University

of Trento. Rather, it is a generic problem mainly due to the security

assessment procedure defined in the annex of the Data Protection Act.

Another issue that was brought up by the analysis was the treatment

of manual non-ICT procedures. In fact, such procedures are often in-

completely specified. This does not mean that employees do not follow

procedures, but rather that such procedures are somehow “embedded”

in the knowledge of the organization. Without a precise description

of such procedures, the definition of the corresponding authentication

procedures and access control policies becomes problematic.

5.2. John Rusnak and the Allied Irish Bank

In (Massacci and Zannone, 2006) we demonstrated that the proposed

methodology is able to identify the vulnerabilities exploited by a cur-

rency trader to defraud the Allied Irish Bank. In the early 90s, the

trader John Rusnak gained nearly $500.000 in bonuses for alleged bank

profits by exploiting his trader position at Allied Irish Bank (Promon-

tory Financial Group et al., 2003). The analysis we conducted for this

case study showed that John Rusnak did not actually hack the IT

system, but rather exploited substantial loopholes in the organizational

and IT structures that compromised the authenticity and integrity of

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.29

30 Massacci, Mylopoulos and Zannone

data upon which a number of decision were taken by Allied Irish Bank’s

management.

This case study was based on the analysis of some official docu-

mentation such as the “Ludwig” report (Promontory Financial Group

et al., 2003) that was ordered by the Bank to understand Rusnak’s

fraud and the indictment against Rusnak presented at the Grand Jury

for the District of Maryland (US Department of Justice, 2002). The

entire requirements model includes 15 actors, 6 of them were expanded

with a total of 67 model elements – 56 goals and 11 resources. These 67

elements were linked through a total of 75 links including 18 execution

dependencies, 20 permission delegations, and 22 decomposition links.

Figure 9 presents a fragment of the Bank’s organizational structure,

focusing on the position of Rusnak within the organization.

The fraud designed by Rusnak was based on a number of weaknesses

and vulnerabilities affecting the Bank’s organizational structure and its

IT systems. The lack of integrity protection of foreign exchange rates

was one of these vulnerabilities. The Bank developed an architecture

where rates were downloaded on Rusnak’s machine instead of buying a

dedicated Reuters connection for each of its offices. This design solution

allowed Rusnak to manipulate exchange rates. This vulnerability was

detected by the tool by comparing the Bank’s policies with the concrete

instantiation of the organization. Actually, bank policy did not permit

currency traders to provide foreign exchange rates. Even if this conflict

is “visible”, it may be ignored by designers due to its nature (since it

involves different levels of analysis), and the size of the overall model.

Another vulnerability exploited by Rusnak was the possibility to

confirm bogus options. The Bank’s policy stated that every trade made

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.30

Computer-Aided Support for Secure Tropos 31

Figure 9. Bank’s Organization with Rusnak

by currency traders must be confirmed by the Back Office. However,

Rusnak persuaded Back Office employees to let him confirm his own

transactions. Such a vulnerability has been automatically detected by

the tool by comparing the Bank’s organization and policies with their

concrete instantiation. Actually, the Back Office was not supposed to

permit currency traders to confirm their own transactions. Nonethe-

less the Back Office employees trusted Rusnak and did not verify the

validity of his reported transactions.

Finally, the lack of interaction between the Middle Office and the

Back Office introduced further vulnerabilities exploited by Rusnak. The

Middle Office computed the value at risk – a category of risk metrics

that describe how the market value of an asset is likely to decrease

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.31

32 Massacci, Mylopoulos and Zannone

over a certain time period (Jorion, 2000) – on tentative trades instead of

considering trades confirmed by the Back Office. Thus, Rusnak was able

to tamper value at risk by introducing bogus options in the list of tenta-

tive transactions. In fact, our analysis did not reveal this vulnerability.

The main reason for this was incompleteness of the documentation

we worked with. We believe that this vulnerability can be captured

by analyzing, for instance, the code of practice for financial markets

(Association Cambiste Internationale, 2005), which defines the best

practices that should be adopted by every bank, and compares these

with the actual policies adopted by the Bank.

In summary, the tool allowed one to find automatically some of the

errors that were the results of months of investigation by a large team

of experts looking at textual documentation manually. For instance, the

Promontory Financial Group “have emphasized from the outset that

we believed that 30 days was inadequate to render a comprehensive

report” (Promontory Financial Group et al., 2003). Even though this

analysis was conducted after the attack, it could also have been con-

ducted before. By contrast, the analysis performed by the Promontory

Financial Group as well as other kinds of analysis, such as violation

and vulnerability analysis (Johnson, 2006), can be used to understand

the root causes of security incidents, but can only be applied after the

attack has occurred. Finally, this case study has confirmed that security

issues cannot be addressed only with pure IT solutions. IT systems

might be well designed and employ suitable protection mechanisms

but be insufficient to fully address security issues. Rather, designers

need to look at them from a wider organizational perspective. Only

by analyzing the system and the organizational setting wherein it will

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.32

Computer-Aided Support for Secure Tropos 33

operate, we can identify some types of weaknesses and vulnerabilities

of the system itself.

5.3. Experimental Results

Tools may have to provide interactive verification services involving

potentially large numbers of clauses. Indeed, the current usage model

is that the requirements engineer draws some models, checks for cor-

rectness and consistency, revises the model and checks again. More-

over, to perform a more detailed analysis we have also recognized the

importance of comparing organizational structure with the concrete

(operational) instance of an organization. For instance, this is crucial

for capturing security requirements in a domain where a trusted role

can be played by an untrusted agent and vice versa (Giorgini et al.,

2005a). In these settings, where the size of the model depends on the

actual size of an organization (in terms of actors), scalability problems

may arise.

We have performed several experiments to test the scalability of our

approach using different ASP solvers, even when organizational models

are instantiated with a growing number of agents playing various roles.

In this paper we report the results of the analysis of the case study

presented in (Massacci et al., 2005). The experiments were executed on

a 2.0GHz Core Duo processor, 1GB Ram, running Linux.

Table II reports the time used to complete the analysis (Wall) and

the CPU time required over models of increasing size. With “0” we

mark experiments that completed successfully, while “1” marks those

that failed to complete. The results suggest that DLV is far more ef-

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.33

34 Massacci, Mylopoulos and Zannone

Table II. Experimental Result

Solver Cmodels-1 Cmodels-2 Smodels ASSAT DLV

N In R Wall CPU R Wall CPU R Wall CPU R Wall CPU R Wall CPU

0 0 0m13s <0m1s 0 0m13s <0m1s 0 0m14s <0m1s 0 0m14s <0m1s 0 <0m1s <0m1s

24 0 0m59s <0m1s 0 0m58s <0m1s 0 1m5s <0m1s 0 1m4s <0m1s 0 <0m1s <0m1s

45 0 2m33s 0m2s 0 2m33s 0m1s 0 2m50s 0m2s 0 2m50s 0m1s 0 <0m1s <0m1s

62 1 0m41s 0m1s 1 0m41s 0m1s 1 0m46s 0m2s 1 0m46s 0m1s 0 <0m1s <0m1s

113 1 0m47s 0m1s 1 0m47s 0m1s 1 0m54s 0m2s 1 0m54s 0m1s 0 0m2s <0m1s

166 — — — — 0 0m5s <0m1s

250 — — — — 0 0m10s <0m1s

350 — — — — 0 0m25s <0m1s

ficient than other solvers. This is even more evident considering that

Wall and CPU times reported in Table II do not take into account the

time spent by Lparse that is used by Cmodels, Smodels and ASSAT for

grounding. The explanation of these results is simple. Engines native

to ASP (e.g., the DLV system) are much more efficient than ones that

are extended to support ASP, when the number of the instances in the

model increases. Moreover, Cmodels, Smodels and ASSAT are not able

to find a solution after a certain number of instances due to limits of

Lparse.

The results of these experiments suggest that formal analysis based

on a DLV solver can handle full-size industrial case studies. After all,

enterprises with 250 employees are considered medium-size by the Eu-

ropean Union (European Commission Recommendation 2003/361/EC,

May 6, 2003)

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.34

Computer-Aided Support for Secure Tropos 35

6. Related Work

Several CASE tools have been proposed in the last years to assist de-

velopers during requirements elicitation and analysis, but few of them

have been extended to cope with security requirements analysis.

The OpenOME tool (Ernst et al., 2006) has been developed to sup-

port the i* (Yu, 1995) and Non-Functional Requirements (Chung et al.,

2000) modeling frameworks, providing requirements engineers with a

graphical interface to draw diagrams. These modeling frameworks treat

security requirements as non-functional requirements and model them

using softgoals (Liu et al., 2003). OpenOME supports goal analysis (in

form of label propagation) to check if the designed system guarantees an

appropriate level of security. Liu et al. (2003) extends this approach by

offering facilities for threats, vulnerabilities and countermeasures analy-

sis. To support such analysis, this work extends the i* framework with

an analysis technique based on Alloy (Jackson, 2002). However, such a

technique is not integrated into OpenOME. TAOM4E (Perini and Susi,

2004) is another tool developed to support the Tropos methodology.

Differently from ST-Tool and OpenOME, TAOM4E focuses on the

software development process, but it does not offer any facilities for

formal requirements analysis.

The GRAIL tool (Darimont et al., 1997) has been developed to

support the KAOS methodology (Dardenne et al., 1993). KAOS is a

Goal-Oriented Requirements Engineering methodology supporting the

whole requirements elaboration process. To cope with security issues,

this methodology uses the notion of obstacle to capture exceptional

behaviors (van Lamsweerde and Letier, 2000) and anti-goal to model

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.35

36 Massacci, Mylopoulos and Zannone

intentional obstacles set up by attackers to break security goals (van

Lamsweerde, 2004). First-order temporal logic is used to model and

reason about actor’s goals and derive requirements from them. GRAIL

provides developers with a graphical interface that supports require-

ments elicitation and documentation. Moreover, it provides syntax and

static semantic checkers at declaration and assertion levels for require-

ments analysis. However, the support provided by GRAIL is limited to

semi-formal specifications. The FAUST toolbox (Rifaut et al., 2003) is

designed to integrate formal and semi-formal specifications. It provides

tools for the formal analysis of requirements consistency.

The SCR* toolset (Heitmeyer et al., 1998) is a set of tools for devel-

oping requirements specifications expressed in the SCR (Software Cost

Reduction) tabular notation. The SCR method is a formal method for

specifying the requirements of real-time embedded systems. In SCR,

the required system behavior is described by mathematical relations.

To specify such relations, the method uses the concepts of condition,

event, and table. A condition is a predicate defined on one or more

variables in the specification. An event represents a change of variable

value. Tables specify the value of a variable as a mathematical function

defined on conditions and events. To provide a precise and detailed

semantics, the SCR method provides a requirements model that repre-

sents the system-to-be as a finite state automaton. The toolset includes

an editor for defining specifications, a consistency checker for testing the

consistency of specification with the formal requirements model, and

a simulator for executing the specifications, and a verifier for checking

their compliance with application properties.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.36

Computer-Aided Support for Secure Tropos 37

Compendium (Selvin and Buckingham Shum, 2005) is a hypermedia

concept mapping tool based on the Issue Based Information System

approach and tailored to model problems. It provides extension mecha-

nisms for increasing the expressiveness of the modeling framework. Such

mechanisms have been used to support augmentation driven problem

analysis (Haley et al., 2005). The objective of the extended tool is to

assist developers during the requirements elicitation process (Bucking-

ham Shum et al., 2006). However, Compendium and its extension do

not provide facilities for formal requirements analysis.

AUTOFOCUS (Schätz et al., 2002) is a model-based tool designed

for the development of distributed and embedded systems. This tool

supports system developers during design phase, offering them a graph-

ical interface for specifying the system-to-be from different views. It also

provides formal methods tailored for systems engineering. In particular,

it uses consistency criteria on system descriptions and provides formal

reasoning techniques for detecting system weaknesses.

The CORAS project has developed a tool-supported methodology

for UML-based security risk analysis (den Braber et al., 2003). The tool

aids system designers to perform risk analysis and generate documen-

tation reporting results of such analysis. However, the tool itself does

not provide novel analysis facilities, but integrates existing techniques

such as misuse cases (Sindre and Opdahl, 2005) and fault tree analysis

(Stamatelatos et al., 2002). Essentially, it provides a methodological

approach for integrating different risk analysis approaches for a com-

prehensive view of the risk management process. The tool allows for

storage of the result of the risk analysis process in repositories. These

repositories provide reusable experience for future projects.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.37

38 Massacci, Mylopoulos and Zannone

7. Conclusions

We have presented ST-Tool, a CASE tool designed to support the

Secure Tropos methodology for modeling and reasoning about security

requirements. The tool has been evaluated by modeling and analyz-

ing real-world, comprehensive case studies with satisfactory results.

For instance, the tool was able to identify some of the vulnerabilities

that have been exploited by a currency trader to cheat Allied Irish

Bank (Massacci and Zannone, 2006) and verify the compliance with

the University of Trento to Italian legislation on Privacy and Data

Protection, leading to the definition and analysis of a ISO-17799-like

security management scheme (Massacci et al., 2005).

An important issue left for future research concerns the visualization

of the results computed by external ASP solvers. An idea we propose

to explore is to construct graphical models that represent the output

of solvers so that requirements engineers and stakeholders can directly

interact with the formal framework. In particular, our objective is to

visually represent violations of security properties. Another open prob-

lem for this research is to integrate the security analysis techniques

presented in this work with other, complementary ones in order to

fully support the analysis and design of secure software systems.

Acknowledgements

This work has been partially funded by EU Commission, through the

SENSORIA and SERENITY projects, by the FIRB program of MIUR

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.38

Computer-Aided Support for Secure Tropos 39

under the TOCAI project, and by the Provincial Authority of Trentino,

through the MOSTRO project.

References

Agrawal, R., J. Kiernan, R. Srikant, and Y. Xu: 2002, ‘Hippocratic Databases’. In:

Proc. of VLDB’02. pp. 143–154, Morgan Kaufmann.

Alpern, B. and F. B. Schneider: 1986, ‘Recognizing Safety and Liveness’. Technical

Report TR86-727, Cornell University, Computer Science Department.

Anderson, R.: 1994, ‘Why cryptosystems fail’. CACM 37(11), 32–40.

Asnar, Y., R. Bonato, V. Bryl, L. Compagna, K. Dolinar, P. Giorgini, S. Holtmanns,

T. Klobucar, P. Lanzi, J. Latanicki, F. Massacci, V. Meduri, J. Porekar, C. Ric-

cucci, A. Saidane, M. Seguran, A. Yautsiukhin, and N. Zannone: 2006, ‘Security

and privacy requirements at organizational level’. Research report A1.D2.1,

SERENITY consortium.

Association Cambiste Internationale: 2005, ‘The Model Code: The Inter-

national Code of Conduct and Practice for the Financial Markets’.

http://www.aciforex.com/market/July05 ModelCode.pdf.

Avizienis, A., J.-C. Laprie, B. Randell, and C. E. Landwehr: 2004, ‘Basic Concepts

and Taxonomy of Dependable and Secure Computing’. TDSC 1(1), 11–33.

Basin, D., J. Doser, and T. Lodderstedt: 2006, ‘Model Driven Security: from UML

Models to Access Control Infrastructures’. TOSEM 15(1), 39–91.

Bauer, L., J. Ligatti, and D. Walker: 2002, ‘More enforceable security policies’. In:

Proc. of FCS’02.

Bresciani, P., P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini: 2004, ‘TRO-

POS: An Agent-Oriented Software Development Methodology’. JAAMAS 8(3),

203–236.

Buckingham Shum, S. J., A. M. Selvin, M. Sierhuis, J. Conklin, C. B. Haley, and

B. Nuseibeh: 2006, ‘Hypermedia Support for Argumentation-Based Rationale:

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.39

40 Massacci, Mylopoulos and Zannone

15 Years on from gIBIS and QOC’. In: Rationale Management in Software

Engineering. Springer-Verlag, pp. 105–126.

Chung, L. K., B. A. Nixon, E. Yu, and J. Mylopoulos: 2000, Non-Functional

Requirements in Software Engineering. Kluwer Publishing.

Dardenne, A., A. van Lamsweerde, and S. Fickas: 1993, ‘Goal-directed Requirements

Acquisition’. Sci. of Comp. Prog. 20, 3–50.

Darimont, R., E. Delor, P. Massonet, and A. van Lamsweerde: 1997, ‘GRAIL/KAOS:

an environment for goal-driven requirements engineering’. In: Proc. of ICSE’97.

pp. 612–613, ACM Press.

De Landtsheer, R. and A. van Lamsweerde: 2005, ‘Reasoning about confidentiality

at requirements engineering time’. In: Proc. of ESEC/FSE’05. pp. 41–49, ACM

Press.

den Braber, F., T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stølen, and J. Ø. Aagedal:

2003, ‘The CORAS methodology: model-based risk assessment using UML and

UP’. In: UML and the unified process. Idea Group Publishing, pp. 332–357.

Ernst, N. A., Y. Yu, and J. Mylopoulos: 2006, ‘Visualizing non-functional require-

ments’. In: Proc. of REV’06. p. 2, IEEE Press.

Fickas, S. and P. Nagarajan: 1988, ‘Critiquing Software Specifications’. IEEE

Software 5(6), 37–47.

Fuxman, A., L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso: 2004,

‘Specifying and Analyzing Early Requirements in Tropos’. REJ 9(2), 132–150.

Gelfond, M. and V. Lifschitz: 1988, ‘The Stable Model Semantics for Logic

Programming’. In: Proc. of ICLP’88. pp. 1070–1080, MIT Press.

Gelfond, M. and V. Lifschitz: 1991, ‘Classical Negation in Logic Programs and

Disjunctive Databases’. New Generation Computing 9(3/4), 365–386.

Germeau, F. and G. Leduc: 1997, ‘Model-based Design and Verification of Security

Protocols using LOTOS’. In: Proc. of the DIMACS Workshop on Design and

Formal Verification of Security Protocols.

Giorgini, P., F. Massacci, J. Mylopoulos, and N. Zannone: 2005a, ‘Modelling Social

and Individual Trust in Requirements Engineering Methodologies’. In: Proc. of

iTrust’05, Vol. 3477 of LNCS. pp. 161–176, Springer-Verlag.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.40

Computer-Aided Support for Secure Tropos 41

Giorgini, P., F. Massacci, J. Mylopoulos, and N. Zannone: 2006, ‘Requirements

Engineering for Trust Management: Model, Methodology, and Reasoning’. Int.

J. of Inform. Sec. 5(4), 257–274.

Giorgini, P., F. Massacci, and N. Zannone: 2005b, ‘Security and Trust Requirements

Engineering’. In: FOSAD 2004/2005, Vol. 3655 of LNCS. Springer-Verlag, pp.

237–272.

Gravell, A. M. and P. Henderson: 1996, ‘Executing Formal Specifications need not

be Harmful’. IEE/BCS Software Eng. J. 11(2), 104–110.

Haley, C. B., J. Moffett, R. Laney, and B. Nuseibeh: 2005, ‘Arguing Security: Val-

idating Security Requirements Using Structured Argumentation’. In: Proc. of

SREIS’05.

Heitmeyer, C. L., J. Kirby, B. G. Labaw, and R. Bharadwaj: 1998, ‘SCR*: A Toolset

for Specifying and Analyzing Software Requirements’. In: Proc. of CAV’98. pp.

526–531, Springer-Verlag.

House of Lords: 1999, ‘Prince Jefri Bolkiah vs KPMG’. 1 All ER 517. Available on

www.parliament.the-stationeryoffice.co.uk.

Jackson, D.: 2002, ‘Alloy: a Lightweight Object Modelling Notation’. TOSEM 11(2),

256–290.

Johnson, C. W.: 2006, ‘V2: Using Violation and Vulnerability Analysis to Under-

stand the Root Causes of Complex Security Incidents’. Submitted to ACM Trans

on Information and System Security.

Jorion, P.: 2000, Value-at-Risk: The New Benchmark for Managing Financial Risk.

McGraw-Hill.

Jürjens, J.: 2004, Secure Systems Development with UML. Springer-Verlag.

Leone, N., G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello:

2006, ‘The DLV System for Knowledge Representation and Reasoning’. TOCL

7(3), 499–562.

Lierler, Y.: 2005, ‘Disjunctive Answer Set Programming via Satisfiability’. In:

Proc. of the 3rd Int. Workshop on Answer Set Prog. : Adv. in Theory and

Implementation, Vol. 142 of CEUR Workshop Proceedings. CEUR-WS.org.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.41

42 Massacci, Mylopoulos and Zannone

Lin, F. and Y. Zhao: 2002, ‘ASSAT: computing answer sets of a logic program by

SAT solvers’. In: Proc. of The 18th Nat. Conf. on Artif. Intell. pp. 112–117,

AAAI.

Liu, L., E. S. K. Yu, and J. Mylopoulos: 2003, ‘Security and Privacy Requirements

Analysis within a Social Setting’. In: Proc. of RE’03. pp. 151–161, IEEE Press.

Maiden, N. and A. Sutcliffe: 1992, ‘Exploiting reusable specifications through

analogy’. CACM 35(4), 55–64.

Massacci, F., M. Prest, and N. Zannone: 2005, ‘Using a Security Requirements

Engineering Methodology in Practice: The compliance with the Italian Data

Protection Legislation’. Comp. Standards & Interfaces 27(5), 445–455.

Massacci, F. and N. Zannone: 2006, ‘Detecting Conflicts between Functional and

Security Requirements with Secure Tropos: John Rusnak and the Allied Irish

Bank’. Technical Report DIT-06-002, University of Trento.

McDermott, J. and C. Fox: 1999, ‘Using Abuse Case Models for Security Require-

ments Analysis’. In: Proc. of ACSAC’99. pp. 55–66, IEEE Press.

National Security Agency: 2002, ‘Information Assurance Technical Framework

(IATF)’. Release 3.1.

Niemelä, I. and P. Simons: 1996, ‘Efficient Implementation of the Well-founded and

Stable Model Semantics’. In: Proc. of JICSLP’96. pp. 289–303, The MIT Press.

Niemelä, I., P. Simons, and T. Syrjänen: 2000, ‘Smodels: a System for Answer Set

Programming’. In: Proc. of the 8th Int. Workshop on Non-Monotonic Reas.

Nuseibeh, B. and S. Easterbrook: 2000, ‘Requirements Engineering: a Roadmap’.

In: Proc. of ICSE’00. pp. 35–46, ACM Press.

Onabajo, A. and J. H. Jahnke: 2006, ‘Modeling and reasoning for confidentiality

requirements in software development’. In: Proc. of ECBS’06. pp. 460–467, IEEE

Press.

Perini, A. and A. Susi: 2004, ‘Developing Tools for Agent-Oriented Visual Modeling’.

In: Proc. of MATES’04, Vol. 3187 of LNCS. pp. 169–182, Springer-Verlag.

Promontory Financial Group, Wachtell, Lipton, Rosen, and Katz: 2003, ‘Report to

the Board and Directors of Allied Irish Bank P.L.C., Allfirst Financial Inc., and

Allfirst Bank Concerning Currency Trading Losses’.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.42

Computer-Aided Support for Secure Tropos 43

Rifaut, A., P. Massonet, J.-F. Molderez, C. Ponsard, P. Stadnik, A. van Lamsweerde,

and T. V. Hung: 2003, ‘FAUST: Formal Analysis Using Specification Tools’. In:

Proc. of RE’03. p. 350, IEEE Press.

Saltzer, J. H. and M. D. Schroeder: 1975, ‘The protection of information in computer

systems’. Proceedings of the IEEE 63(9), 1278–1308.

Schätz, B., A. Pretschner, F. Huber, and J. Philipps: 2002, ‘Model-Based Devel-

opment of Embedded Systems’. In: Proc. of OOIS’02, Vol. 2426 of LNCS. pp.

298–312, Springer-Verlag.

Schneider, F. B.: 1987, ‘Decomposing properties into safety and liveness’. Technical

Report TR87-874, Cornell University, Computer Science Department.

Selvin, A. M. and S. J. Buckingham Shum: 2005, ‘Hypermedia as a Productivity

Tool for Doctoral Research’. New Review of Hypermedia and Multimedia 11(1),

91–101.

Sindre, G. and A. L. Opdahl: 2005, ‘Eliciting security requirements with misuse

cases’. REJ 10(1), 34–44.

Stamatelatos, M., W. Vesely, J. Dugan, J. Fragola, J. Minarick, and J. Railsback:

2002, Fault Tree Handbook with Aerospace Applications. NASA.

US Department of Justice: 2002, ‘United States of Amer-

ica v. John M. Rusnak. SMS/SD/USAO #2002R02005’.

http://www.usdoj.gov/dag/cftf/chargingdocs/allfirst.pdf.

van Gelder, A.: 1989, ‘The alternating fixpoint of logic programs with negation’. In:

Proc. of PODS’89. pp. 1–10, ACM Press.

van Lamsweerde, A.: 2004, ‘Elaborating Security Requirements by Construction of

Intentional Anti-Models’. In: Proc. of ICSE’04. pp. 148–157, IEEE Press.

van Lamsweerde, A. and E. Letier: 2000, ‘Handling Obstacles in Goal-Oriented

Requirements Engineering’. TSE 26(10), 978–1005.

Yu, E.: 1995, ‘Modelling strategic relationships for process reengineering’. Ph.D.

thesis, University of Toronto.

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.43

mass-mylo-zann-07-ASEJ.tex; 25/05/2008; 23:48; p.44

