
The VLDB Journal manuscript No.
(will be inserted by the editor)

Fabio Massacci · John Mylopoulos · Nicola Zannone

Hierarchical Hippocratic Databases with Minimal Disclosure for
Virtual Organizations

Received: date / Accepted: date

Abstract The protection of customer privacy is a fun-
damental issue in today’s corporate marketing strategies.
Not surprisingly, many research efforts have proposed new
privacy-aware technologies. Among them, Hippocratic data-
bases offer mechanisms for enforcing privacy rules in data-
base systems for inter-organizational business processes
(also known as virtual organizations). This paper extends
these mechanisms to allow for hierarchical purposes, distrib-
uted authorizations and minimal disclosure supporting the
business processes of virtual organizations that want to offer
their clients a number of ways to fulfill a service. Specif-
ically, we use a goal-oriented approach to analyze privacy
policies of the enterprises involved in a business process.
Based on the purpose hierarchy derived through a goal re-
finement process, we provide algorithms for determining the
minimum set of authorizations needed to achieve a service.
This allows us to automatically derive access control poli-
cies for an inter-organizational business process from the
collection of privacy policies associated with different par-
ticipating enterprises. By using effective on-line algorithms,
the derivation of such minimal information can also be done
on-the-fly by the customer wishing to access a service.

Keywords Privacy Protection · Minimal Disclosure ·
Private Data Management · Information Security · Access
Control · Virtual Organizations · Delegation

1 Introduction

In the last few years data and privacy protection have be-
come critical issues in the development of information sys-
tems. This reflects the growing attention of customers to
their personal information and the increasing number of
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laws, policies, and regulations that are intended to safeguard
it. The US Privacy Act of 1974 and the EU Directives on
Privacy in 1995 (and later regulations) define privacy as the
right of data subjects to determine how their personal data
are used. Several proposals [5,7,10,17,21,29] introduce the
concept of purpose in order to capture this definition where
purpose represents the intended usage of information.

Together with the notion of purpose, current privacy leg-
islations also define the privacy principles that an informa-
tion system has to meet in order to guarantee customer pri-
vacy. At the basis of the exchange between enterprises and
customers, there is the principle of transparency: enterprises
should disclose to customers which data are collected and
for what purpose. Another important principle is the notion
of minimal disclosure: enterprises should maintain only such
information about an individual as is necessary to fulfill the
purpose for which it was collected.

The transparency principle should aid customers to ver-
ify whether or not enterprises implement the minimal disclo-
sure principle correctly. For transparency, enterprises should
declare in their privacy policies the purpose for which data
are collected, who can receive them, the length of time the
data can be retained, and the authorized users who can ac-
cess them. Looking at such policies customers would be able
to understand how their personal data will be used and, in
case they agree, disclose them. Obviously, if an enterprise
requires more data than some customers feel needed for the
desired service, they can get their services elsewhere.

In general, it is up to customers to decide on a strategy
of how to get a service fulfilled on the basis of their personal
feeling of trust for any one enterprise. However, this decision
can be very difficult when an enterprise provides many ways
to achieve a service. It gets worse when we do not have a
single enterprise that delivers the service by itself, but rather
a set of collaborating organizations participating in a single
business process (virtual organization [16]).

Virtual organizations offer services that can be dynami-
cally customized in at least two different ways:
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1. different service components are dynamically chosen for
fulfilling the same high level goal, but possibly using dif-
ferent data;

2. different partners (sub-contractors) are chosen for ful-
filling the same goal, but possibly with different service
level agreements or trust levels.

The choice of service customization has significant impact
on the privacy of individual customers. Different customiza-
tions may require different data for which privacy consid-
erations vary; there might be trusted and untrusted part-
ners offering the same service. Consider an example. Mis-
sissippi, an on-line book company, notifies the status of the
order to its customers through email or Short Message Ser-
vice (SMS). Customers are not interest in a generic process;
rather, they want the process that best protects their privacy
based on their preferences. Depending on the preference of
the customer, Mississippi needs either an email address or a
mobile phone number. Alice, a professor plagued by spam,
may treasure her email address and give away her business
mobile phone number. Bob, a doctor whose mobile phone is
always ringing, may have the opposite preference. The part-
ners chosen by Mississippi might also be trusted differently
by its potential customers. Bob may be unwilling to give his
email to a professional delivery company, because last time
he did, he got dozens of emails notifying him unwanted per-
sonalized services.

We are interested in solutions that support customers and
companies alike, so that companies can publish comprehen-
sive privacy policies involving hierarchies of purposes, pos-
sibly spanning multiple partners. Moreover, we want our so-
lution to allow customers to personalize services they want
on the basis of their own privacy sensitivities and their trust
of partners who might contribute to the delivery of a re-
quested service.

1.1 Contribution of the paper

This paper proposes enhancements to Hippocratic database
systems [2] in order to deal with inter-organizational busi-
ness processes managed by virtual coalitions. In particular,
we present a flexible framework for automatically deriving
the minimum set of authorizations needed to achieve a ser-
vice from enterprise privacy policies when a host of partners
participating in the business process provides different ways
to achieve the same service.

Our work is grounded on modeling and analysis of pur-
poses for Hippocratic databases, using goal-oriented ap-
proaches [6]. Our models organize purposes into AND/OR
tree hierarchies. The framework allows customers to express
their preferences in the form of privacy penalties associated
with each personal data item and each partner of the busi-
ness process. Thus, the process for fulfilling a purpose can be
customized at run-time and guarantees maximal privacy pro-
tection because it was selected with criterion of the smallest
privacy penalty.

Similar approaches have already been used in Require-
ments Engineering in order to represent software require-
ments and reason about their fulfillment by adopting dif-
ferent solutions. In this context, Sebastiani et al. [26] pre-
sented a formal framework for reasoning with goal mod-
els in a qualitative and quantitative way. In particular, they
proposed algorithms to find the minimum cost assignment
of labels to leaf goals which satisfies root goals. However,
their solutions are not adequate for our purposes since they
are designed for off-line analysis by the system designer
and do not allow customers to set their preferences on-line.
Accordingly, we propose to model hierarchies using hyper-
graphs [3,4] since this data structure is suitable for studying
reachability and minimum weight traversal problems and ef-
ficient algorithms already exist. We use these data structures
to represent the privacy policies of each partner of a busi-
ness process as a weighted directed acyclic graph (weighted
DAG). Then, we merge such DAGs in order to build a DAG
representing the privacy policies governing the entire busi-
ness process where edges across DAGs are seen as dele-
gations of customer information among the partners of the
business process. Weights (or privacy penalties) are speci-
fied by customers and represent the cost of disclosed infor-
mation.

Based on this data structure, we provide algorithms for
finding the minimal decomposition path that represents the
process with the smallest privacy penalty. To support the dy-
namic customization of the process, we also give algorithms
for efficiently updating it when customers change the cost
of data items or choose among the alternatives that an enter-
prise offers for achieving a required service. Then, this de-
composition path is used to build the minimal privacy autho-
rization table that represents the minimum set of authoriza-
tions necessary to achieve a service according to customer
preferences.

1.2 Outline

The remainder of the paper is structured as follows. Sec-
tion 2 introduces a scenario that is used as a running example
throughout the paper. Section 3 presents a brief description
of Hippocratic database systems. Section 4 introduces pur-
pose DAGs in order to represent purpose hierarchies, while
Section 5 discusses how to build a purpose DAG from a Hip-
pocratic database system. Section 6 shows how to derive the
minimal privacy authorization table and Section 7 describes
the data structures used to represent purpose DAGs. Sec-
tions 8 and 9 present respectively algorithms for finding and
updating the minimum cost path, and a comparison between
the minimal privacy authorization table and the privacy au-
thorization tables derived using Agrawal’s approach. Finally,
Section 10 discusses related work, and Section 11 concludes
the paper with some directions for future work.
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Table 1 Database Schema

table attribute
customer purpose, customer-id, name, address, email, mobile-number, credit-card-info
order purpose, customer-id, transaction, book-info, status

Table 2 Privacy Metadata Schema

table attributes
privacy-policies purpose, table, { attribute }, { external-recipients }, retention
privacy-authorizations purpose, table, { attribute }, { authorized-users }

2 A Running Example

This section presents a scenario used throughout the paper.
The scenario is a revised version of the case study proposed
by Agrawal et al. [2].

Mississippi is an on-line book store and its offerings in-
clude an on-line catalogue to its customers where they can
search for the items they wish to buy. Customers can add se-
lected items to their shopping basket. Once customers have
completed their selection, they need to create a new account
or login to their existing account in order to enter their de-
livery and payment details, since Mississippi needs to obtain
certain personal information from customers in order to per-
form purchase transactions. This information includes name,
shipping address, and credit card number.

Mississippi views a purchase, its ultimate purpose, as
a three-step process: credit assessment, delivery, and noti-
fication. Mississippi delivers books through either a deliv-
ery company or the post office. Notification is used to com-
municate the status of the order to the customer, and it is
accomplished by Mississippi either through email or Short
Message Service (SMS). Depending on the method, Missis-
sippi needs either email or mobile phone number informa-
tion about each customer.

For shipping books, Mississippi relies on Worldwide Ex-
press (WWEx). WWEx is a delivery company that offers a
global network of specialized services – transportation, in-
ternational trade support and supply chain services. WWEx
needs to obtain customer information to deliver books. This
information includes customer name and shipping address.
WWEx is usually not able to complete a delivery on its
own, but depends on local delivery companies for door-to-
door delivery. To this end, WWEx delegates customer in-
formation to them. In the remainder of the paper, we call
LDC1, . . . , LDCn the local delivery companies responsible
to deliver books in the zone where the customer lives.

Furthermore, Mississippi relies on the Credit Card Com-
pany (CCC) for credit assessment. CCC needs some cus-
tomer information as well to provide its service. This in-
formation includes customer name and credit card number,
and the transaction between Mississippi and the customer.
For making credit decisions, CCC needs a credit rating1 for

1 Credit rating is a method for interpreting the content of a credit
report. Credit rate represents the probability of a fail-to-pay event hap-

which it depends on the Credit Rating Company (CRC).
CRC uses statistics to summarize past experience so that
predictive analysis can be used to generate a rating for the
customer. Based on the rating, CCC decides to accept or not
the customer transaction and then communicates its decision
to Mississippi.

3 An Overview of Hippocratic Databases

Based on current US and EU privacy legislation, Agrawal
et al. identified the privacy principles an information sys-
tem should meet in order to enforce privacy and data protec-
tion: purpose specification, consent, limited collection, lim-
ited use, limited disclosure, and limited retention. Based on
such principles, the authors propose Hippocratic databases
[1,2] which were designed to support them. In the remainder
of the section, we give an overview on Hippocratic databases
looking at how this system enforces privacy principles.

Hippocratic databases use purpose as a central concept.
Purpose is stored in the database as a “special” attribute oc-
curring in every table of the database. This attribute specifies
the purpose (reason/goal) for which a piece of information
can be used.

Example 1 Table 1 shows the schema of tables customer
and order that store the information collected by Missis-
sippi. In particular, table customer stores personal infor-
mation about customers, and table order stores information
about the transaction between Mississippi and its customers.

In the sequel we will use the term user to denote an em-
ployee of a company, that is, a user of the database (rather
than a customer of the company). In the terminology of pri-
vacy legislation, a user is called data processor, while the
customer is called data subject.

Then, for each purpose and for each data item stored in
the database, the following fields are defined:

– external-recipients, i.e. the actors to whom the data item
is disclosed;

– retention-period, i.e. the period during which the data
item should be maintained in the database;

pening in the future, but does not indicate that such an event will hap-
pen.



4 Fabio Massacci et al.

Table 3 Mississippi’s Privacy-Policies Table

purpose table attributes external-recipients retention
purchase customer {name, address, email, mobile-number, credit-card-info} empty 1 month
purchase order {transaction, book-info, status} empty 1 month
delivery customer {name, address} empty 1 month
direct delivery customer {name, address} { delivery-company } 1 month
delivery by post customer {name, address} { post-office } 1 month
credit assessment customer {name, credit-card-info} { credit-card-company } 1 month
credit assessment order {transaction} { credit-card-company } 1 month
notification customer {name, email, mobile-number} empty 1 month
notification order {book-info, status} empty 1 month
notification by email customer {name, email} empty 1 month
notification by email order {book-info, status} empty 1 month
notification by SMS customer {name, mobile-number} empty 1 month
notification by SMS order {book-info, status} empty 1 month

Table 4 CCC’s Privacy-Policies Table

purpose table attributes external-recipients retention
credit assessment customer {name, credit-card-info} empty 1 month
credit assessment order {transaction} empty 1 month
credit scoring customer {credit-card-info} { credit-reference-agency } 1 month
credit resolution customer {name, credit-card-info} empty 1 month
credit resolution order {transaction} empty 1 month

Table 5 WWEx’s Privacy-Policies Table

purpose table attributes external-recipients retention
direct delivery customer {name, address} empty 1 month
door-to-door delivery customer {name, address} { local-delivery-company } 1 month

– authorized-users, i.e. the users entitled to access the data.

Purpose, external recipients, authorized users, and re-
tention period are stored in the database on the basis of
the metadata schema defined in Table 2 [2]. Specifically,
the above information is split into separate tables: external-
recipients and retention period are in the privacy-policies ta-
ble, while authorized-users are in the privacy-authorizations
table. The purpose is stored in both. The privacy-policies ta-
ble contains the privacy policy of an enterprise.

Example 2 Mississippi’s privacy-policies table is shown
in Table 3, CCC’s privacy-policies table in Table 4, and
WWEx’s privacy-policies table in Table 5.

The privacy-authorizations table contains the ac-
cess control policies enforcing privacy policies. Privacy-
authorizations tables are derived from privacy-policies ta-
bles by instantiating each external recipient with the corre-
sponding authorized users. Thus, these tables represent what
information is actually disclosed.

Example 3 Tables 6, 7 and 8 show Mississippi, CCC and
WWEx’s privacy-authorizations tables, respectively. In par-
ticular, Table 6 shows that Mississippi can access both email
address and mobile phone number for notifying the status of
an order, and that WWEx and Post Office can access cus-
tomer data for direct delivery and delivery by post, respec-
tively. Notice that these authorizations match exactly the

policies stated in the corresponding privacy-policies table.
Moreover, looking at Table 8, we can see that all local de-
livery companies are authorized to access customer personal
data.

The consent principle is enforced by Hippocratic sys-
tems through the Privacy Constraint Validator. This mod-
ule verifies whether customer preferences match the privacy
policies of the enterprise before the customer discloses his
information. If it is the case, the privacy authorization table
is created; otherwise, the information about the customer is
not collected.

When a user submits a query to the database, the sys-
tem not only verifies that the user is authorized to access the
required data items, but answers only queries for which the
purpose is equal to that for which the information has been
collected. Further, Hippocratic databases do not disclose in-
formation for purposes other than those for which the owner
of the information has previously given consent. Thus, Hip-
pocratic databases implement, respectively, the limited use
and disclosure principles. Hippocratic databases enforce the
retention principle using the Data Retention Manager. Es-
sentially, this module deletes data items when their retention
period is expired.

The limited collection principle requires that enterprises
collect only the information strictly needed to fulfill the
purpose for which data are stored. Hippocratic databases
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Table 6 Mississippi’s Privacy-Authorization Table

purpose table attributes authorized-users
purchase customer {name, address, email, mobile-number, credit-card-info} {Mississippi }
purchase order {transaction, book-info, status} {Mississippi }
delivery customer {name, address} {Mississippi }
direct delivery customer {name, address} {Mississippi, WWEx }
delivery by post customer {name, address} {Mississippi, Post Office }
credit assessment customer {name, credit-card-info} {Mississippi, CCC }
credit assessment order {transaction} {Mississippi, CCC }
notification customer {name, email, mobile-number} {Mississippi }
notification order {book-info, status} {Mississippi }
notification by email customer {name, email} {Mississippi }
notification by email order {book-info, status} {Mississippi }
notification by SMS customer {name, mobile-number} {Mississippi }
notification by SMS order {book-info, status} {Mississippi }

Table 7 CCC’s Privacy-Authorization Table

purpose table attributes authorized-users
credit assessment customer {name, credit-card-info} { CCC }
credit assessment order {transaction} { CCC }
credit scoring customer {credit-card-info} { CCC, CRC }
credit resolution customer {name, credit-card-info} { CCC }
credit resolution order {transaction} { CCC }

Table 8 WWEx’s Privacy-Authorization Table

purpose table attributes authorized-users
direct delivery customer {name, address} {WWEx }
door-to-door delivery customer {name, address} {WWEx, LDC1, . . . , LDCn }

implement the principle through three components: Access
Analysis, Granularity Analysis, and Minimal Query Gener-
ation. The first module identifies for each purpose which
data items never occur in query answers. The second deter-
mines the granularity of the required information. Finally,
Minimal Query Generation designs queries that disclose the
minimum set of information needed for fulfilling a certain
purpose. Notice that Access Analysis can only detect those
data items that are never used. Therefore, it is sufficient that
Mississippi notifies the status of the order to different cus-
tomers using both methods (SMS and email), so that Access
Analysis is not able to detect the redundant information re-
quired by privacy policies from single customers. Moreover,
Access Analysis works only on data items, and it cannot pre-
vent disclosure of customer information to all local delivery
companies.

4 Hierarchy and Delegation of Purposes

The approach proposed by Agrawal is elegant and simple,
but does fare well with dynamic situations often encoun-
tered in eCommerce-related contexts. First, enterprises gen-
erally provide their services in different ways. Then, enter-
prises might need to decompose a generic purpose into more
specific ones since they are not completely able to fulfill it
by themselves, and so they may delegate the fulfillment of

sub-purposes to third parties. This is the case for a business
process where different partners explicitly combine their ef-
forts into one process in order to provide a service to cus-
tomers. These issues mainly affect the creation of the privacy
authorization table since the privacy policy table cannot be
directly mapped to it without introducing authorizations un-
necessary for fulfilling a service.

As a partial solution Agrawal et al. [2] propose to de-
compose purposes into multiple sub-purposes and then store
them in the database. Based on this, customers can opt
in or out of making personal information available. How-
ever, using this simple notion of purpose/sub-purpose hier-
archy we lose the logical relation between a purpose and
its sub-purposes. In particular, this notation does not distin-
guish whether a sub-purpose is derived through an AND- or
OR-decomposition. Consequently, it does not allow reason-
ing about the fulfillment of the root purpose. For example,
a customer might opt out of providing information neces-
sary to fulfill a sub-purpose that, however, is necessary to
fulfill the root purpose. Therefore, the enterprise may col-
lect from the customer information for sub-purposes that
is altogether insufficient to fulfill the root purpose. Yet, by
adopting Agrawal’s proposal the enterprise has no automatic
mechanisms for detecting such situations.

Following goal analysis approaches [22], we pro-
pose to decompose purposes into sub-purposes through



6 Fabio Massacci et al.

an AND/OR refinement. Essentially, AND/OR refinement
combines AND- and OR-decompositions of purposes into
sub-purposes, modeling a logical purpose structure. Then,

– if purpose p is AND-decomposed into sub-purposes
p1, . . . , pn, then all of the sub-purposes must be satisfied
in order to satisfy p,

– if purpose p is OR-decomposed into sub-purposes
p1, . . . , pn, then at least one of the sub-purposes must
be satisfied in order to satisfy p.

In essence, AND-decomposition is used to define the
process for achieving a purpose, while OR-decomposition
defines alternatives for achieving a purpose.

Once we have built such a hierarchy, we need a data
structure to represent it in order to design algorithms
for reasoning about the fulfillment of root purposes. Our
choice for this is hypergraphs [3,4], where AND- and OR-
decompositions can be represented as hypergraph edges. In
the remainder of the paper, we call the hypergraph repre-
sentations of purpose hierarchies purpose directed acyclic
graph (purpose DAG). Next, we define it formally.

Definition 1 A purpose DAG P is a pair 〈P,D〉 where P is
a set of purposes and D is a set of decomposition arcs. Each
decomposition arc is an ordered pair 〈S, t〉 from an arbitrary
nonempty set S ⊆ P (source set) to a single node t ∈ P
(target node).

If a purpose DAG P is represented by adjacency lists,
the size of its description is |P| = p + a + d where p is the
number of purpose nodes, d is the number of decomposition
arcs, and a =

∑
S∈S |S| is the source area, that is, the sum

of cardinalities of all source sets where S = {S|〈S, t〉 ∈
D for some t ∈ P} denotes the set of source sets.

Purpose DAGs can be used to represent goal models
in goal-oriented Requirements Engineering approaches [6].
For our purposes, they represent the entire set of alternative
ways for delivering a service required by customers. Such
representations can also be used to model the delegations of
tasks and authorizations in the security modeling methodol-
ogy proposed by Giorgini et al. [15]. Actually, the privacy
policies of each partner of a business process can be repre-
sented in terms of a purpose DAG. Merging all these DAGs
allows us to get a new purpose DAG representing the privacy
policies governing the entire business process.

Definition 2 Let P = 〈P,D〉 be a purpose DAG. A purpose
DAG P ′ = 〈P ′, D′〉 such that P ′ ⊆ P and D′ ⊆ D and, for
each 〈S, t〉 ∈ D′, S ⊆ P ′, is called a sub-purpose DAG of
P . This is denoted by P ′ ⊆ P .

An enterprise could provide different methods to achieve
a service or rely on different partners to achieve the same
part of the service. Consequently, different processes can be
used to fulfill the required service. To capture this insight, we
introduce the notion of decomposition path. Roughly speak-
ing, a decomposition path is a particular sub-purpose DAG
representing a possible solution through which an enterprise
can fulfill a purpose.

Definition 3 Let P = 〈P,D〉 be a purpose DAG, Z ⊆ P be
a non-empty subset of purposes, and t be a purpose in P . A
decomposition pathDZ,t is a set of decomposition arcsD′ ⊆
D such that either t ∈ Z or there exists a decomposition arc
〈S, t〉 ∈ D′ and there are decomposition paths DZ,x ∈ D′

for each x ∈ S.

Since our reference business model is that of virtual or-
ganizations, we assume that there will often be more than
one way to deliver a service, i.e., different decomposition
paths that fulfill the same purpose (or sub-purpose). Yet,
they may differ in an important aspect, notably they may re-
quire different private data items. Thus, depending on each
customer’s individual preferences, the same decomposition
path might have a significantly different privacy “cost” for
different customers. Hence a key issue is to determine the
“minimal” decomposition path through a quantitative analy-
sis. To this end, we introduce the notion of weighted purpose
DAGs.

Definition 4 A weighted purpose DAG P = 〈P,D〉 is one
where each decomposition arc 〈S, t〉 ∈ D has associated
with it a weight ω〈S,t〉.

Purpose DAGs can have a complex structure, and dif-
ferent cost functions can be used to evaluate the cost of a
decomposition path. Depending on the choice, the problem
of computing such cost can be polynomially tractable [14] or
NP-hard [8,11,24]. Specifically, the problem of finding the
minimal cost hyperpath in a directed hypergraph has been
shown to be NP-hard when the cost of a hyperpath is the
sum of the weights of its hyperarcs [3,4]. In contrast, poly-
nomial time algorithms exist if the cost function is additive
[3,4,19]. For additive cost functions, the cost of one edge
may be counted as many times as it is used. Essentially, ad-
ditive cost functions work on the unfolded representation of
the hypergraph.

The choice of the cost function depends on the applica-
tion. In our application the choice between two mathemati-
cal functions can be transformed into a choice between two
philosophical approaches to the disclosure of private data:
if we care whether data are disclosed at all, then the math-
ematical functions that determine the privacy penalty of a
decomposition path is the sum of the weights of its arcs. If
we also care for the number of times that our private data
are used or for the number of business partners that have ac-
cess to them, then the mathematical cost function that we
should use is additive. For our purposes, we choose the sec-
ond standpoint because we argue that, the more a piece of
data is used, the more it is likely that it might be misused.
Therefore, additive measures are the ones that capture best
one’s intuitions on the protection of privacy. In order to im-
plement an additive cost function, we associate the cost of a
decomposition path DZ,t to the node t.

Definition 5 Let Z be a source set, t be a purpose node, and
DZ,t be a decomposition path from Z to t. The disclosure
penalty (or privacy penalty) to reach t starting fromZ, dp(t),
is inductively defined as follows:
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– For each supplier privacy policy table, purposes are analyzed
through a goal refinement process.

– Once a DAG for each supplier is defined, the DAG representing
the privacy policies of the entire business process is built by
merging them.

– Each purpose is associated with the data items directly needed
to achieve it.

– A privacy penalty is associated with each decomposition arc.

Fig. 1 Mapping Hippocratic DB into Purpose DAGs

1. if t ∈ Z, then dp(t) = 0;
2. if path DZ,t has root 〈S, t〉 with subpaths
DZ,x1 , . . . ,DZ,xk , then dp(t) = ω〈S,t〉 +

∑
xi∈S dp(xi).

5 From Hippocratic DB to Purpose DAGs

We want to determine the process by which a service can be
delivered with minimal privacy costs. This section proposes
a procedure for building the purpose DAG representing the
privacy policies of a business process consisting of many
different partners from the Hippocratic database system of
each partner.2 A sketch of the procedure is given in Fig. 1.

Firstly, purposes stored in the privacy policies table of
each supplier are analyzed through a goal refinement process
based on AND- and OR-decompositions. Graphically, these
purpose DAGs are circumscribed by a broken line and la-
beled with the name of the partner.

These DAGs allow customers to select alternatives pro-
posed by single partners of the business process, but they do
not help in determining the minimum cost process for ful-
filling the full service. Therefore, once we have a purpose
DAG for each supplier, we build the purpose DAG repre-
senting the privacy policies of the entire business process by
merging them. The merge is done by looking at the external-
recipients field stored in every privacy policies table: when
the external-recipients field is not empty, we join its pur-
pose with the corresponding purpose (with the same name)
occurring in the DAG associated with the partner that is an
instance of some external recipient. The purpose node is as-
sociated only with the purpose DAG representing the part-
ner. Arcs linking nodes across DAGs are called delegation
arcs. If there is more than one instance for the same exter-
nal recipient, we create a number of “copies” of that purpose
equal to the number of instances. Every such purpose node
is linked to the upper level purpose. Essentially, this process
corresponds to an OR-decomposition of a purpose into all
the possible alternatives that can be used to achieve it. This
solution is also used when there are multiple external sup-
pliers for the same purpose.

This approach supports complex enterprise strategies
and, at the same time, allows customers to directly choose a

2 We assume knowledge of the complete business process. This is
actually closer to reality than one may think: privacy legislations re-
quire that every enterprise declares and enforces its own privacy poli-
cies and is responsible for the privacy policies of its sub-contractors.

certain supplier whenever the choice is available. Notice that
building the purpose DAG representing the privacy policies
of the entire business process requires a common ontology
among all partners involved in the business process.3

Finally, in order to determine the process that discloses
the minimum cost set of information, we extend purpose
DAGs with the data items needed to satisfy a purpose and
the privacy penalty assigned to each data item by customers.
The idea is to create a node for each data item and link it to
the purposes that require it. To accomplish this, we add to
the purpose DAG n+ 1 nodes where n is the number of data
items occurring in the database schema. Then, each purpose
is associated with the data items needed to achieve it, minus
data items needed to achieve its sub-purposes:

– if a purpose node has no incoming decomposition arcs,
we link to the purpose the data items needed to fulfill it
with decomposition arc 〈X, t〉 where X is the set of data
items and t the purpose node;

– if node t has already an incoming decomposition arc
〈X ′, t〉, this is replaced by the decomposition arc 〈X ∪
X ′, t〉.

Then, each data item node is linked to the last node, source
node, with a decomposition arc 〈{⊥}, t〉, where ⊥ is the
source node and t is a data item node.

Example 4 Fig. 2 shows the purpose DAG extended within
data items corresponding to the running example. Each node
is composed of two parts: a purpose and the list of data items
needed to fulfill it. Broken lines partition the purpose DAG
in sub-purpose DAGs, and each of them represents a pol-
icy of a single partner involved in the business process. The
sub-purpose DAG labeled with Mississippi corresponds to
Table 3. In particular, Mississippi AND-decomposes pur-
chase into delivery, credit assessment whose execution is
delegated to CCC, and notification. This means that all sub-
purposes have to be reached in order to reach the root pur-
pose. Then, the book store OR-decomposes delivery into di-
rect delivery for which it depends on WWEx, and delivery
by post for which it depends on Post Office. Notice that these
purposes are the roots of the DAGs associated with WWEx
and Post Office, respectively. Finally, Mississippi achieves
notification either by SMS or by email. These purposes are
not decomposed further and are linked instead to the data
items needed to fulfill them.

The last step of the process is to assign a weight to each
decomposition arc. In our model, every decomposition arc
is associated with a disclosure penalty equal to 0, except
the decomposition arcs linking source node to data item
nodes, and delegation arcs. The first case represents the pri-
vacy penalty to disclose data items. The latter amounts to the
privacy penalty of delegating information to sub-contractors
and represents the level of trust customers have towards sub-
contractors. Both these assignments are given by data sub-
jects based on their own preferences.

3 This assumption is also necessary for traditional Hippocratic data-
bases.
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6 Finding a Minimal Authorization Table

When customers require a service, they are willing to dis-
close only information that is relevant to the service, and
only to those who need it to perform their duties. In other
words, customers want the process that delivers the desired
service with the smallest privacy penalty. This corresponds
to find the minimal decomposition path from the source node
to the root purpose. Based on this path, we can build the
minimal privacy authorization table that represents the min-
imum set of authorizations needed to fulfill the root purpose.

However, each customer may associate a different pri-
vacy penalty with the same data item. To cope with this
requirement, we distinguish two separate phases: Require-
ments Capture and Privacy Assessment. The first phase is
performed by the enterprise when it is designing a new busi-
ness process. It needs to analyze the effect of its marketing
strategies. The privacy assessment phase requires that data
structures are maintained and that operations are performed
on-line. This consists of dynamically maintaining reachabil-
ity and minimal decomposition path when arcs are deleted,
or arc weights are updated.

We list the operations required by each of these phases:

– Requirements Capture phase by business process design-
ers: (a) initialize; (b) delete arcs, (c) add arcs, (d) adjust
weights.

– Privacy Assessment phase by customers: (a) delete arcs,
(b) adjust weights.

Initialization involves finding the minimum cost decom-
position path of a new business process, to be suggested to
customers. An enterprise could use different metrics for op-
timizing minimal disclosure. For example, enterprises could
compute privacy penalties through statistical evidence over
the customer base or could choose specific strategies de-
pending on the different relationships with its partners. Once
the enterprise has chosen a metric, algorithm Minimum-
Cost (Fig. 3) is used to determine the minimal decompo-
sition path. The other operations are performed by compa-
nies during the requirements capture phase, and customers
during the privacy assessment phase through algorithms In-
sertOrDecrease (Fig. 5) and Increase (Fig. 6).

We do not include an operation for adding arcs in the pri-
vacy assessment phase. Actually, the presence of a decom-
position arc corresponds to a business choice on the part of
the enterprise, such as using a certain supplier or introducing
additional options for delivering a service. A customer may
decide not to use a particular supplier or a company’s alter-
nate option by simply ticking a check-box on a webpage.

Next, we present algorithms for finding and updating
minimum cost decomposition paths and the data structures
they use. A summary of the data structures is given in Ta-
ble 9, while the algorithms are presented in Table 10 where
I and U are respectively used for initialization and update.
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Table 9 Data Structures

Data Structure Type Description
PRED [y] node Pointer to the predecessor node in the minimal decomposition path from source node to simple

node y.
DISCLOSE [y] integer Privacy penalty from the source node to node y.
NEEDED [y] data item list Data items needed to fulfill node y.
TODO [y] integer For simple nodes, it says if node y is reachable.

For compound nodes, it is the number of simple nodes (that compound y) which are not reachable
from the source.

Table 10 Algorithms for initializing and updating the minimal decomposition path

Phase Name Input Description
I MinimumCost Find the minimal decomposition path for a purpose DAG.
U InsertOrDecrease 〈S, t〉: decomposition arc

ω: weight
Update the minimal decomposition path when arcs are inserted or
weight is decreased.

U Increase 〈S, t〉: decomposition arc
ω: weight

Update the minimal decomposition path when arcs are deleted or
weight is increased.

7 Data Structures

In order to design efficient algorithms, we use FD-graph [4].
A FD-graph is essentially a labeled graph with two kinds of
nodes and two kinds of edges where decomposition arcs are
mapped into nodes and the two types of arcs are connecting
the decomposition node to the original nodes. The following
definition is based on [4].

Definition 6 Given a purpose DAG P = 〈P,D〉, let S be
the set of source set, i.e., S = {Z| there exists a decomposi-
tion arc 〈Z, i〉 ∈ D}. The FD-graph of P is a labeled graph
G(P) = 〈Ps ∪ Pc, Aor ∪Aand〉, where:

1. Ps ≡ P is a set of simple nodes;
2. Pc is the set of compound nodes which is in a bijective

relationship with S. If Z ∈ S is a source set then z will
denote the corresponding compound node, and any sim-
ple node xi in the source set Z will be called a compo-
nent node of the compound node z;

3. Aor ⊆ Pc×Ps = {(z, x)|〈Z, x〉 ∈ D} is the set of edges
referred to as OR-edges, in a bijective relationship with
D;

4. Aand ⊆ Ps × Pc = {(xi, z)|z ∈ Pc and xi ∈ Z} is the
set of edges referred to as AND-edges, connecting any
compound node to its components.

In the sequel, we will use x and t for simple nodes, z and s
for compound nodes, and y for either simple or compound
nodes.

A decomposition arc is represented by a compound node
with an outgoing OR-edge and one or more incoming AND-
edges. Essentially, OR-edges represent a choice in selecting
a decomposition arc, while AND-edges identify purposes
belonging to the source set of a decomposition arc.

There is a one-to-one correspondence between the de-
composition arcs of a given purpose DAG P and OR-edges
of the corresponding FD-graphG(P). Consequently, if a de-
composition arc of P has weight, this is associated with the

corresponding OR-edge. We represent FD-graphs as adja-
cency lists where all OR-edges outgoing from a node z are
stored in OUT or(z) and all AND-edges outgoing from x in
OUT and(x). We will also need a list of all incoming AND-
edges IN and(z) into a compound node z and the list of in-
coming OR-edges IN or(x) into a simple node x.

Next, we present the data structures used in the algo-
rithms. A summary is shown in Table 9.

PRED [x]: is used to retrieve the minimal decomposition
path. The idea is to store for each simple node x, the in-
coming OR-edge belonging to the minimal decomposi-
tion path (predecessors [12]), i.e., which OR choice has
been made for each node. Essentially, variable PRED [x]
points to the last node in the minimal decomposition path
from source node⊥ to simple node x, otherwise, if there
is no path from ⊥ to x, it is equal to nil .

DISCLOSE [y]: represents the privacy penalty of the min-
imal decomposition path from ⊥ to node y. For every
node, the privacy penalty is initialized to infinity (∞) ex-
cept for ⊥ that is initialized to 0.

NEEDED [y]: maintains the data items needed to ful-
fill purpose y. At the beginning, for every node y,
NEEDED [y] = ∅ except for the nodes associated to a
data item where it contains the data item itself. In the
algorithms we use ] to indicate multi-set union.

TODO [y]: indicates how far we have progressed in the
construction of the hibernator from ⊥ to y. A node y
is visited if the value of TODO [y] is equal to 0. For
any simple node x, TODO [x] is initialized to 1, and
for any compound node z (with components x1, . . . , xq),
TODO [z] = q.

8 Algorithm

The MinimumCost algorithm (Fig. 3) is based on ideas from
[4] and is essentially a variant of Dijkstra classical minimum
spanning tree algorithm [12]. It constructs the minimum cost
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Algorithm MinimumCost
Output:

DISCLOSE [y] : integer;
NEEDED [y] : data item multi-set;
TODO [y] : integer;
PRED [x] : node;

begin
make-PQ-empty;
for each {OR-edge} 〈⊥, x〉 ∈ OUT or(⊥) do

PQ-insert(ω〈⊥,x〉, {x}, 〈⊥, x〉);
while not PQ-isempty do begin

PQ-extract(ct, it, 〈s, t〉);
if TODO [t] 6= 0 then begin

TODO [t] := 0;
DISCLOSE [t] := ct;
NEEDED [t] := it;
PRED [t] := s;
for each {AND-edge} 〈t, z〉 ∈ OUTand(t) do begin

decrement(TODO [z]);
if TODO [z] = 0 then begin

DISCLOSE [z] :=
∑
〈x,z〉∈INand(z)

DISCLOSE [x]

NEEDED [z] :=
⊎
〈x,z〉∈INand(z)

NEEDED [x]

for each {OR-edge} 〈z, x〉 ∈ OUT or(z) do
if TODO [x] 6= 0 then

PQ-insert(ω〈z,x〉 + DISCLOSE [z],NEEDED [z], 〈z, x〉);
end

end
end

end
end

Fig. 3 Algorithm MinimumCost

decomposition path to the root purpose by working bottom
up from the ⊥ node.

Algorithm MinimumCost uses a priority4 queue PQ
whose elements have the form (ct, it, 〈s, t〉) where 〈s, t〉 is
an OR-edge, and ct and it denote, respectively, the privacy
penalty and the list of data items that would be associated
with the node t if the minimal decomposition path from ⊥
would reach t through the edge 〈s, t〉. The queue PQ is used
to sort the nodes that should be analyzed with respect to the
cost for reaching them. The algorithm starts by adding to the
priority queue all initial data nodes with the corresponding
privacy penalty and the node itself as identifier of the data
item. The weight of the edges, i.e. the privacy penalty, is
specified by the customer in his preferences (column 1 of
Table 11). The algorithm extracts from the queue PQ the
node t with minimum priority ct which is assumed to be the
privacy penalty of the minimal decomposition path from ⊥
to t. This is the shortest path for t. Thereby, all AND-edges
〈t, z〉 are analyzed. For each compound node z, TODO [z]
is decreased, and, if it is equal to 0, we have computed the
minimal decomposition path for all nodes of the source set.
Then, we can compute the privacy penalty of z and add all
OR-edges outgoing from z to PQ. The algorithm terminates
when PQ is empty.

4 Lowest data required in, first out.

Table 11 User Preferences

Data Item Cost Delegation Cost
name 1 CCC 2
address 5 CRC 4
email 7 WWEx 2
mobile number 2 LDC1 2
credit-card-info 10 LDC2 3
transaction 5 Post Office 5
book-info 2
status 3

The output of the MinimumCost algorithm
(DISCLOSE and NEEDED) allows to build the min-
imum cost decomposition path, including the list of data
items required by the corresponding process.

Example 5 Table 11 reports the value of data items and del-
egation steps that Mississippi uses to initialize the business
process. It prefers to deliver books using a delivery company
because this method is safer and faster. Further, it prefers to
notify via SMS because most customers are unwilling to dis-
close their email. Fig. 4 shows the purpose DAG presented
in Fig. 2 where the discarded alternatives and data items un-
necessary for delivering the service are shaded. The white
nodes belong to the minimum cost decomposition path de-
rived from the preferences of the customer. Essentially, this
path represents (in form of purpose DAG) the process with
the smallest privacy penalty for achieving purpose purchase.
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The following results are parametric over the data struc-
ture used for managing multi-sets and priority queues. So in
the sequel, we indicate by tMU (i) the cost for performing a
multi-set union over a domain with at most i elements and
by tPQ(|P |) the cost of managing insertion and deletion of
elements in a priority queue with at most |P | elements. Effi-
cient algorithms exists for both structures [9]. For example,
one can use Fibonacci heaps which have an amortized costs
of O(1) for insertion and other operations.

Theorem 1 Let i be the number of private data items. The
algorithm terminates in O(|P | × tMU (i)× tPQ(|P |)).

Proof. First we note that each simple node is processed only
once by the main algorithm because of the TODO [t] 6= 0
test. Also the privacy penalty of all compound nodes is com-
puted only once (otherwise there would be a simple node in
the corresponding source set that has been computed twice).

Therefore, the corresponding insertion and extraction of
each outgoing OR-edge is only done once. This will amount
to aO(d+p) cost which must be multiplied by the amortized
cost of managing the priority queue, i.e., tPQ(d + p). The
calculation of the disclosure penalty of compound nodes re-
quires to access the source set and this would amount to an
overall cost of O(a) because the penalty is only computed
once. However, each operation requires to perform a multi-
set union and therefore as a result the algorithm has a cost
O(|P | × tMU (i)× tPQ(|P |)). 2

Theorem 2 The algorithm computes correctly the minimal
privacy penalty from ⊥ to any other node in the purpose
DAG.

Proof. The proof is by induction on the construct of the min-
imal decomposition path.

Base case The nodes reachable by the source node in 1-step
are nodes representing data items. They are all inserted
in the priority queue at the beginning and, since the pur-
pose DAG is acyclic, their value is actually equal to the
cost of the edge which is the minimum possible.

Ind. case When a node t is extracted from PQ for the first
time, the privacy penalty associated with it is smaller
than the privacy penalty associated with any node ac-
tually occurring in PQ since PQ extracts the element
with the smallest cost. Suppose now that there is a min-
imal hyperpath from ⊥ to t that does not pass through
〈s, t〉 but has a smaller privacy penalty. By inductive hy-
pothesis every node y with TODO [y] = 0 has been
reached by a minimum decomposition path so the “bet-
ter” path for t must necessarily pass through some node
y with TODO [y] = 0. So let 〈s′, t′〉 be an edge of the
minimal hyperpath for t that starts from a nodes with
TODO [s] = 0. This arc has been inserted in the PQ but
the privacy penalty of t′ must be smaller than t, contra-
diction. This of course works because all edges have a
non-negative privacy penalty. 2

A similar result can be proved for the set of needed data
items.
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Table 12 Default Privacy-Authorizations Table

purpose table attributes authorized-users
purchase customer {name, address, mobile-number, credit-card-info} {Mississippi }
purchase order {transaction, book-info, status} {Mississippi }
delivery customer {name, address} {Mississippi }
direct delivery customer {name, address} {WWEx }
door-to-door delivery customer {name, address} { LDC1 }
credit assessment customer {name, credit-card-info} { CCC }
credit assessment order {transaction} { CCC }
credit scoring customer {credit-card-info} { CRC }
credit resolution customer {name, credit-card-info} { CCC }
credit resolution order {transaction} { CCC }
notification customer {name, mobile-number} {Mississippi }
notification order {book-info, status} {Mississippi }
notification by SMS customer {name, mobile-number} {Mississippi }
notification by SMS order {book-info, status} {Mississippi }

The minimal decomposition path is then used to build the
minimal privacy authorization table where external recipi-
ents are instantiated by the corresponding authorized users.
This ensures that

1. customers disclose information only if a path exists, and
2. granted authorizations are the minimum cost set neces-

sary to fulfill the service.

If an enterprise has already defined a privacy authorization
table, this latter table can be compared with the new one to
verify whether it does not disclose more information than
needed.

Example 6 Table 12 shows the privacy authorization table
derived from minimum cost path in Fig. 4. For example,
Mississippi will notify the status of the order by SMS.
Therefore, Mississippi is authorized to access customers’
mobile phone numbers (but not their email addresses) for
this purpose (line 11). LDC1 can access data only for door-
to-door delivery, and so WWEx for direct delivery. Missis-
sippi is also entitled to access those data in order to guar-
antee the delivery (essentially because it needs them to pass
them onwards to LCD1 and WWEx). CRC is authorized to
access only the data needed for credit scoring, while CCC
can only access data needed for credit resolution and credit
assessment.

Differently from Hippocratic systems, we define a pri-
vacy authorization table for each customer. We argue that,
by using the same authorization table for every customer,
one does not properly implement the notion of minimal dis-
closure since such table does not take into account individual
customer preferences.

Example 7 Mississippi requires both email address and mo-
bile phone number for notifying the status of the order (Ta-
ble 3). Thus, if a customer wishes to buy a book, he has to
authorize the book store to access such information (Table 6)
when just one of these data items is necessary and sufficient
to achieve the purpose of notification (Table 12).

Moreover, Agrawal’s proposal introduces additional un-
necessary authorizations into privacy authorization tables
(Tables 6 and 7). Actually, it allows a supplier to access data
for fulfilling a purpose the supplier has already delegated
to some sub-contractors. On the other hand, the notion of
minimal disclosure implies that only those able to deliver
a service should be entitled to access the data. This corre-
sponds to the need-to-know principle for which data subjects
want to ensure that their data are not delegated to recipients
that do not need it. Therefore, in our scenario, Mississippi
should not be entitled to access credit card information for
credit assessment or shipping address for direct delivery as
the minimal privacy authorization table shows (Table 12). In
practice, these data should be channelled directly to the cor-
responding partners. A sub-optimal solution would be that
this information is forwarded by Mississippi to the appro-
priate partners and then immediately deleted.

9 On-the-fly Updates

When a customer changes his preferences, we would like to
avoid re-computing the minimum cost decomposition path
from scratch after each change, but rather reuse the old so-
lution as much as possible.

The problem of dynamically updating the purpose DAG
can be essentially divided in two distinct classes:

– adding a new decomposition arc or decreasing the pri-
vacy penalty of an existing decomposition arc;

– deleting an existing decomposition arc or increasing the
privacy penalty of an existing decomposition arc.

In the remainder of the section, we present the algo-
rithms for updating the minimal decomposition path for each
class of operations.

One problem of on-line procedures is to represent the
FD-graph corresponding to the purpose DAG. In the case
of off-line procedures, all simple and compound nodes are
known a priori. On the contrary, in on-line procedures one
has to take into account that new compound nodes can be
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Procedure InsertOrDecrease(〈S, t〉: decomposition arc, ω: weight);
begin
s := Compound(S);
if there exists no OR-edge 〈s, t〉 ∈ OUT or(s)

then insert 〈s, t〉 into OUT or(s);
ω〈s,t〉 := ω;
make-PQ-empty;
PQ-insert(ω〈s,t〉 + DISCLOSE [s],NEEDED [s], 〈s, t〉);
while not PQ-isempty do begin

PQ-extract(ct, it, 〈s, t〉);
if ct ≤ DISCLOSE [t] then begin

DISCLOSE [t] := ct;
NEEDED [t] := it;
PRED [t] := s;
for each {AND-edge} 〈t, z〉 ∈ OUTand(t) do begin

DISCLOSE [z] :=
∑
〈x,z〉∈INand(z)

DISCLOSE [x]

NEEDED [z] :=
⊎
〈x,z〉∈INand(z)

NEEDED [x]

for each {OR-edge} 〈z, x〉 ∈ OUT or(z) do
PQ-insert(ω〈z,x〉 + DISCLOSE [z],NEEDED [z], 〈z, x〉);

end
end

end
end

Fig. 5 Procedure InsertOrDecrease

inserted. Thus, when a decomposition arc is considered, one
has to check whether the source set of the decomposition
arc to be introduced corresponds to an existing compound
node in the FD-graph. To this end, we use the function Com-
pound that (1) returns the compound node s corresponding
to source set S, if such compound node already exists, and
(2) otherwise creates it and performs any necessary initial-
ization such as computing the DISCLOSE value and the
NEEDED multiset of data items from the corresponding
values of the simple nodes in S. Once again efficient algo-
rithms for finding a set from a pre-defined domain are well
known [9].

9.1 Insert or Decrease

The procedure InsertOrDecrease (Fig. 5) maintains the
minimum cost decomposition path when new decomposition
arcs are inserted or the cost of an existing decomposition arc
is decreased.

Such changes can introduce a new minimal path and
therefore we propagate them bottom-up until a root of some
subpath remains unchanged. This algorithm exploits the ob-
servation that the previous minimal decomposition path does
not change its value (if a new arc is inserted or the decreased
arc is not in that path), or even improves it (if the decreased
arc is in the current minimal path). Accordingly, we can use
the value of DISCLOSE to separate the useful from the not
useful computation in the same way that we used the TODO
variable in the off-line algorithm for the minimum cost.

Firstly, the procedure takes as input a decomposition
arc 〈S, t〉 and its privacy penalty and determines the com-
pound node s corresponding to the source set S using func-

tion Compound. If such a node already exists, its penalty
is updated; otherwise, the new decomposition arc and its
penalty are inserted in the DAG. Notice that the first case
corresponds to decreasing the penalty of existing decompo-
sition arcs, while the second corresponds to adding a new
decomposition arc. The idea is to verify whether the decom-
position arc yields a decomposition path that improves the
old penalty. If it is the case, the decomposition arc is consid-
ered; otherwise the algorithm terminates since the minimum
cost path does not change.

9.2 Increase

When the customer increases the privacy penalty of decom-
position arcs we use the algorithm Increase (Fig. 6) to build
the new minimal decomposition path. It can also be used for
arc deletions by setting the weight equal to infinity (∞).

The idea behind the algorithm is that if the decomposi-
tion arc whose weight has been increased does not belong to
the minimum cost decomposition path, the minimum path
does not change. Here the tricky bit is the following: if the
modified arc belongs to the current minimum path before
the increase then it might no longer be in the minimum path
after the increase. Therefore, we must update also the value
of the DISCLOSE variable to take into account the fact that
this is no longer the best-value but the best-so-far.

The procedure takes as input an existing decomposition
arc 〈S, t〉 and its updated value and determines the com-
pound node s corresponding to the source set S by using
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Procedure Increase(〈S, t〉: decomposition arc, ω: weight);
begin
s := Compound(S);
δ := ω − ω〈s,t〉;
ω〈s,t〉 := ω;
if PRED [t] = s then begin

DISCLOSE [t] := DISCLOSE [t] + δ;
for each {OR-edge} 〈z, t〉 ∈ IN or(t) do

PQ-insert(ω〈z,t〉 + DISCLOSE [z],NEEDED [z], 〈z, t〉);
while not PQ-isempty do begin

PQ-extract(ct, it, 〈s, t〉);
if ct ≤ DISCLOSE [t] then begin

DISCLOSE [t] := ct;
NEEDED [t] := it;
PRED [t] := s;
for each {AND-edge} 〈t, z〉 ∈ OUTand(t) do begin

DISCLOSE [z] :=
∑
〈x,z〉∈INand(z)

DISCLOSE [x]

NEEDED [z] :=
⊎
〈x,z〉∈INand(z)

NEEDED [x]

for each {OR-edge} 〈z, x〉 ∈ OUT or(z) do
if PRED [x] = z then begin

DISCLOSE [x] := DISCLOSE [z] + ω〈z,x〉;
for each {OR-edge} 〈s, x〉 ∈ IN or(x) do

PQ-insert(ω〈s,x〉 + DISCLOSE [s],NEEDED [s], 〈s, x〉);
end

end
end

end
end

end

Fig. 6 Procedure Increase

function Compound.5 If the arc belongs to the decomposi-
tion path, the value of the DISCLOSE penalty is updated
to take into account that it has “worsened”. Then, the sib-
lings of the arc 〈s, t〉 – the arcs having node t as head – are
examined in order to check whether one of them might im-
prove the best-so-far DISCLOSE value. When one of those
arcs yields a decomposition path that improves the best-so-
far penalty, all its AND-edges 〈t, z〉 are analyzed, because
they must have changed (at least node t in the source set has
changed DISCLOSE value). Then, we start analyzing the
outgoing OR-edges and check whether some of those also
belong to the previous minimal decomposition path. In this
case, we apply the same reasoning that we applied before:
we update the DISCLOSE variable to the best-so-far value
that we have just computed and insert in the PQ all the sib-
lings of the selected node to check whether any of them can
improves the current tentative path.

Example 8 Alice wants to buy some books, but she does not
agree with the default customer preferences offered by Mis-
sissippi. In particular, she prefers to receive books by post
because she does not trust to give her address to delivery
companies after a bad experience with a local delivery com-
pany. To this end, she defines the cost of delegating infor-
mation to WWEx and to local delivery companies equal to

5 We assume that the compound node exists since we are consider-
ing only weight increase and arc deletion.

Table 13 Alice’s User Preferences

Data Item Cost Delegation Cost
name 1 CCC 2
address 5 CRC 4
email 4 WWEx ∞
mobile number 20 LDC1 ∞
credit-card-info 10 LDC2 ∞
transaction 5 Post Office 5
book-info 2
status 3

infinity6 (∞). Further, she does not have a business mobile
phone and she would prefer to not give her personal mobile
phone number. In contrast, she has a very good anti-spam
filter and is therefore willing to communicate her email ad-
dress. Thus, she sets the cost of providing her mobile phone
number equal to 20 and the cost of providing her email ad-
dress equal to 4. Table 13 summarizes Alice’s preferences
and Fig. 7 shows the purpose DAG representing the busi-
ness process where the discarded alternatives and data items
unnecessary for delivering the service are shaded. The white
nodes represent the minimal decomposition path computed
with respect to Alice’s preferences.

As mentioned earlier, the minimal decomposition path is
used to build the minimal privacy authorization table.

6 This corresponds to deleting the decomposition arc.
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Fig. 7 Minimum Decomposition Path (dark areas are not considered)

Table 14 Alice’s Privacy-Authorizations Table

purpose table attribute authorized-users
purchase customer {name, address, email, credit-card-info} {Mississippi }
purchase order {transaction, book-info, status} {Mississippi }
delivery customer {name, address} {Mississippi }
delivery by post customer {name, address} { Post Office }
credit assessment customer {name, credit-card-info} { CCC }
credit assessment order {transaction} { CCC }
credit scoring customer {credit-card-info} { CRC }
credit resolution customer {name, credit-card-info} { CCC }
credit resolution order {transaction} { CCC }
notification customer {name, email} {Mississippi }
notification order {book-info, status} {Mississippi }
notification by email customer {name, email} {Mississippi }
notification by email order {book-info, status} {Mississippi }

Example 9 Table 14 reports the privacy authorization table
corresponding to the minimal decomposition path in Fig. 7.
It shows that Mississippi cannot access Alice’s mobile phone
number for notification and that WWEx and local delivery
companies cannot access any data; only the Post Office is en-
titled to access her data for delivering the purchased books.

10 Related Works

The last years have seen an increasing attention on privacy-
aware technologies and mechanisms for the negotiation
of private information between customers and companies.
These are particularly critical for transactions carried out

over the web [13] where the “customer” negotiating the pri-
vate information might not be a human but rather a software
system.

Among work centered on the notion of purpose, LeFevre
et al. [18] enhance Hippocratic databases with mechanisms
for enforcing queries to respect privacy policies stated by an
enterprise and customer preferences. In essence, they pro-
pose to enforce the minimal disclosure principle by provid-
ing mechanisms to data owners that control who can access
their personal data and for which purpose.

To support the negotiation of private information, the
World Wide Web Consortium (W3C) proposed the Platform
for Privacy Preferences (P3P) [10]. This standard provides
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mechanisms that allow customers to check web site privacy
policies before they disclose their personal data to the site.
Another mechanism for negotiation is presented by Tumer
et al. [28]. Enterprises specify which information is manda-
tory for achieving a service and which is optional, while
customers specify the type of access for each part of their
personal information: free (i.e., the access is granted with-
out conditions), limited (i.e., the access is granted only if
the enterprise has defined as mandatory that part of informa-
tion), or not given (i.e., the access is never granted). Then,
the framework matches enterprise policies with customer
preferences. If mandatory information is not given by a cus-
tomer, the framework verifies if alternative strategies stated
by the enterprise match customer preferences in order to
reach an agreement with the customer.

Mechanisms for enforcements are proposed by Karjoth
et al. [5,17]. The Enterprise Privacy Authorization Language
(EPAL) [5] enables an enterprise to exactly formalize the
privacy policies that shall be enforced within the enterprise
itself. However, these proposals do not provide mechanisms
for enforcing the minimal disclosure principle. In Byun et al.
[7], the Role-Based Access Control model is extended by in-
troducing the notion of purpose and a purpose management
model. Similarly to our approach, they introduce purpose hi-
erarchies in order to reason on access control. However, their
hierarchies are based on the principles of generalization and
specialization and are not expressive enough to support com-
plex strategies defined by enterprises.

An alternative approach proposed by Thuraisingham
[27] introduced the notion of privacy constraints. In this pro-
posal, every role that users can play is associated with a pri-
vacy level. A role at a certain privacy level can access only
data at or below that privacy level. Hence, the privacy prob-
lem focuses on determining whether individual privacy can
be violated given a set of constraints which assign a privacy
level to data. Yusuda et al. [29] define a purpose-oriented
access control model for controlling information flow. Es-
sentially, an information flow is defined as “legal” only if
such information are used for a certain purpose.

A policy itself may be sensitive because from the analy-
sis of the disclosed policies an unauthorized user may infer
sensitive information. Following this observation, some ap-
proaches propose to protect not only personal information,
but also policies themselves [25].

11 Conclusion

This paper presents a framework for supporting the man-
agement of privacy-sensitive data within business processes
provided by virtual organizations. In this setting, a company
can deliver a service to a customer in many ways and by rely-
ing on many different partners. The selection of the partners
and the identification of a particular plan to fulfill a purpose
can potentially be done on-the-fly. Yet, such selection should
so be driven by the customer’s desire to minimize the expo-
sure of privacy sensitive data.

In particular, our approach improves Hippocratic data-
base systems by providing (1) a framework to model busi-
ness processes that span across multiple partners and make
use of AND/OR purpose decomposition hierarchies, (2) ef-
ficient algorithms and data structures to select during the de-
sign phase the business plan and the business partners that
fulfill the desired purpose while minimizing the private in-
formation that is requested from customers, (3) modified on-
line algorithms that allow a customer to change its privacy
preferences and penalties on-the-fly and to recompute the
selection of the business plan and the business partners ac-
cording the customer’s own criteria for minimal disclosure.

There are clearly open issues. First, one may wish to de-
scribe the internal structure of organizations in order to have
a fine grained model that could also capture the number of
units and the number of individuals accessing the informa-
tion. Second, there is the need to extend current transaction
models for virtual organizations [23] in order to ensure that
no information is disclosed until all partners have commit-
ted to the delivery of their part of the business plan using
only the information that the customers are willing to make
available to each of them. Our algorithms guarantee that the
business process can be completed but a certified and trans-
actional commitment may be desirable in some cases. The
(global) commitment should ensure that if the customer pro-
vides the requested personal information then the virtual or-
ganization can actually deliver the service. These issues are
left as future work.
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