
The International Journal of Information Security manuscript No.
(will be inserted by the editor)

Paolo Giorgini · Fabio Massacci · John Mylopoulos · Nicola Zannone

Requirements Engineering for Trust Management: Model,
Methodology, and Reasoning

the date of receipt and acceptance should be inserted later

Abstract A number of recent proposals aim to incorpo-
rate security engineering into mainstream software engi-
neering. Yet, capturing trust and security requirements
at an organizational level, as opposed to an IT system
level, and mapping these into security and trust manage-
ment policies is still an open problem. This paper pro-
poses a set of concepts founded on the notions of owner-
ship, permission and trust and intended for requirements
modeling. It also extends Tropos, an agent-oriented soft-
ware engineering methodology, to support security re-
quirements engineering. These concepts are formalized
and are shown to support the automatic verification of
security and trust requirements using Datalog. To make
the discussion more concrete, we illustrate the proposal
with a Health Care case study.

keywords: Requirements Engineering, Agent-
Oriented Software, Security Engineering, Trust Models
for Business and Organizations, Verification and
Validation of Software, Privilege Management.

1 Introduction

Modern IT systems (such as health care, banking, in-
dustry and military systems) store and manipulate large
amounts of sensitive data in a distributed setting giving
birth to two major security research areas: Trust Man-
agement (hereafter TM) and Privilege Management In-
frastructure (hereafter PMI) [8,12,14,17,23,27]. In or-
der to protect and regulate access to such widely dis-
tributed data, a number of advanced policy languages,

This is an expanded and revised version of [19,20]. This
work was partly supported by the projects RBNE0195K5
FIRB-ASTRO, 016004 IST-FP6-FET-IP-SENSORIA, 27587
IST-FP6-IP-SERENITY, 2003-S116-00018 PAT-MOSTRO,
1710SR-B/P PAT-STAMPS.

Department of Information and Communication Technology
University of Trento - Italy
{giorgini,massacci,jm,zannone}@dit.unitn.it

algorithms, and systems for managing security creden-
tials have been developed in the last few years. However,
if we look at the connection between these credential-
based systems and the requirements of an entire IT sys-
tem we find a large gap. Managing high-level user re-
quirements is a key issue for the successful and cost ef-
fective development of IT systems [16], but managing
security requirements is almost completely ignored [30].
We are interested in answering the question: can we de-
fine a disciplined methodology to support IT designers in
the capture of high-level trust and privilege management
requirements and their implementation?

Working towards an answer, we note that we can-
not simply rely on software engineering methodologies.
While there are structured processes for capturing high-
level functional requirements and detailing them down to
system implementation, no such processes exist for TM
and PMI. Traditional approaches to software require-
ments engineering, treat security as a non-functional re-
quirement which introduces quality constraints under
which the system must operate [13,37,41]. In software
engineering practice, the inclusion of security features
within a system is usually done after functional design
[39]. This is a critical problem, mainly because security
mechanisms have to be fitted into a pre-existing design
which may not be able to accommodate them or might
be even in conflict with them.

This has spurred a number of researchers to model
security requirements and integrate these models with
“standard” software engineering methodologies. For ex-
ample, Jürjens proposes UMLsec [24], an extension of
the Unified Modeling Language (UML), for modeling se-
curity related features, such as confidentiality and access
control. Basin et al. [7] focus on modeling RBAC policies
and how integrating these (policies) into a model-driven
software development process whose main task is the se-
cure configuration of systems. One of the major limita-
tions of all these proposals is that they treat security in
system-oriented terms. In other words, they are intended
to model a computer system, along with its policies and
security mechanisms it supports.



2 Paolo Giorgini et al.

Moreover, trust is often left entirely outside the pic-
ture. Trust is an important aspect for making decisions
on security and particularly influences the specification
of TM policies at organizational level (a focus of our pa-
per). Trust is related to belief in honesty, trustfulness,
competence, and reliability [9,11,34] and it is a funda-
mental concept in human behavior. Trust is used to build
collaboration between humans and organizations since it
is a necessary antecedent for cooperation [5]. Trust leads
to constructive and cooperative behavior fundamental
for long-term relationships [6]. Over the past ten years, a
number of trust policy languages have been developed to
model trust in distributed systems [8,12,17,23,27]. How-
ever, there is still a gap between these frameworks and
the requirements analysis process. If we do not consider
trust in the design, security measures imposed on the
system might be heavier-handed than necessary: the im-
plementation may introduce pointless protection mech-
anisms that just hinder operations in a trusted domain
that was not perceived like that by system designers.
On the other hand, the implementation of the IT system
may implicitly assume trust relationships among users or
between users and the system that are simply not there.

To understand the problem of trust management and
security engineering we need to model social and organi-
zational settings, in terms of relationships between rel-
evant actors, including the system-to-be. Modeling only
the digital protection mechanism is not satisfactory. For
instance, Jürjens introduces security tagging which rep-
resents the need of a particular implementation of some
security-protection mechanism when messages are ex-
changed in a UML collaboration diagram [24]. Yet, an
analysis of the security requirements of a real Health
Care Authority suggests that (for better or worse) most
medical data are still only available in paper form. In
such a setting, cryptographic mechanisms are less criti-
cal then physical locks in avoiding unauthorized access to
sensitive medical data1. Thus, by focusing only on digital
solutions, we end up having little room to specify physi-
cal protection requirements at the organizational (as op-
posed to software) level. On the contrary, analyzing the
structure of organizations and the system allows design-
ers to understand which information should be protected
and, depending on the nature of the information itself,
identify which security mechanisms better protect it.

Thus, we need to focus on requirements engineering
methodologies that allow for modeling organizations and
actors, and enhance these with notions of trust and per-
mission in order to build a PMI/TM implementation
that takes into account both the system and the orga-
nization. To this extent, Tropos – an agent-based soft-

1 For example, the folder of a patient waiting for a kid-
ney transplant in a high-profile nephrology center contains
many paper documents that are copies of reports and draw-
ings from surgeons or clinicians from the referring hospitals of
the patient. These documents are far more sensitive than the
patient’s date and place of birth or waiting list registration
number in the medical information system.

ware engineering methodology [10] – is particularly well
suited to model both an organizational setting and a sys-
tem within it. However, in [18] the authors have shown
that Tropos lacks the ability to capture at the same time
the functional and security features of the organization.

In this paper we introduce a process that inte-
grates trust and security facets into system engineer-
ing by using the same concepts and notations used
during “traditional” requirements specification. Building
upon [18], we propose a solution based on augmenting
the i*/Tropos framework to take entitlement, trust and
delegation of permission into account. Our goal is to in-
troduce a PMI/TM into the requirements engineering
framework. Essentially, we would like to avoid designing
an entire IT system and then retrofitting a PMI/TM on
top, when it is already too late to make a proper fit.

The first intuition is that in modeling security and
trust, we need to distinguish between actors that want
access to a resource, fulfillment of a goal or execution of
a plan, from actors that have the capabilities to do any
of the above, and – last but not least – actors that are en-
titled to do any of the above. We call our proposal ECO
model for Entitlements, Capabilities and Objectives.

The second point is to distinguish among functional
dependency, trust, and delegation relationships. Intu-
itively, a functional dependency describes an “agree-
ment” between actors for delivering a resource, fulfill-
ing a goal or executing a plan. If one uses only func-
tional dependencies, he would end up in a traditional
RE functional model of the organization and the soft-
ware systems. A trust relation describes the belief of an
actor about the behavior of another actor, namely that
the trustee will not misuse the resource or task expected
from him. For example, we trust the cleaning lady for ful-
filling the goal of cleaning the room and doing nothing
else (e.g., not snooping among the papers). A delegation
describes the formal passage of permission between two
actors, which may be done electronically (e.g., a digi-
tal certificates), in print (e.g., a signed letter or a issued
regulation), or even orally (e.g., an order or an agreed
verbal contract).

To devise the PMI/TM structure, we propose to pro-
ceed in three steps. First, we build a functional require-
ments model where we show functional dependencies
among actors. We then develop a trust requirements
model to study whether trust relations among actors
correspond to security requirements. Finally, we built a
PMI/TM implementation where the designer can define
credential and delegation certificates comparing them
with the relations captured in the other models and check
whether every actor that provides a service is authorized
to do it.

Once conceptual models are developed, we translate
them into a formal specification. This allows our frame-
work to support the automatic verification of high-level
functional, trust and security requirements by using a
suitable delegation logic that can be mechanized within



Requirements Engineering for Trust Management 3

Datalog [1] and in particular within DLV2 system [25].
Essentially, we want to guarantee that functional, trust
and security requirements are not contradictory. Finally,
we propose an algorithm to map the PMI/TM imple-
mentation of our framework into the Role-based Trust-
management (hereafter RT) framework [27].

In the next section (§2) we discuss related work.
Then, we introduce a simple Health Care Information
System that is used as a running example throughout the
paper (§3). We provide a brief description of the Tropos
methodology and describe the basic concepts and dia-
grams that we use for modeling security (§4). We show
how the running example can be modeled in our frame-
work (§5). We then present a formalization of the secu-
rity concepts (§6) and analyze the running example using
the formal framework (§7). Next, we introduce negative
authorizations (§8), describe the implementation of trust
into the RT framework (§9), and present a tool support-
ing our framework (§10). Finally, we conclude the paper
with some directions for future work (§11).

2 Related Work

Modeling requirements is one of the key challenges
that secure systems must meet (see Devanbu and Stub-
blebine’s call to arms at ICSE [15]) and a number of
researchers have been heeding the call. These proposals
can be roughly classified into two main streams.

Object-level modeling uses an off-the-shelves require-
ment framework, such as UML or i*/Tropos, to model in
that framework a number of security requirements. The
analysis features of the framework are then used to draw
conclusions about the security aspects of the system or
to derive guidances for the implementation.

Meta-level modeling takes the same requirements
framework, but enhances it with linguistic constructs to
capture security requirements. The analysis features and
implementation guidances of the framework must then
be revised to accommodate the new features.

The advantage of the object-level approach is that
reasoning about security is virtually cost-free from the
view point of the user: no new language to learn; all
(good and bad) features of the modeling framework are
immediately usable. If the framework is equipped with a
formal semantics and formal reasoning procedures those
are also inherited. In the formal framework the “security-
notions” are indistinguishable from other requirements.
This is also the major disadvantage: the link between
security and functional requirements is lost and must be
introduced by ad-hoc predicates or relationships by the
designer. This makes particularly difficult the modeling
of general relationships or rules (such as all processing of
personal data should be authorized by the person whose
data is being processed).

2 DataLog plus Vel, i.e., disjunction in Latin.

The meta-level approach trades off readiness for ex-
pressiveness. The addition of suitable constructs makes
the model more compact and more intuitive to use. This
main advantage is coupled by the possibility of designing
analysis features that are tailored to the security domain.
This is also the key disadvantage: unless the addition of
new features is carefully planned, the new framework
needs the definition of analysis, semantics and reasoning
procedures. To minimize this problem most sensible ap-
proaches try to design the framework in such a way that
if one does not use the new features then one can still
inherit all of the old framework capabilities.

In early requirements research we can list a number
of works at the object-level field. Liu et al. [28] propose a
methodological framework for dealing with security and
privacy requirements within an agent-oriented modeling
framework [42]. They introduce softgoals, as “Security”
or “Privacy”, to model the corresponding notions, and
use dependency analysis to determine the level of secu-
rity guaranteed by the system. In [4], general taxonomies
for security and privacy are established. These can serve
as a general knowledge repository for a knowledge-based
goal refinement process. In the field of privacy policy lan-
guages a similar approach is taken where notions such
as subject, object and purpose are used. In another pa-
per [29] we show how Hippocratic Database notions [2]
can be mapped into Secure Tropos. Finally, Toval et al.
[38] present a requirements process model, based upon
reuse, together with a reusable template to organize se-
curity policies in an organization and a catalog filled
with reusable personal data security requirements. In
the UML community, Basin et al. [7] present a model-
ing language, based on UML, called SecureUML. Their
approach is focused on modeling access control policies
and how these (policies) can be integrated into a model-
driven software development process.

On the side of meta-level approaches, a number of
works propose to capture security requirements using
“standard” software engineering methodologies. Jürjens
proposes UMLsec [24], an extension of the Unified
Modeling Language (UML). This proposal uses stan-
dard UML extension mechanisms, such as stereotypes,
tags, constraints and profiles, to represent security re-
quirements. For instance, tags {secrecy}, {integrity} and
{authenticity} are used to represent the respective re-
quirements in messages described in UML collaboration
and sequence diagrams. McDermott and Fox adapt UML
use cases [33] to capture and analyze security require-
ments. They introduce the notion of abuse case where
the result of the interaction is harmful to the system or
one of the actors. Sindre and Opdahl define the concept
of misuse case [36], the inverse of a use case, which de-
scribes a function that the system should not allow. An
analogous proposal has been put forward by van Lam-
sweerde et al. that introduce the notion of anti-goals [40],
i.e., goals of attackers. A common limitation of these ap-
proaches is that they focus on the IT system rather than



4 Paolo Giorgini et al.

the organization as a whole and therefore do not take
into account neither trust relations nor the possibility of
implementing security requirements with organizational
solutions as opposed to technological ones. Moreover, in
our previous work [18] we have shown that another key
missing concept is the separation of the notions of pro-
viding a service and ownership of the very same service.

Indeed, if we look at the requirements refinement
process of many proposals, we find out that at a certain
stage a leap is made: we have a system with no security
features consisting of high-level functionalities, and the
next refinement shows encryption, access control and au-
thentication. The modeling process should instead makes
it clear why encryption, access control and authentica-
tion are necessary.

Our own work is well placed within the meta-level
modeling field. To avoid some of the disadvantages of
the approach we have focused on a modular addition
so that dropping all newly proposed features makes us
return to the i*/Tropos original methodology. In partic-
ular, this work is a step in the direction of closing the
gap between the functional and trust requirements and
the trust management architecture that is now emerging
as the standard way to implement security in distributed
systems.

3 Running Example

This section describes the high-level functional and se-
curity requirements for building a medical IT system
that will be used throughout the paper as a running
example. Such systems are particularly challenging to
model as they have tight and possibly conflicting func-
tional and security requirements. According to current
Italian privacy legislation,3 a Medical Information Sys-
tem manages patient information, including information
about the medical treatments they have received and
provides views of this information to a variety of actors.
The system should provide patient medical data if and
only if consent is obtained from the patient in question.
Patients may refuse to share their personal data if they
do not trust the IT system or feel they have not enough
control over their data.

In the following sections, we model and analyze such
requirements through our methodology in order to deter-
mine the correctness and consistency of the entire set of
requirements. In particular, we give a practical example
of application of our methodology to show its capabilities
of supporting system designers in refining and redefining
requirements when vulnerabilities and flaws are detected.

3 Legge n. 675 del 31 dicembre 1996
(http://www.interlex.it/675/indice.htm). Readers not
familiar with Italian may have a look at Ross Anderson’s
suggestion for privacy policy for the British medical associa-
tion [3] or have a look at a similar case study we carried out
for the University of Trento [31].

One particular challenging aspect is showing that the IT
system and indeed the organization as a whole fulfills the
“need-to-know” principle: private sensitive data should
be held only by actors (being them human or software)
that actually need it to meet some functional require-
ments. Every year the law requires organizations to draw
and deploy security policies and procedures that guaran-
tee this principle. The ability to model both functional
and security requirements is therefore essential.

We start by identifying the main actors (stakehold-
ers):
– Patient : the legitimate owner of his personal data,

who depends upon the hospital for receiving appro-
priate health care;

– Hospital : the provider of medical treatments, which
depends upon the patients in order to have access to
their personal information;

– Clinician: physician of the hospital that provides spe-
cialized medical health advice and, if needed, pro-
vides appropriate medical treatment;

– Health Care Authority (HCA): the “owner” of med-
ical treatments whose main goals are the fair allo-
cation of resources and the good quality of provided
services to the citizens under its authority (opposed
to citizens “belonging” to other regional authorities).
From the standpoint of functional requirements, clin-

icians need fast access to their patients’ medical data to
provide effective care. Similarly, the HCA needs reliable
access to data to allocate effectively available resources
and guarantee that each patient can receive good qual-
ity medical care. Moreover, the HCA wants to be sure
that the system cannot be defrauded in any way and
that clinicians and patients act within the scope of their
roles.

Further details will unroll in the course of the paper.
Certain apparently minor details that our framework can
capture (such as who is the “owner” of the goal “provide
medical treatments”) will later play a major role in iden-
tifying the correct authorization and trust management
implementation.

4 Secure Tropos

For the embedding of our trust and security primitives
we have chosen a state-of-the-art requirements engineer-
ing methodology. Among the competing alternatives [33,
36,40], we have chosen the i*/Tropos methodology [10],
which has been already applied to model security prop-
erties [28,41]. One of the main feature of Tropos is the
role given to the early requirements analysis phase that
precedes the prescriptive requirements specification. The
main advantage of this phase is that one can capture
not only the “what” or the “how”, but also the “why” a
piece of software is developed. Tropos is also tailored to
describe both the organizational environment of a sys-
tem and the system itself. It uses the concepts of actor,



Requirements Engineering for Trust Management 5

Table 1 Comparing Tropos Model and Secure Tropos Model

Tropos Model Secure Tropos Model
• Actor Properties • Actor Properties

1 objectives 1 objectives
2 capabilities
3 entitlements

• Actor Relationships • Actor Relationships
1 functional dependencies 1 functional dependencies

2 delegations of permission
3 trust relations

goal, plan, resource and social dependency. Actors have
strategic goals and represent agents (organizational, hu-
man or software), roles or positions. A plan (or task) rep-
resents a way of fulfilling a goal. A resource represents
a physical or an informational entity. Finally, a depen-
dency between two actors indicates that one actor (de-
pender) depends on another (dependee) to accomplish
a goal, execute a plan, or deliver a resource. In the re-
mainder of the paper, we generically speak of providing
services instead of executing plans, fulfilling goals or de-
livering resources in order to simplify exposition.

Unfortunately, Tropos has been designed with coop-
erating IT systems in mind. Thus, a dependency between
two actors means that the dependee will take responsi-
bility for fulfilling the functional goal of a depender, and
the dependee is implicitly authorized to do so. However,
it can happen that an actor depends on another for a ser-
vice, but the dependee is neither the owner of the service
nor authorized to provide the service.

Example 1 A patient depends on the hospital for getting
medical treatments. On the other hand, the HCA is the
legitimate owner of medical treatments. Thus, the hos-
pital must be authorized by the HCA before providing
health care.

Furthermore, a Tropos dependency is an intentional
relationship: the depender wants a service provided and
the dependee is willing and able to provide it. This im-
plicitly assumes that the dependee has the capability
to provide the service. However, this assumption is too
strong: sometime we can depend on another since we
know that he knows someone who is willing and able to
provide the service (but who we don’t directly know).

Example 2 A patient depends on the local hospital for
medical treatments. On the other hand, only clinicians
are able to provide medical treatments. Thus, the hos-
pital depends on clinicians for providing medical treat-
ments to its patients.

Making explicit who is the legitimate owner of a ser-
vice, who is entitled to provide a service and who is able
to provide a service is the baseline of Secure Tropos.

Intuitively, we have added to Tropos concepts and re-
lationships for representing entitlements, trust and per-
mission delegation. Further, we have made explicit the
concept of capability. Finally, to complete our model we

adopt the notion of objectives (i.e., goals) proposed by
the Tropos methodology. Table 1 compares the Tropos
model with our proposed extension.

Thus, we identify three relations between an actor
and a service to express actors’ properties and three re-
lations among two actors and a services to express social
relationships among actors. In particular, Secure Tropos
support desires to represent objectives of actors, owner-
ship to represent entitlements of actors, and provisioning
to represent capabilities of actors. Then, Secure Tropos
supports Tropos functional dependencies, delegations of
permission and trust relations for modeling the transfer
of entitlements and responsibilities between actors.

The basic idea is that an owner has full authority
concerning access and disposition over his entitlements,
access to a resource, execution of a plan or fulfillment
of a goal. He can also delegate it to other actors. The
distinction between owning and providing a service (i.e.,
a goal, a plan, or a resource) allows us to model situations
where, for example, a patient is the legitimate owner of
his personal data and the medical IT system provides
access to his data. Note that it is possible to “own a
goal” in the sense of being entitled to decide who can
fulfill it or can provide for its fulfillment.

Example 3 Every hospital can provide medical treat-
ments (eventually delegating to its doctors) but is not
authorized to do so. The HCA is the only authorized
entity. It delegates permissions to hospitals and also eli-
gibility checks and payment collection.4

Notice also the distinction between trust and dele-
gation. Delegation marks a formal passage of authority
in the domain of analysis. In contrast, trust capture a
social relationship among actors that is not formalized
by a “contract”. Essentially, a trust relation between two
actors indicates the believe of one actor that the other
does not misuse some service. In general, by trusting an-
other actor for a service, an actor is sure that the service
is properly used.

Example 4 A certificate of entitlement to medical care
has to be eventually issued to the patient by the HCA.
Such a certificate needs not be digital. Instead, for ex-
ample, it can be a HCA plastic card with the patient’s
social security number. With this “certificate”, a patient
can prove to the hospital that the HCA has delegated to
him the permission to get medical treatments.

Example 5 The hospital trusts clinicians to provide med-
ical care only to authorized patients. Such a trust rela-
tion represents the belief of the hospital that the clinician
will behave in agreement with hospital’s policies, and

4 This is important in a mixed public/private system such
as the Italian one. A person can show up in any clinic (being
either public or private in a particular region or in another
one) but in absence of an agreement (“convenzione”) between
the hospital and the HCA certain care facilities though avail-
able cannot be used for the individual in question.



6 Paolo Giorgini et al.

does not represent a “technological” measure to prevent
a clinician to provide consultancies to people that have
not been previously authorized by the hospital.

Notice the contrast with the HCA-hospital relation-
ships. The HCA trusts the clinicians to fulfill hospital’s
requirements. Certain hospitals are simply not delegated:
without a signed “convenzione” (agreement) their costs
will not be reimbursed.

There may be cases, where stakeholders are
happy with social protection mechanisms, and other
cases where system-supported security mechanisms are
needed. Moreover, the distinction between trust and del-
egation also allows us to model scenarios where some ac-
tors must delegate permission on their services to other
actors they do not trust. The inconsistencies that trig-
gered by this kind of scenario, alert the system designer
that the system is not secure and suggest him to intro-
duce some mechanism in order to ensure actors that their
services will not be misused such as monitoring patterns
[21]. However, the formal model just offers support to
spot inconsistencies, and the decision of what mecha-
nisms to adopt must be taken by the designer.

Now we have all the necessary machinery to start re-
quirements modeling and analysis. Software development
in Tropos consists of the following steps:

Early Requirements Analysis, concerned with the un-
derstanding of a problem by studying an existing or-
ganizational setting;

Late Requirements Analysis, where the system-to-be is
described within its operational environment, along
with relevant functions and qualities;

Architectural design, where the system’s global architec-
ture is defined in terms of subsystems, interconnected
through data and control flows;

Detailed design, where interactions among actors are
specified in terms of inputs, outputs, and control.

In this paper we mainly focus on the requirement
phases where various activities contribute to the acquisi-
tion of the requirement model and to its refinement into
subsequent models.

Actor modeling identifies the actors of the environment
and the system’s actors and analyzes their goals. Dur-
ing late requirements, actor modeling focuses on the
definition of the system-to-be.

Functional dependency modeling identifies actors who
depend on one another for obtaining services, and
actors which are able to provide services.

Permission trust modeling identifies actors who trust
other actors for services, and actors which own ser-
vices.

Permission delegation modeling consists of identifying
actors who delegate to other actors the permission
on services.

A graphical representation of the model obtained
following these modeling activities is given through

Goal PlanActor Resource

Fig. 1 Graphical Representation of Secure Tropos entities

DFDFA BGA B

A BG

A BGT T

DP DP

Secure TroposTropos

G

Fig. 2 Graphical Notation for Actors’ Relationships

three different kinds of actor diagrams: functional model,
trust model, and trust management implementation. In
these diagrams, actors are represented as circles; goals,
plans and resources are respectively represented as ovals,
hexagons and rectangles (Fig. 1). For each social rela-
tionships we have a graphical notation to be used by
requirements engineers during the design phase. These
are shown, along their Tropos counterpart, in Fig. 2.

Notice that for functional dependencies we assume a
level of trust among actors for what concerns the abil-
ity to provide services. When we say that the hospital
functionally depends on the clinician this means that (i)
the hospital will delegate the provisioning of the service
to the clinician but also (ii) it trusts the clinician to be
able to do it and take responsibility for it. Here, for sake
of simplicity, we keep the two relations into one. In [21]
we have split this relation in its components to explain
certain monitoring patterns that can be seen in actual
systems. Moreover, social relations could be qualified,
that is, they are valid only is a certain condition5 holds.

Once stakeholders have been identified, along with
their objectives, entitlements, capabilities and social re-
lations, the analysis proceeds in order to enrich the model
with further details. Goal modeling consists of refining
requirements through AND/OR-decomposition and elic-
iting new relations. A graphical representation of goal
modeling is given through goal diagrams which represent
the perspective of specific actors.

5 Modeling the Case Study

The first activity in the early requirements phase is actor
modeling. Analyzing our running example we have iden-
tified the following actors. The HCA is an environment
actor whose high level goals are to provide medical treat-
ments to citizens and check equity resource distribution.
The Patient is another actor and its goal is having ac-

5 Conditions should be in Horn clausal form in order to
easily implement them in our formal framework.



Requirements Engineering for Trust Management 7

Hospital

distribution
resource

check equityHCA

personal
information

personal
information

O provide
medical

treatments

personal
information

provide
medical

treatments

ClinicianPatient

O

T

T

T

T T

T

T

T

TT

TT

Fig. 3 Early Requirements trust model

information
personal

Hospital Clinician

consulting
request

consulting
provide

distribution
resource

check equity

HCA

personal
information

Patient

provide
medical

treatments

provide
medical

treatments

DF

DF

DF

DF

DF

DF

DF

DF

DF

DF

DF DF

DFDF

Fig. 4 Early Requirements functional model

curate medical treatments. Other actors are the Hospital
and the Clinician.

The analysis proceeds introducing social relations be-
tween actors. Figures 3, 4 and 5 show respectively the
trust model, the functional model and the trust man-
agement implementation. In the trust model (Fig. 3),
the HCA owns the goal of providing medical treatments,
that is, it is entitled to decide who can fulfill this goal and
to whom care might be delivered.6 The HCA trusts Hos-
pital for providing medical treatments. In turn, the Hospi-
tal trusts Clinician for achieving this goal. However, the
Hospital trusts the Clinician to provide medical treatments
only to authorized Patients, that is, Patients registered at
the local HCA. This explains the trust relation between
the HCA and the Hospital for checking equity resource
distribution. Finally, Patient owns his personal informa-
tion and trusts that the HCA and Hospital do not misuse
it. The Hospital trusts the Clinician for such information.

In the functional model (Fig. 4), the Patient depends
on the Hospital for providing medical treatments, and, in
turn, the Hospital depends on the Clinician for the ful-
fillment of this goal. To provide accurate medical care,

6 One may argue that everybody should be entitled to have
care and not leave the matter to the HCA. Though politically
correct this would not correspond to an accurate model of the
domain.

Hospital

distribution
resource

check equity

provide
medical

treatment

HCA

personal
information

Patient

personal
information provide

medical
treatment information

personal

Clinician

Dp

Dp

Dp

Dp

Dp
Dp Dp

DpDpDp

Dp

Dp

Fig. 5 Early Requirements TM implementation

the Clinician can request specific professional consultancy
from the Hospital that, in turn, requests them to other
Clinicians. The Clinician also needs patient personal infor-
mation and requests it from the Hospital. In turn, the
Hospital depends on the Patient for getting such infor-
mation. Also the HCA depends on the Patient for his
personal information in order to perform its duties.

In the trust management implementation (Fig. 5),
the HCA delegates the permission to check equity resource
distribution and to provide medical treatments to the Hos-
pital. In turn, the Hospital delegates the permission to
provide medical treatments to the Clinician. Now the Clin-
ician is entitled to provide medical treatments. However,
to provide accurate medical care to the Patient, the Clin-
ician need his personal information. Also the HCA needs
patient personal information to perform its duties. On the
other side, the Patient signs to the Hospital and HCA the
form where he allows the processing of his information.
The problem is that the Patient delegates his information
to the Hospital whereas the Clinician does the job, and so
there is a mismatch within the kind of delegation. The
Patient should delegate his personal information to the
Hospital with the possibility of re-delegating it, other-
wise things cannot go down to the level where they are
needed. If the Hospital got this right, it delegates personal
information concerning a specific Patient to the Clinician
assigned to that Patient.

An example of goal diagram is presented in Fig. 6.
The goal provide medical treatments is decomposed into
access patient record, examination, and prescribe medical
treatments. To provide accurate medical care, the Clin-
ician needs patient medical data, but to access them
the Clinician must have the consent of their donor. This
is modeled by decomposing goal access patient record
into get patient consent and get patient information. The
analysis reveals the existence of additional social rela-
tions between actors, namely a functional dependency
between the Clinician and the Patient for getting patient
consent and a functional dependency between the Clini-
cian and the Hospital for getting patient information. The
goal examination is decomposed into physical examina-



8 Paolo Giorgini et al.

access
patient
record

laboratory
tests

medical
diagnosis

examination

get patient
information

get patient
consent

physical
examination

Patient

Clinician

Hospital

T,DP
DF

DF

DF

precribe
medical

treatments

provide
medical

treatments

AND

AND

AND

Fig. 6 Goal Diagram for the Clinician

check equity
resource

distribution
HCA

check
authorized use
of resources

provide
authorization

token
check

authorization
token

use ofresources
between limits

Patient DF HospitalD ,T,DF P

AND

AND

Fig. 7 Goal Diagram for the HCA

tion, laboratory tests for which the Clinician depends on
the Hospital, and medical diagnosis.

Other interesting issues come up by refining goal
check equity resource distribution (Fig. 7). This goal is de-
composed into subgoals check authorized use of resources
and use of resource between limits. In turn, check autho-
rized use of resources is decomposed into provide autho-
rization token for which the Patient relies on the HCA, and
check authorization token. This refinement reveals how
the HCA does not entirely depend on the Hospital for
check equity resource distribution, but only for checking
authorization token. Thereby, the HCA trusts and dele-
gates the permission to the Hospital only on this subgoal.

For the late requirements analysis phase, we intro-
duce the Medical Information System (MIS) in the model.
Often, social relations among actors must be revised
upon the introduction of the actor representing the sys-
tem. Figures 8, 9 and 10 show the trust model, functional
model and trust management implementation, respec-
tively. The analysis reveals that the Clinician does not
directly depend on the Hospital for patient personal in-
formation since the Hospital store information into the
MIS and actors (such as Clinician) who need such infor-
mation for performing their duties, directly retrieve it
from the MIS. Actually, the main objectives of the MIS
are to provide access to patient records and to maintain up-
dated patient records. For these goals, the MIS depends

Hospital

distribution
resource

check equityHCA

personal
information

Patient

personal
information

O

information
personal

Clinician MIS

provide
medical

treatments

provide
medical

treatments

O

T

T

T

T T

T

T

T

T T

TT

Fig. 8 Late Requirements trust model

Hospital Clinician

consulting
request

consulting
provide

information
personal patient

access

record
patient
update

record

distribution
resource

check equity

HCA

MIS

personal
information

Patient

provide
medical

treatments

provide
medical

treatments

DF

DF

DF

DF

DF

DF

DFDF
DF

DF

DF

DF

DF

DFDF DF

DF

DF

DF

Fig. 9 Late Requirements functional model

Hospital

distribution
resource

check equityHCA

personal
information

Patient

personal
information

information
personal

Clinician MIS

provide
medical

treatments

provide
medical

treatments Dp

Dp

Dp
Dp

Dp

Dp

Dp

Dp

Dp Dp Dp

Dp

Fig. 10 Late Requirements TM implementation

on the Clinician and on the Hospital. In particular, the
MIS depends on the Clinician for medical data and on
the Hospital for vital statistics data.

Fig. 11 shows the goal refinement of access patient
record. This goal is decomposed into authenticate clini-



Requirements Engineering for Trust Management 9

access
patient
record

authenticate
clinician

get patient
consent record

patient

MIS

DF

Hospital Clinician

T,DP

AND

Fig. 11 Goal diagram for the Medical IT System

cian, get patient consent, and patient record. The analysis
reveals that the Clinician relies on the MIS to get pa-
tient consent. Once the Clinician has been authenticated,
the MIS requires the patient consent to the Hospital be-
fore disclosing the record. Then, when above goals are
achieved, the MIS delegates the permission on the pa-
tient record to the Clinician who required such a record.

6 Formalization

To built the formal semantics of the framework, we use
Datalog [1], following the example of others who have
worked on access control and trust management [26,27].

Datalog is a language of facts and rules. The facts
are called extensional predicates. In contrast, the rela-
tions computed by applying rules are called intensional
predicates. In other words, extensional predicates appear
only in the body of clauses or as ground facts. Inten-
sional predicates are the only ones that can appear both
in the head and in the body of clauses. Intuitively, ex-
tensional predicates correspond to the drawings of the
requirements engineer, while intensional predicates are
derived by the system.

Both extensional and intensional predicates used to
model the concepts and relations of ECO model are listed
in Table 2. The first batch of predicates are used to model
the functional model. When an actor has the capabili-
ties to fulfill a service, he provides it. The intuition is
that provides(a, s) holds if instance a provides the corre-
sponding instance of s. The predicates requests(a, s) and
aims(a, s) hold if actor a has the objective of getting s.
The first is the extensional predicate and the latter is the
intensional predicate. The relation depends(a, b, s) holds
if actor a depends on actor b for the fulfillment of ser-
vice s. The predicates fulfills(a, s) is true when s service
is provided by actor a, and satisfies(a, s) holds if actor a
is sure that someone delivers service s. Using both the
last two predicates could seem redundant, but the first
identifies the actor who really provides the service and
is used as a start point of the chain used to identify the
actors confident that the service will be provided.

Table 2 Predicates

Actors Primitive Properties
provides(Actor: a, Service: s)
requests(Actor: a, Service: s)
owns(Actor: a, Service: s)
Actors Derived Properties

has per
(
Actor: a, Service: s,N+∪{∗} : n

)
aims(Actor: a, Service: s)
fulfills(Actor: a, Service: s)
satisfies(Actor: a, Service: s)
Actors Primitive Relationships
depends(Actor: a, Actor: b, Service: s)
trust

(
perm, Actor: a, Actor: b, Service: s,N+∪{∗} : n

)
delegate

(
perm, Actor: a, Actor: b, Service: s,N+∪{∗} : n

)
Actors Derived Relationships

trustChain
(
perm, Actor: a, Actor: b, Service: s,N+∪{∗} : n

)

Next, we have predicates for the trust model. The ex-
tensional predicate owns(a, s) holds if actor a owns ser-
vice s. The predicate trust(perm, a, b, s, n) holds if actor
a trusts actor b for service s; n is called trust depth. As
suggested by Li at al. [26] for their delegation logics,
trust has depth which is either a positive integer or “*”
for unbounded depth. Trust depth represents how much
an actor takes into account the judgment of another ac-
tor. In particular, depth equal to 1 means that an actor
trusts another actor, but he does not trust the trustee’s
judgment; depth equal to 2 means that an actor trusts
another actor, and all actors the trustee trusts directly,
and so on. Finally, unbounded trust means that an actor
trusts another unconditionally. In practice a depth of 1
or 2 seems sufficient. Unbounded but qualified depth is
also useful: we trust our General Practitioner, and all
doctors recommended by him and the doctors recom-
mended by those and so on. Thus, we have unbounded
trust relative to a particular goal: providing care by reg-
istered physicians. However, we do not allow for blanket
trust, not even in the language itself. As in Delegation
Logic [26], trust is always linked to a particular goal,
plan, or resource. This is also the case for RT2 but not
for other languages in the RT family [27]. The predicate
trustChain is essentially the intensional version of trust
and is used to model trust chains between actors. Actu-
ally, trustChain literals take the same arguments of trust ,
and are computed by applying rules (see Appendix A).

Every trust management framework is based on cre-
dentials and their delegation, so the extensional predi-
cate delegate(perm, a, b, s, n) holds if actor a delegates
the permission to use the service s to actor b; n is
called delegation depth. As trust relations, delegations
have depth. One way to view depth is the number of
re-delegation steps that are allowed; depth 1 means that
no re-delegation is allowed, depth n means that n − 1
further step are allowed, and depth “*” means that un-
bounded re-delegation is allowed. Using delegation and
trust depth without goal or services would be an unsat-
isfactory practical approximation. Indeed, most actual



10 Paolo Giorgini et al.

delegation or trust relationships are “qualified”. An ex-
ample is the trust in the highly reputed head of a clinical
department and direct aides. Another example is delega-
tion on authorization to the head of clinical department
or in his absence to the most senior aide on duty. The
basic idea of has per is that whoever has a service, has
authority concerning access and disposition of the ser-
vice, and he can also delegate this authority to other
actors. Also has per has depth which is either a posi-
tive integer or “*” for unbounded depth. The intuition is
that we are eventually entitled to pass our entitlements
to others. This is fairly standard in contractual relations
for a small depth. They can be easily accommodated sim-
ply by decomposing the goal into subgoals, i.e. providing
care can be refined by providing care by the head of the
medical department or providing care by a member of
the department. We want to remark that delegate is put
by designer, while has per is computed by the system. In
summary, has per represents implicitly chains of delega-
tion of permission starting from the owner of the service.
We refer to Appendix A for the list of rules used to derive
has per literals.

A critical phase of the system development process
is the analysis of requirements in order to detect incon-
sistencies in the requirements. In order to cope with this
issue, we adopt the following verification process:
– model the system by using Secure Tropos primitives;
– complete the extensional description of the system;
– verify the correctness and consistency of system re-

quirements.
The first step of requirements analysis process is the

modeling phase. This phase addresses to identify actors
along their objectives, capabilities and entitlements, and
the social relations used to transfer them to other ac-
tors. The application of the Secure Tropos methodology
to complex case studies [31,32] has shown how the in-
troduced primitives are right ones to model most of the
system requirements. Thus, this phase requires system
designers to represent system requirements (expressed
in form of actors’ properties and relations) by using ex-
tensional predicates.

Once the requirements engineer has drawn up the
model (i.e., the extensional predicates), he may want
to verify the correctness and consistency of functional,
trust and security requirements. Unfortunately, the ex-
tensional description of the system cannot be used to
perform an accurate analysis. Thus, for getting the right
conclusions from an intuitive model, we need to com-
plete the model using rules that we call axioms. Essen-
tially, axioms define the semantics of the framework and
are used to make explicit that information needed for
requirements verification. Table 3 provides a description
of the axioms supported by Secure Tropos, while their
formalization is presented in Appendix A.

Once the comprehensive description of the system
(i.e., the intensional predicates) is derived, system de-
signers are able to verify if the model complies with

Table 3 Axioms

Functional Requirement Model
This batch of axioms determines actors’ responsibilities
according to the functional dependencies drawn by the
system designer.
Trust Requirement Model
This batch of axioms builds the trust network, that is, the
full set of trust chains among actors.
Trust Management Implementation
This batch of axioms identifies actors’ entitlements, ac-
tors who fulfill services, and actors confident that their
objectives will be satisfied.
Goal Refinement
This batch of axioms propagates actors’ objectives, enti-
tlements and capabilities through goal refinement.

Table 4 Properties

Availability Requirements
This batch of properties verifies if the current model is
such that every actor can satisfy his objectives (e.g., func-
tional dependency ends in actors with the appropriate ca-
pabilities and rights).
Authorization Requirements
This batch of properties verifies if actors who delegate
the permission on a service have enough rights for this,
if delegators trust delegatees, if only trusted actors can
access and fulfill a service, and if actors who fulfill a service
are entitled to do so.

some desirable properties. Essentially, they want to check
the consistency of the model to guarantee that func-
tional, trust and security requirements are not self-
contradictory. Thus, we have provided a set of properties
representing the compliance of the system with autho-
rization and availability requirements. If all the proper-
ties are not simultaneously satisfied, the system is in-
consistent. In other words, if some properties are not
verified, the system is not secure. Table 4 describes the
properties supported by Secure Tropos, while their for-
malization is presented in Appendix A.

We want to remark that properties are different from
axioms (that must be true for every model) and so the
designer may well be perfectly happy with a design, say,
that satisfies only a part of the properties we have de-
fined. There may be applications where this is accept-
able, because alternatives are too costly. In some cases
the failure of properties demands the presence of addi-
tional security mechanisms to guarantee security protec-
tion. For instance, if an actor must delegate the permis-
sion on a service to an untrusted actor, designers could
introduce some mechanisms, such as a monitor [21], to
check that the delegatee will not misuse the service.

7 Formalizing the Case Study

The Secure Tropos formal framework has been imple-
mented in the DLV system [25] in order to allow an
automatic verification of the requirements consistency.



Requirements Engineering for Trust Management 11

trust(perm,Pat,X,Rec,*):- isHCA(X),owns(Pat,Rec).
trust(perm,hca,hospital,Rec,*):- isRecord(Rec).
trust(perm,hospital,mIS,Rec,*):- isRecord(Rec).
trust(perm,mIS,X,Rec,*):- isClinician(X),

isRecord(Rec).

Fig. 12 Trust relations in DLV system

Figures 19 and 20 (Appendix B) present, respectively,
the axioms and properties of our formal framework in
form of DLV statements. In the remainder of this section,
we show an application of the requirements verification
process assisted by the DLV system and, in particular,
how the analysis aids system designers in refining system
requirements.

A basic property system designers want to verify is
whether only the clinicians assigned to a certain patient
are trusted to access information about that patient.
This property can be easily implemented into the DLV
system with the following constraint.

:- trustChain(perm,Pat,Cli,Rec,N), owns(Pat,Rec),
isClinician(Cli), not isClinicianOf(Cli,Pat).

Essentially, this constraint checks if there is a trust chain
(with arbitrary trust depth) from a patient to a clinician
for a patient’s record where the clinician has not been
assigned by the Hospital to that patient.

We now analyze the trust model concerning patient
personal information presented in Fig. 8. Below we list
the trust relations between actors, and present their for-
malization in Fig. 12.

1. The Patient trusts completely the HCA;
2. The HCA trusts completely the Hospital;
3. The Hospital trusts completely the Medical IT Sys-

tem;
4. The Medical IT System trusts completely the Clini-

cians.

To verify the correctness and consistency of the orga-
nizational model, system designers may instantiate the
model by introducing occurrences of actors. We sup-
pose that in the system there are ten occurrences of
Patient and three of Clinician. Since instances inherit
the relations associated with their meta classes [22], the
DLV system completes the model by computing thirty
trust chains, one for each patient/clinician instance pair.
Thus, when the DLV system is used to verify the above
property, it reports an inconsistency: actually, all clin-
icians are authorized to access personal information of
every patient. Ideally, we would authorize only the clini-
cians assigned to a patient to access his data. Moreover,
the analysis reveals that clinicians are authorized to re-
delegate patient information. These inconsistencies can
be removed by restricting the trust relation between the
Medical IT System and the Clinician as follows

trust(perm,mIS,Cli,Rec,1):- isClinicianOf(Cli,Pat),
owns(Pat,Rec).

The refined result guarantees that patient consent
must be sought for any other agent, such as clinician
colleagues, to be able to access patient information, and
the patient must be notified of every access. This com-
plies with the requirements drawn in Section 5 where a
clinician has to request a consultation with colleagues
through the hospital (Fig. 4) and the patient must give
the permission to access the data. Applying the verifica-
tion process to the new model, the DLV system does not
reveal any inconsistencies.

System designers might erroneously introduce some
occurrences that do not behave correctly. For instance,
they can introduce an occurrence of Clinician that di-
rectly requires a consultation to a colleague (i.e., another
occurrence of Clinician) and so delegate patient infor-
mation to him without the permission of the Hospital.
In this case the DLV system spots inconsistencies since
properties are not verified. This proves the correctness of
the model because it is able to detect incorrect behaviors.

It is also possible to make additional queries aimed
at verifying a number of security principles such as least-
privilege, or need-to-know policies as done by Liu et
al. [28] in their security requirements model based on
Alloy. Least privilege [35] requires that actors should be
assigned only the permissions needed to perform their
assigned duties and functions.

Example 6 To check if a clinician has only medical
records of his patients, we use the following property:

:- owns(Pat,Rec), has_per(Cli,Rec,N),
isClinician(Cli), not isClinicianOf(Cli,Pat).

8 Negative Authorizations

In all practical examples of policies and requirements for
e-health, we found the need for negative authorizations
(for non-functional requirements) and negative goals or
goals whose fulfillment restrains the fulfillment of other
goals (for functional requirements). Tropos already ac-
commodates the notion of positive or negative contri-
bution of goals to the fulfillment of other goals. We only
need to lift the framework to delegation and trust. Notice
that having negative authorization in the requirements
model does not mean that we must use “negative” cer-
tificates. Even if some form of negative certificates is used
in real life,7 we use negative authorizations to help de-
signers in shaping the perimeter of positive trust, i.e.
positive certificates, to avoid incautious delegation cer-
tificates that may give more powers than desired.

The framework presented in previous sections is
based on a closed world assumption, for which the lack of
authorization is considered as a negative authorization.
Essentially, whenever an actor tries to access an object, if

7 E.g., a certificate issued by the government that you have
no pending criminal trials or a court decision that bans you
from public office



12 Paolo Giorgini et al.

Table 5 Negative Authorization Predicates

Primitive Negative Authorization

delDenial
(
Actor: a, Actor: b, Service: s,N+ ∪ {∗} : n

)
prohibition(Actor: a, Actor: b, Service: s)
Derived Negative Authorization

delDChain
(
Actor: a, Actor: b, Service: s,N+ ∪ {∗} : n

)
prohibitionChain(Actor: a, Actor: b, Service: s)

a positive authorization is not found in the system, the
actor is denied the access. This approach has a major
problem: the lack of an authorization for a given actor
does not prevent such an actor from receiving the autho-
rization from another actor.

Suppose that an actor should not be given access to
a service. In decentralized authorization administration,
an actor possessing the right to use the service, can dele-
gate the authorization on that service to the wrong actor.
Since many actors may have the right to use the service,
it is not always possible to enforce with certainty the
constraint that an actor cannot access such a service.
Thus, we propose an explicit negative authorization as
an approach for handling this type of constraint.

An explicit negative authorization expresses a denial
for an actor to access a service. In our approach negative
authorizations take precedence on positive ones. That
is, whenever a user has both a positive and a negative
authorization on the same object, the user is prevented
from accessing the object. Essentially, negative autho-
rizations in our model are handled as blocking autho-
rizations: whenever an actor receives a negative autho-
rization, his positive authorization becomes blocked.

We distinguish two predicates (Table 5) for the ex-
tensional features put down by the designer: delDenial
and prohibition. The intuition is that delDenial(a, b, s, n)
holds if actor a delegates the permission to denial the
service s to actor b, and prohibition(a, b, s) holds if actor
a forbids to use the service s to actor b, that is, actor a
says that service s cannot be assigned to actor b. We as-
sume that if an actor a denial an actor b to have service
s there is not a delegation chain from a to b. Thus, if a is
the owner of s then b cannot have s. Otherwise, b could
have s if there exists a delegation chain from owner of s
and b without a.

As done for positive authorizations, we provide
the corresponding intensional predicates delDChain and
prohibitionChain. These predicates are derived by the sys-
tem and are used to build denial chains and prohibi-
tion chains. Fig. 17 (Appendix A) presents the axioms
to build such chains while their translation into DLV
specifications is given in Fig. 21 (Appendix B).

Our framework supports automatic verification of se-
curity requirements also in presence of negative autho-
rization. Fig. 18 (Appendix A) presents this set of prop-
erties. Next, we present an example of such properties.

Example 7 A basic property we want to check is “if actor
A who owns service S prohibits actor B, then B cannot

have S (from other intermediate actors)” (this statement
corresponds to P7 in Fig. 18). This can be represented
in the DLV system by the following constraint:

:- prohibitionChain(A,B,S), owns(A,S), has per(B,S,N).

Suppose that a patient requires a new clinician, since
he distrusts the old one. If the Medical IT System did
not update this information, the last can give the patient
data to the old clinician. Applying the above constraint
to this scenario, the DLV system reports an inconsis-
tency: an unauthorized actor can access private data.

9 RT Implementation

This section presents the implementation of our ap-
proach in the RT framework [27]. See [8,26] for alterna-
tive systems. Our choice has been especially motivated
by the semantics based on logic so that translation be-
tween ours and the RT framework is well founded.

RT entities are individuals that can issue credentials
and make requests. RT represents roles as attributes.
An entity plays a role if and only if the entity is enti-
tled to have the attribute representing the role. A role
has the form A.R where A is an entity and R is a role
name. RT allows an entity to assert that another en-
tity has a certain attribute by using credentials. In par-
ticular, RT supports four kinds of credentials. Each of
them refers to a way to define which entities are enti-
tled to play a role, that is, to have an attribute. The
first type of credential is a simple assignment, and has
the form A.R ←− B. This credential means that entity
A says that entity B has the attribute R. The second
takes the form A.R ←− B.R1 and means that A autho-
rizes all the entities authorized by B to play the role
R1, to play also the role R. The third type has the form
A.R←− A.R1.R2 where A.R1.R2 is called a linked role.
This credential means that A gives the permission to
play its role R to all entities playing the role B.R2 in
which B is playing the role A.R1. The last type has the
form A.R ←− f1 ∩ f2 ∩ · · · ∩ fk where f1, . . . , fk can be
an entity, a role, or a linked role starting with A, and
f1 ∩ f2 ∩ · · · ∩ fk is called intersection. This kind of cre-
dential represents a conjunction of credentials.

The RT framework has a logic-based semantic foun-
dation based on Datalog and this is essentially defined
through a function from roles to sets of entities. We base
our translation on this semantics.

Fig. 13 presents an algorithm to map our framework
into RT. Lines 1-5 deal with the predicate owns, and lines
6-10 with the predicate delegate. In particular, line 3 de-
fines that the owner of service S is entitled to provide ser-
vice S. This corresponds to Ax6 of our framework. Line
4 represents the owner’s right to delegate the permission
on his service to other actors. In the second part of the
algorithm, line 8 states that the delegatee is entitled to
provide service S, and line 9 that if the delegation depth



Requirements Engineering for Trust Management 13

1 for each owns(A,S) do
2 begin
3 A.S←− A;
4 A.S←− A.S;
5 end
6 for each delegate(perm,A,B, S,N) do
7 begin
8 A.S←− B;
9 if N > 1 then A.S←− B.S;
10 end

Fig. 13 From Secure Tropos to RT

is grater than 1, the delegatee is entitled to re-delegate
the permission on services S.

Example 8 A patient allows his clinician to read his med-
ical data in order to receive accurate medical care. We
express this policy in our framework as

delegate(perm,Pat ,Cli ,Rec,1)← isClinicianOf(Pat ,Cli)∧
owns(Pat ,Rec)

The intuition is that isClinicianOf(a, b) holds if instance
a is the clinician of instance b. The above statement is
translated in the RT framework as

Pat.Rec←− Pat.clinician

If the fact owns(Pat ,Rec) occurs in the extensional de-
scription of the system, we find the following credentials
in the RT framework

Pat.Rec←− Pat
Pat.Rec←− Pat.Rec

These statements correspond, respectively, to openness
privacy principle [2] for which the data owner can access
all information about him stored into the database, and
to the right of the owner to delegate permission to read
his own information to other actors. Given the statement
“Pat.clinician←− Cli” stating that Cli is the clinician of
patient Pat, one can conclude that “Pat.Rec←− Cli”,
that is, Cli is entitled to access record Rec.

10 ST-Tool

Our framework with all features described in this paper
is supported by the ST-Tool.8 Basically, the ST-Tool is
a CASE tool in which it is possible to draw and verify
Secure Tropos models. The screen (Fig. 14) is divided in
four main areas: the menu of Secures Tropos elements
on the top, the graphical editor in the middle, the menu
for choosing different representations of models at the
bottom, and the properties viewer and editor at the left.
Essentially, the ST-Tool allows system designers to draw
Secure Tropos diagrams by selecting from the top menu

Fig. 14 ST-Tool

the desired Secure Tropos elements and to edit and verify
its properties in the left menu.

Moreover, the tool allows an automatic transforma-
tion from Secure Tropos graphical models into formal
specifications. In particular, the tool supports the trans-
formation into Datalog specification. The resulting spec-
ification is automatically displayed by selecting the cor-
responding panel in the down menu. This specification
then is used for an automatic verification of models.
To this end, ST-Tool provides a user friendly interface
within the DLV system and other Datalog-based solvers,
namely ASSAT,9 Smodels,10 Cmodels.11 Actually, the
tool permits system designers to select the security prop-
erties they want to verify and to complete models with
additional “ad-hoc” Datalog statements related to the
specific domain. Once designers are confident with the
model, the tool passes the entire set of specifications
(i.e., the extensional description of the model, the ax-
ioms, the selected properties, and the additional Dat-
alog statements) to external solvers. Once the selected
solver completes the analysis, the output is parsed and
displayed in a user-readable format by the tool.

11 Conclusion

The main contribution of this paper is to bridge the gap
between functional and trust requirements of an IT sys-
tem and its TM/PMI architecture. In particular, we have
proposed a requirements specification and an analysis
framework based on the clear separation of trust and
delegation relationships. This distinction makes it pos-
sible to capture high-level security requirements with-
out being immediately bogged down into considerations

8 http://sesa.dit.unitn.it/sttool/
9 http://assat.cs.ust.hk/

10 http://www.tcs.hut.fi/Software/smodels
11 http://www.cs.utexas.edu/users/tag/cmodels.html



14 Paolo Giorgini et al.

about cryptographic algorithms or security implementa-
tion. This is analogous to what is supposed to happen
when discussing functional requirements: one does not
get immediately trapped into discussions about imple-
mentation details, Java patterns and coding techniques.

Further, the framework supports the automatic verifi-
cation of system requirements specified in a formal mod-
eling language. Our formal framework is based on Dele-
gation Logics [26] and RT [27]. However, there are some
differences from these frameworks. The main difference
is that we distinguish trust from delegation, where trust
can be seen as a mental state based on beliefs [11] and
delegation as the effective transfer of rights. Our frame-
work differs also from RT because we consider delegation
and trust depth, while RT support only unbounded re-
delegation. A reason for limiting delegation with a depth
control is that trust is not a transitive relationship. Then,
we have used the DLV system to check system consis-
tency. Finally, we have defined the trust management im-
plementation of our framework into the RT framework.

The research presented here is still in progress. Much
remains to be done to further refine the proposed frame-
work. However, its usefulness has already been tested
with real case studies [31,32]. We are currently work-
ing in the direction of incorporating explicitly roles and
adding time features. Actually, Secure Tropos supports
only a static notion of trust. The introduction of time
features will allow us to support dynamic aspect of the
system, as a dynamic notion of trust. We are also inves-
tigating the effects of supporting hierarchies of objects
and hierarchies of actors.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Data-
bases. Addison-Wesley (1995)

2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic
Databases. In: Proc. of VLDB’02, pp. 143–154. Morgan
Kaufmann (2002)

3. Anderson, R.: A security policy model for clinical infor-
mation systems. In: Proc. of Symp. on Sec. and Privacy,
pp. 30–43. IEEE Press (1996)

4. Antón, A.I., Earp, J.B.: A requirements taxonomy for
reducing Web site privacy vulnerabilities. Requirements
Eng. J. 9(3), 169–185 (2004)

5. Axelrod, R.: The Evolution of Cooperation. Basic Books
(1984)

6. Barnes, L.B.: Managing the Paradox of Organizational
Trust. Harvard Business Review (1981)

7. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Se-
curity: from UML Models to Access Control Infrastruc-
tures. TOSEM 15(1), 39–91 (2006)

8. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis,
A.D.: The Role of Trust Management in Distributed Sys-
tems Security. Secure Internet Programming 1603, 185–
210 (1999)

9. Blomqvist, K., St̊ahle, P.: Building Organizational Trust.
In: Proc. of 16th Annual IMP Conf. (2000)

10. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopou-
los, J., Perini, A.: TROPOS: An Agent-Oriented Soft-
ware Development Methodology. JAAMAS 8(3), 203–
236 (2004)

11. Castelfranchi, C., Falcone, R.: Principles of trust for
MAS: Cognitive anatomy, social importance and quan-
tification. In: Proc. of ICMAS’98, pp. 72–79. IEEE Press
(1998)

12. Chu, Y.H., Feigenbaum, J., LaMacchia, B., Resnick, P.,
Strauss, M.: REFEREE: Trust management for Web ap-
plications. Computer Networks and ISDN Systems 29(8–
13), 953–964 (1997)

13. Chung, L., Nixon, B.: Dealing with Non-Functional Re-
quirements: Three Experimental Studies of a Process-
Oriented Approach. In: Proc. of ICSE’95, pp. 25–37.
ACM Press (1995)

14. Damianou, N.: A Policy Framework for Management of
Distributed Systems. Ph.D. thesis, University of London
(2002)

15. Devanbu, P.T., Stubblebine, S.G.: Software engineering
for security: a roadmap. In: Proc. of ICSE’00 - Future of
Software Eng. Track, pp. 227–239 (2000)

16. Ebert, C.: Requirements BEFORE the Requirements:
Understanding the Upstream Impacts. In: Proc. of
RE’05, pp. 117–124. IEEE Press (2005)

17. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas,
B., Ylonen, T.: Simple Public Key Certificates. Internet
Draft (work in progress) (1999)

18. Giorgini, P., Massacci, F., Mylopoulos, J.: Requirement
Engineering meets Security: A Case Study on Modelling
Secure Electronic Transactions by VISA and Mastercard.
In: Proc. of ER’03, LNCS 2813, pp. 263–276. Springer
(2003)

19. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.:
Filling the gap between Requirements Engineering and
Public Key/Trust Management Infrastructures. In: Proc.
of EuroPKI’04, LNCS 3093, pp. 98–111. Springer (2004)

20. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone,
N.: Requirements Engineering meets Trust Management:
Model, Methodology, and Reasoning. In: Proc. of
iTrust’04, LNCS 2995, pp. 176–190. Springer (2004)

21. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.:
Modeling Security Requirements Through Ownership,
Permission and Delegation. In: Proc. of RE’05, pp. 167–
176. IEEE Press (2005)

22. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.:
Modelling Social and Individual Trust in Requirements
Engineering Methodologies. In: Proc. of iTrust’05, LNCS
3477, pp. 161–176. Springer (2005)

23. Jim, T.: SD3: a trust management system with certified
evaluation. In: Proc. of Symp. on Sec. and Privacy, pp.
106–115. IEEE Press (2001)

24. Jürjens, J.: Secure Systems Development with UML.
Springer (2004)

25. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,
Perri, S., Scarcello, F.: The DLV System for Knowledge
Representation and Reasoning. TOCL (2005)

26. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A
logic-based approach to distributed authorization. TIS-
SEC 6(1), 128–171 (2003)

27. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of A
Role-based Trust-management Framework. In: Proc. of
Symp. on Sec. and Privacy, pp. 114–130. IEEE Press
(2002)

28. Liu, L., Yu, E.S.K., Mylopoulos, J.: Security and Privacy
Requirements Analysis within a Social Setting. In: Proc.
of RE’03, pp. 151–161. IEEE Press (2003)

29. Massacci, F., Mylopoulos, J., Zannone, N.: From Hip-
pocratic Databases to Secure Tropos: a Computer-aided
Re-engineering Approach. IJSEKE (2006). To appear.

30. Massacci, F., Penserini, L. (eds.): Proceedings of Sympo-
sium on Requirements Engineering for Information Secu-
rity (2005)

31. Massacci, F., Prest, M., Zannone, N.: Using a Security
Requirements Engineering Methodology in Practice: The



Requirements Engineering for Trust Management 15

compliance with the Italian Data Protection Legislation.
Comp. Standards & Interfaces 27(5), 445–455 (2005)

32. Massacci, F., Zannone, N.: Detecting Conflicts between
Functional and Security Requirements with Secure Tro-
pos: John Rusnak and the Allied Irish Bank. Tech. Rep.
DIT-06-002, University of Trento (2006)

33. McDermott, J., Fox, C.: Using Abuse Case Models for
Security Requirements Analysis. In: Proc. of ACSAC’99,
pp. 55–66. IEEE Press (1999)

34. McKnight, D.H., Chervany, N.L.: The meanings of trust.
Tech. Rep. 96-04, MIS Research Center (1996)

35. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman,
C.E.: Role-based access control models. IEEE Comp.
29(2), 38–47 (1996)

36. Sindre, G., Opdahl, A.L.: Eliciting security requirements
with misuse cases. Requirements Eng. J. 10(1), 34–44
(2005)

37. Sommerville, I.: Software Engineering. Addison-Wesley
(2001)

38. Toval, A., Olmos, A., Piattini, M.: Legal requirements
reuse: a critical success factor for requirements quality
and personal data protection. In: Proc. of RE’02, pp. 95
–103. IEEE Press (2002)

39. Tryfonas, T., Kiountouzis, E., Poulymenakou, A.: Em-
bedding security practices in contemporary information
systems development approaches. Inform. Management
and Comp. Sec. 9, 183–197 (2001)

40. van Lamsweerde, A., Brohez, S., De Landtsheer, R.,
Janssens, D.: From System Goals to Intruder Anti-Goals:
Attack Generation and Resolution for Security Require-
ments Engineering. In: Proc. of RHAS’03, pp. 49–56
(2003)

41. Yu, E., Cysneiros, L.: Designing for Privacy and Other
Competing Requirements. In: Proc. of SREIS’02 (2002)

42. Yu, E.S.K.: Modelling strategic relationships for process
reengineering. Ph.D. thesis, University of Toronto (1996)

A Formal Framework

In order to complete and verify the model, we use Data-
log [1]. A Datalog program is a set of rules of the form
L← L1∧...∧Ln where L, called head, is a positive literal and
L1, ..., Ln are literals and they are called body. Intuitively, if
L1, ..., Ln are true in the model then L must be true in the
model. In Datalog, negation is treated as negation as fail-
ure. In other words, if there is no evidence that an atom is
true, it is considered to be false. We refer to [1] for a dis-
cussion about complexity, soundness and completeness issues
concerning the use of Datalog. Next, we present the axioms
and properties supported by our formal framework.

A.1 Axioms

Axioms define the semantics of our framework and are used to
complete the extensional description of the system. In partic-
ular, our formal framework supports all phases of the require-
ments analysis process described in the paper, including goal
modeling. Thus, firstly, we introduce predicates for goal/task
refinement and resource decomposition (Table 6). Predicate
service(s) holds if s is a service. Predicate subservice(s1, s)
holds if s1 is a subservice of s. Predicate OR subservice(s1, s)
holds if s1 is derived from s through OR-decomposition, and
AND subservice(s1, s) holds if s1 is derived from s through
AND-decomposition. As we mentioned, services are actually
refined in the classification of goal, plan, and resource. Thus,
in the actual language used for writing requirements we have
the notion of sub-plan, the relation part-of for resources and

Table 6 Goal refinement predicates

Goal refinement
service(Service: s)
subservice(Service: s1, Service: s2)
OR subservice(Service: s1, Service: s2)
AND subservice(Service: s1, Service: s2)

S1 subservice(S1, S)← OR subservice(S1, S)
S2 subservice(S1, S)← AND subservice(S1, S)
S3 subservice(S, S)← service(S)
S4 subservice(S2, S)← subservice(S2, S1) ∧ subservice(S1, S)
S5 service(S1)← subservice(S1, S)

Fig. 15 Axioms for subservice

Functional Requirement Model
Ax1: aims(A,S)← requests(A,S)
Ax2: aims(B,S)← depends(A,B, S) ∧ aims(A,S)
Trust Requirement Model
Ax3: trustChain(perm,A,B, S,N)← trust(perm, A,B, S,N)
Ax4: trustChain(perm,A,C,S,P )← trustChain(perm,A,B,S,N)∧

trustChain(perm,B,C, S,M)∧
P = min{N − 1,M} ∧N ≥ 2

Ax5: trustChain(perm,A,B,S,N−1)← trustChain(perm,A,B,S,N)∧
N ≥ 2

Trust Management Implementation
Ax6: has per(A,S, ∗)← owns(A,S)
Ax7: has per(A,S,N − 1)← has per(A,S,N)
Ax8: has per(B,S,P )←delegate(perm,A,B,S,M)∧has per(A,S,N)∧

P = min{N − 1,M} ∧N ≥ 2
Ax9: fulfills(A,S)← has per(A,S,N) ∧ aims(A,S) ∧ provides(A,S)

Ax10: satisfies(A,S)← fulfills(A,S)
Ax11: satisfies(A,S)← depends(A,B, S) ∧ satisfies(B,S)
Goal Refinement

Ax12: has per
(
A,S′, N

)
← has per(A,S,N) ∧ subservice

(
S′, S

)
Ax13: fulfills(A,S)← ∀Si AND subservice(Si, S) , fulfills(A,Si)

Ax14: fulfills(A,S)← fulfills
(
A,S′

)
∧ OR subservice

(
S′, S

)
Ax15: satisfies(A,S)← ∀Si AND subservice(Si, S) , satisfies(A,Si)

Ax16: satisfies(A,S)← satisfies
(
A,S′

)
∧ OR subservice

(
S′, S

)

Fig. 16 Axioms

so on. Fig. 15 presents the axioms for subservices. Their
meaning is immediate.

Fig. 16 presents the axioms specific to our framework.
Ax1-2 say that an actor has as objective to fulfill a service if
either this is his own objective or the objective of another ac-
tor that depends on (i.e., has functionally delegated to) him
the fulfillment of such an objective. Ax3-4 are used to com-
plete the trust network among actors. Ax5 propagates trust
relations through depth. Essentially, if someone trusts with
certain depth, then he trusts with smaller depth. Ax6 states
that actors have full authority on his own services, and Ax7
propagates permission through depth. Essentially, if someone
is entitled with certain depth, then he is also entitled with
smaller depth. Ax8 says that the delegatee is entitled to pro-
vide the service. Ax9 states that actors who have permission
on a service that belongs to their objectives and also have the
capability to provide it, can fulfill the service. Ax10 states
that actors that fulfill a service are confident that the service
is satisfied, and Ax11 propagates this confidence along depen-
dency relations. Ax12-16 treat the cases of goal refinements
and how the various predicates are differently re-evaluated
after refinements.

In order to accommodate negative authorizations in the
formal framework some axioms should be added and others
modified. Fig. 17 shows the list of such axioms. Ax8 is modi-
fied to support the “negative authorizations take precedence”
policy. Ax17-18 are used to build denial chains and Ax19-20
to build prohibition chains.



16 Paolo Giorgini et al.

Trust Management Implementation
Ax8: has per(B,S,P )←delegate(perm,A,B,S,M)∧has per(A,S,N)∧

not prohibitionChain(A,B, S)∧
P = min{N − 1,M} ∧N ≥ 2

Ax17: delDChain(A,B, S,N)← delDenial(A,B, S,N)
Ax18: delDChain(A,C, S, P )← delDChain(A,B, S,N)∧

delDChain(B,C, S,M)∧
P = min{N − 1,M} ∧N ≥ 2

Ax19: prohibitionChain(A,B, S)← prohibition(A,B, S)
Ax20: prohibitionChain(A,C, S)← delDChain(A,B, S,N)∧

prohibition(A,C, S) ∧N ≥ 1

Fig. 17 Negative Authorization Axioms

Availability Requirements
P1:requests(A,S)⇒? satisfies(A,S)
Authorization Requirements
P2:delegate(perm,A,B, S,N)⇒? ∃M ≥ N has per(A,S,M)
P3:delegate(perm,A,B,S,N)⇒? ∃M≥N trustChain(perm,A,B,S,M)
P4:has per(B,S,N)∧owns(A,S)∧A 6=B ⇒? trustChain(perm,A,B,S,N)
P5:fulfills(B,S)∧owns(A,S)∧A 6=B ⇒? ∃N trustChain(perm,A,B,S,N)
P6:fulfills(A,S)⇒? ∃N has per(A,S,N)
Authorization Requirements with Negative Authorizations
P7:prohibitionChain(A,B, S) ∧ owns(A,S)⇒? not has per(B,S,N)
P8:prohibitionChain(A,B, S) ∧ owns(A,S)⇒? not fulfills(B, S)

Fig. 18 Desirable Properties of a Design

A.2 Properties

Once the intensional description of the system is derived, de-
signers may want to verify if the system complies with trust
and security requirements. Thus, we provide a set of proper-
ties representing high-level security requirements that system
designers can include in the model. Properties are different
from axioms: they are desirable design features, but may not
be true of the particular design at hand. In Fig. 18 we use
A ⇒? B to mean that each time A holds it is desirable that
B also holds. In Datalog this can be represented as the con-
straint :- A, not B.

Fig. 18 presents the properties used to verify the correct-
ness and consistency of security requirements. P1 implements
availability requirements. It checks if an actor is confident
that his objectives will be satisfied.

Other properties focus on the verification of authorization
requirements. P2 verifies if an agent that delegates a service is
entitled to do it. Essentially, actors must have enough rights
to delegate the service. P3 verifies if the delegator trusts the
delegatee: actors can only delegate to agents that they trust.
Rights or privileges can be given to trusted actors that are
then responsible for actors they may delegate this right to.
This forms a delegation chain. If any actor along this chain
fails to meet the requirements associated with a delegated
right, the chain is broken and all actors following the failure
are not permitted to perform the action associated with the
right. P4 states that only actors authorized by the service
owner has authority concerning access an disposition of the
service. P5 states that if an actor fulfills a service owned by
another actor, he must be trusted by the legitimate owner.
This means that only actors authorized by the service owner
can fulfill the service. P6 checks whether actors that provide
a service are entitled to do this.

The last batch presents properties for verifying security
requirements in presence of negative authorizations. P7-8 ver-
ify that, if the owner of a service forbids to use it to another
actor, the latter cannot have and fulfill the service.

aims(A,S):- requests(A,S).
aims(B,S):- depends(A,B,S), aims(A,S).

trustChain(perm,A,B,S,N):- trust(perm,A,B,S,N).
trustChain(perm,A,B,S,N):-#succ(N,M),trustChain(perm,A,B,S,M),

N>0.
trustChain(perm,A,C,S,P):- #succ(P,N), trustChain(perm,A,B,S,N),

trustChain(perm,B,C,S,M), M>=N, N>1.
trustChain(perm,A,C,S,M):- trustChain(perm,A,B,S,N),

trustChain(perm,B,C,S,M), N>M, N>1.

has per(A,S,*):- owns(A,S).
has per(A,S,N):- #succ(N,M), has per(A,S,M), N>0.
has per(B,S,P):-#succ(P,N),delegate(perm,A,B,S,N),has per(A,S,M),

M>=N, N>1.
has per(B,S,M):- delegate(perm,A,B,S,N), has per(A,S,M), N>M, N>1.
fulfills(A,S):- has per(A,S,N), aims(A,S), provides(A,S).
satisfies(A,S):- fulfills(A,S).
satisfies(A,S):- depends(A,B,S), satisfies(B,S).

has per(A,S1,N):- has per(A,S,N), subservice(S1,S).
fulfills(A,S):- AND decomp2(S,S1,S2), fulfills(A,S1),

fulfills(A,S2).
fulfills(A,S):- OR subservice(S1,S), fulfills(A,S1).
satisfies(A,S):- AND decomp2(S,S1,S2), satisfies(A,S1),

satisfies(A,S2).
satisfies(A,S):- OR subservice(S1,S), satisfies(A,S1).

Fig. 19 Axioms in the DLV system

:- requests(A,S), not satisfies(A,S).

:- delegate(perm,A,B,S,N), not has per(A,S,N).
:- delegate(perm,A,B,S,N), not trustChain(perm,A,B,S,N).
:- has per(B,S,N), owns(A,S), not trustChain(perm,A,B,S,N), A<>B.
:- fulfill(B,S), owns(A,S), not trustChain(perm,A,B,S,N), A<>B.
:- fulfills(A,S), not has per(A,S,N).

Fig. 20 Properties in the DLV system

has per(B,S,P):- #succ(P,N),delegate(perm,A,B,S,N),has per(A,S,M),
not prohibitionChain(Pat,Cli,Rec), M>=N, N>1.

has per(B,S,M):- delegate(perm,A,B,S,N), has per(A,S,M),
not prohibitionChain(Pat,Cli,Rec), N>M, N>1.

delDChain(A,B,S,N):- delDenial(A,B,S,N).
delDChain(A,C,S,P):- #succ(P,N), delDChain(A,B,S,N),

delDChain(B,C,S,M), M>=N, N>1.
delDChain(A,C,S,M):- delDChain(A,B,S,N), delDChain(B,C,S,M),

N>M, N>1.
prohibitionChain(A,B,S):- prohibition(A,B,S).
prohibitionChain(A,C,S):- delDChain(A,B,S,N), prohibition(B,C,S),

N>0.

Fig. 21 Axioms with negative authorizations in the DLV
system

B Mapping the Formal Framework into DLV
System

Figures 19 and 20 present, respectively, the axioms presented
in Fig. 16 and the properties in Fig. 18 in the corresponding
DLV statements.

Notice that axioms Ax13 and Ax15 in Fig. 16 cannot
be directly implemented in DLV system since this requires
a priori knowledge of the number of AND-subservices in
which a service is decomposed. Thus, we introduce the pred-
icate AND decompn where n is the number of subservices
in which a service is AND-decomposed. For instance, if ser-
vice s is AND-decomposed into subservices s1 and s2, we
use AND decomp2(s, s1, s2). Then, when we map the formal
framework in DLV system, we need a “copy” of axioms Ax13
and Ax15 for each predicate AND decompn. For lack of space,
in Fig. 19 we show only the case where n is equal to 2.

Fig. 21 shows the implementation of axioms into DLV sys-
tem when negative authorization are considered in the frame-
work.


