Dealing with Known Unknowns: Towards a
Game-Theoretic Foundation for Software
Requirement Evolution *

Le Minh Sang Tran and Fabio Massacci

Universita degli Studi di Trento, I-38100 Trento, Italy
{tran, fabio.massacci}@disi.unitn.it

Abstract. Requirement evolution has drawn a lot of attention from
the community with a major focus on management and consistency of
requirements. Here, we tackle the fundamental, albeit less explored, al-
ternative of modeling the future evolution of requirements.

Our approach is based on the explicit representation of controllable evolu-
tions vs observable evolutions, which can only be estimated with a certain
probability. Since classical interpretations of probability do not suit well
the characteristics of software design, we introduce a game-theoretic ap-
proach to give an explanation to the semantic behind probabilities. Based
on this approach we also introduce quantitative metrics to support the
choice among evolution-resilient solutions for the system-to-be.

To illustrate and show the applicability of our work, we present and
discuss examples taken from a concrete case study (the security of the
SWIM system in Air Traffic Management).

Keywords: software engineering, requirement evolution, observable and
controllable rules, game-theoretic.

1 Introduction

“...There are known unknowns: that is to say, there are things
that we now know we don’t know...”

— Donald Rumsfeld, United States Secretary of Defense

In the domain of software, evolution refers to a process of continually updating
software systems in accordance to changes in their working environments such
as business requirements, regulations and standards. While some evolutions are
unpredictable, many others can be predicted albeit with some uncertainty (e.g.
a new standard does not appear overnight, but is the result of a long process).

The term software evolution has been introduced by Lehman in his work on
laws of software evolution [17,18], and was widely adopted since 90s. Recent
studies in software evolutions attempt to understand causes, processes, and ef-
fects of the phenomenon [2,14,16]; or focus on the methods, tools that manage
the effects of evolution [19,25,28].

* This work is supported by the European Commission under project EU-FET-IP-
SECURECHANGE.

Requirement evolution has also been the subject of significant research [12,
15,24, 26, 31]. However, to our understanding, most of these works focus on the
issue of management and consistency of requirements. Here, we tackle a more
fundamental question of modeling uncertain evolving requirements in terms of
evolution rules. Our ultimate goal is to support the decision maker in answer-
ing such a question “Given these anticipated evolutions, what is a solution to
implement an evolution-resilient system?”.

This motivates our research in modeling and reasoning on a requirement
model of a system which might evolve sometime in the future. We assume that
stakeholders will know the tentative possible evolutions of the system-to-be,
but with some uncertainty. For example, the Federal Aviation Authority (FAA)
document of the System Wide Information Management (SWIM) for Air Traf-
fic Management (ATM) lists a number of potential alternatives that subject to
other high-level decisions (e.g., the existence of an organizational agreement for
nation-wide identity management of SWIM users). Such organization-level agree-
ments do not happen overnight (and may shipwreck at any time) and stakehold-
ers with experience and high-level positions have a clear visibility of the likely
alternatives, the possible but unlikely solutions, and the politically impossible
alternatives.

Our objective is to model the evolution of requirements when it is known to
be possible, but it is unknown whether it would happen: the known unknown.

1.1 The Contributions of This Paper

We set up a game-theoretic foundation for modeling and reasoning on evolution-
ary requirement models:

— A way to model requirement evolutions in terms of two kinds of evolution
rules: controllable and observable rules that are applicable to many require-
ment engineering models (from problem frames to goal models).

— A game-theoretic based explanation for probabilities of an observable evolu-
tion.

— Two quantitative metrics to help the designer in deciding optimal things to
implement for the system-to-be.

This paper is started by a sketch of a case study (§2). To our purpose, we
only focus on requirements of a part of the system-under-study. We distinguish
which requirements are compulsory, and which are optional at design time. Based
on these, we construct simple evolution scenario to illustrate our approach in
subsequent sections, i.e. some compulsory requirements become obsoleted, and
some optional ones turn to be mandatory.

Then, we discuss how to model requirement evolution (§3) using evolution
rules and probabilities of evolution occurrences. We employ the game-theoretic
interpretation to account for the semantic of probabilities.

We also introduce two quantitative metrics to support reasoning on rule-
based evolutionary requirement models (§4). The reasoning is firstly performed

Table 1. High level requirements of ISS-ENT and ISS-BP in SWIM Security Services.

ID |Requirement Opt.
RE1|Manage keys and identities of system entities (human, software, devices,...)
RE2|Support Single Sign-On (SSO)

RE3|Support a robust Identity and Key Management Infrastructure (IKMI)
that can be scaled up to large number of applications and users.
RE4|Intrusion detection and response

RB1|Less cross-program dependencies for External Boundary Protection System
RB2|More robust and scalable common security solution

RB3|Simpler operation of External Boundary Protection System

RB4|Support overall security assessment

The Opt(ional) column determines whether a requirement is compulsory or not at current design
time. Due to evolution, optional requirements may turn to be compulsory, and current compulsory
ones may no longer be needed in the future.

on a simple scenario. Then we show a programmatic way to adapt the technique
to a more complex scenario (e.g., large model, multiple evolutions) (§5).

In addition, we discuss current limits of our work, but not the approach, as
well as our plan to address them (§6). Finally, we review related works (§7) and
conclude the paper(§8).

2 Case Study

Throughout this work, to give a clearer understanding of the proposed approach
we draw examples taken from the design architecture of SWIM [7,23] in ATM.

SWIM provides a secure, overarching, net-centric data network, and intro-
duces a Service-Oriented Architecture (SOA) paradigm for airspace manage-
ment. The United States FAA [7] has proposed a logical architecture of SWIM
which consists of several function blocks, among which we choose to consider the
Security Services block. At high level analysis of Security Services, there are five
security areas: 4) Enterprise Information Security System (ISS-ENT), i) Bound-
ary Protection ISS (ISS-BP), i) SWIM Core ISS, iv) National Air Space (NAS)
End System ISS, and v) Registry control. To avoid a detailed discussion on the
architecture of SWIM Secure Services, which are not main topic of this work,
while providing enough information for illustrating our work we refine our scope
of interest on two areas: ISS-ENT and ISS-BP.

— ISS-ENT includes security requirements that are provided as part of an
underlying IT/ISS infrastructure used by systems throughout the NAS.

— ISS-BP includes requirements with regard to control connections and in-
formation exchanges between internal NAS and external entities. These re-
quirements refer to both network layer control. (e.g., VPNs, firewalls) and
application layer control.

Table 1 lists high level requirements of ISS-ENT and ISS-BP. For conve-
nience, each requirement has a corresponding identifier: two characters for the

Table 2. Design elements that support requirements listed in Table 1.

ID |[Element Description RE1 RE2 RE3 RE4 RB1 RB2 RB3 RB4

Simple IKMI °

OpenLLDAP based IKMI

[]
Active Directory based IKMI e o °
Oracle Identity Directory based IKMI °

Ad-hoc SSO

Network Intrusion Detection System °

=0 | BB F| >

Common application gateway for External ° °
Boundary Protection System

Centralized Policy Decision Point (PDP) .

Q™

Application-based solution for External °
Boundary Protection System

Each element in this table can support (or fulfill) requirements listed in columns. To prevent useless
redundancy, some elements are exclusive to due to functionality overlapping (e.g., A, B1, B2 and
B3 are mutual exclusive each other).

security area (RE - stands for ISS-ENT requirements, RB - stands for ISS-BP
ones), and a sequence number. There are compulsory requirements (i.e. they are
essential at the time the system is designed) and optional ones (i.e. they can be
ignored at present, but might be critical sometime in the future). Solutions for
these requirements are listed in Table 2. Each solution has an IDentifier, a short
description and a checklist of requirements that it can fulfill.

3 Modeling Requirement Evolution

In this section, we describe how we model evolution, which essentially affects to
any further analysis. We capture evolutions by classifying them into two groups:
controllable and observable. Furthermore, we include in this section the game-
theoretic account for probability.

3.1 Evolution on Requirement Model: Controllable and Observable

Stakeholder requirements, mostly in textual format, are their wishes about the
system-to-be. Analyzing requirements in such format is difficult and inefficient.
Designer thus has to model requirements and design decisions by using various
approaches (e.g., model-based, goal-based) and techniques (e.g., DFD, UML).

Generally, a requirement model is a set of elements and relationships, which
depend on particular approach. For instance, according to Jackson and Zave [30],
model elements are Requirements, Domain assumptions, Specifications; in a goal-
based model (e.g., i*), elements are goals, actors and so on.

Here we do not investigate any specific requirement model (e.g., goal-based
model, UML models), nor go to details about how many kinds of element and
relationship a model would have. The choice of a one’s favorite model to represent
these aspects can be as passionate as the choice of a one’s religion or football

team, so it is out of scope. Instead, we treat elements at abstract meaning, and
only be interested in the satisfaction relationship among elements.

In our work, we define the satisfaction relationship in terms of usefulness.
That an element set X is useful to another element set Y depends on the ability
to satisty (or fulfill) Y if X is satisfied. We define a predicate useful(X, Y) which is
true (1) if X can satisfy all elements of Y, otherwise false (0). The implementation
of useful depends on the specific requirement model. For examples:

— Goal models [20]: useful corresponds to Decomposition and Means-end re-
lationships. The former denotes a goal can be achieved by satisfying its
subgoals. The later refers to achieving an (end) goal by doing (means) tasks.

— Problem frames [13]: useful corresponds to requirement references and domain
interfaces relationships. Requirements are imposed by machines, which con-
nect to problem world via domain interfaces. Problem world in turn connects
to requirements via requirement references.

For evolutionary software systems which may evolve under some circum-
stances (e.g., changes in requirements due to changes in business agreements,
regulations, or domain assumption), their requirement models should be able
to express as much as possible the information about known unknowns i.e. po-
tential changes. These potential changes are analyzed by evolution assessment
algorithms to contribute to the decision making process, where a designer decides
what would be in the next phase of the development process.

Based on the actor who can decide which evolution would happen, we cate-
gorize requirement evolutions into two classes:

— controllable evolution is under control of designer to meet high level require-
ments from stakeholder.

— observable evolution is not under control of designer, but its occurrence can
be estimated with a certain level of confidence.

Controllable evolutions, in other words, are designer’s moves to identify dif-
ferent design alternatives to implement a system. The designer then can choose
the most “optimal” one based on her experience and some analyses on these
alternatives. In this sense, controllable evolution is also known as design choice.

Observable ones, in contrast, correspond to potential evolutions of which real-
ization is outside the control of the designer. They are moves of reality to decide
how a requirement model looks like in the future. Therefore, the stakeholder
and designer have to forecast the reality’s choice with a level of uncertainty. The
responses are then incorporated into the model.

We capture the evolution in terms of evolution rule. We have controllable
rule and observable rule corresponding to controllable and observable evolution.

Definition 1. A controllable rule r. is a set of tuples (RM, RM;) that consists
of an original model RM and its possible design alternative RM;.

ro = 0 {RM % RMi}

K2

l oy
Descrlptlon of models

REl RE2 RE3 RE4
ISS-| ENT1 v

'. 2® sl e

(a) Controllable rule) Observable rule

Fig. 1. Example of controllable rule (a), and observable rule (b).

Definition 2. An observable rule r, is a set of triples (RM, p;, RM;) that con-
sists of an original model RM and its potential evolution RM;. The probability
that RM evolves to RM; is p;. All these probabilities should sum up to one.

ro = Lnj {RM LN RMI}

Fig. 1 is a graphical representation of evolution rules taken from SWIM case
study. Left, Fig. 1(a) describes a controllable rule where a requirement model
containing IKMI (RE1) has four design choices: A, B1, B2, and B4 (see Table 1
and Table 2). Right, Fig. 1(b) shows that the initial model ISS-ENT-1 (including
RE1 and RE4) can evolve to ISS-ENT-2 (including RE1 to RE4), or remain
unchanged with probabilities of @ and 1 — «. These rules are as follows:

re = {REI * A,RE1 % B1,RE1 % B2, RE1 % 33}

{|ss ENT-1 % ISS-ENT-2, ISS-ENT-1 =%, |SS-ENT- 1}

3.2 Game-Theoretic Account for Probability

Here, we discuss about why and how we employ game-theoretic (or betting
interpretation) to account for probabilities in observable rules.

As mentioned, each potential evolution in an observable rule has an associ-
ated probability; these probabilities sum up to 1. However, who tells us? And
what is the semantic of probability? To answer the first question, we, as sys-
tem Designers, agree that Stakeholder will tell us possible changes in a period
of time. About the second question, we need an interpretation for semantic of
probability.

Basically, there are two broad categories of probability interpretation, called
“physical” and “evidential” probabilities. Physical probabilities, in which fre-
quentist is a representative, are associated with a random process. Evidential
probability, also called Bayesian probability (or subjectivist probability), are
considered to be degrees of belief, defined in terms of disposition to gamble at
certain odds; no random process is involved in this interpretation.

To account for probability associated with an observable rule, we can use the
Bayesian probability as an alternative to the frequentist because we have no event

to be repeated, no random variable to be sampled, no issue about measurability
(the system that designers are going to build is often unique in some respects).
However, we need a method to calculate the value of probability as well as
to explain the semantic of the number. Since probability is acquired from the
requirement eliciting process involving the stakeholder, we propose using the
game-theoretic method in which we treat probability as a price. It seems to be
easier for stakeholder to reason on price (or cost) rather than probability.

The game-theoretic approach, discussed by Shafer et al. [27] in Computa-
tional Finance, begins with a game of three players, i.e. Forecaster, Skeptic, and
Reality. Forecaster offers prices for tickets (uncertain payoffs), and Skeptic de-
cides a number of tickets to buy (even a fractional or negative number). Reality
then announces real prices for tickets. In this sense, probability of an event E is
the initial stake needed to get 1 if F happens, 0 if ' does not happen. In other
words, the mathematics of probability is done by finding betting strategies.

In this paper, we do not deal with stock market but the design of evolving
software, i.e. we extend it for software design. We then need to change rules of the
game. Our proposed game has three players: Stakeholder, Designer, and Reality.
For the sake of brevity we will use “he” for Stakeholder, “she” for Designer and
“it” for Reality. The sketch of this game is denoted in protocol 1.

Protocol 1
Game has n round, each round plays on a software C;
FORi=1ton
Stakeholder announces p;
Designer announces her decision d;: believe, don’t believe
If Designer believes
Ky =K;_1+ M; x (r; — p;)
Designer does not believe
Ki = Ki_1 4+ M; x (p; — ;)
Reality announces r;

The game is about Stakeholder’s desire of having a software C. He asks
Designer to implement C, which has a cost of M$. However, she does not have
enough money to do this. So she has to borrow money from either Stakeholder
or National Bank with the return of interest (ROI) p or r, respectively.

Stakeholder starts the game by announcing p which is his belief about the
minimum ROI for investing M$ on C. In other words, he claims that r would
be greater than p. If M equals 1, p is the minimum amount of money one can
receive for 1§ of investment. Stakeholder shows his belief on p by a commitment
that he is willing to buy C' for price (1 + p)M if Designer does not believe him
and borrow money from someone else.

If Designer believes Stakeholder, she will borrow M from Stakeholder. Later
on, she can sell C' to him for M (1+r) and return M (1+p) to him. So, the final
amount of money Designer can earn from playing the game is M(r — p).

If Designer does not believe Stakeholder, she will borrow money from Na-
tional Bank, and has to return M (1 + r). Then, Stakeholder is willing to buy C
with M (1 + p). In this case, Designer can earn M (p — r).

Suppose that Designer has an initial capital of K. After round i-th of the
game, she can accumulate either K; = K; 1+ M (r—p) or K; = K;_1+M(p—r),
depend on whether she believes Stakeholder or not. Designer has a winning
strategy if she can select the values under her control (the M$) so that she
always keeps her capital never decrease, intuitively, K; >= K;_; for all rounds.

The law of large numbers here corresponds to say that if unlikely events
happen then Designer has a strategy to multiply her capital by a large amount.
In other words, if Stakeholder estimates Reality correctly then Designer has a
strategy for costs not to run over budget.

4 Making Decision: What Are the Best Things to
Implement

One of the main objectives of modeling evolution is to provide a metric (or set of
metrics) to indicate how well a system design can adapt to evolution. Together
with other assessment metrics, designers have clues to decide what an “optimal”
solution for a system-to-be is.

The major concern in assessment evolution is answering the question: “Whether
a model element (or set of elements) becomes either useful or useless after evo-
lution?”. Since the occurrence of evolution is uncertain, so the usefulness of an
element set is evaluated in term of probability. In this sense, this work proposes
two metrics to measure the usefulness of element set as follows.

Max Belief (MaxB): of an element set X is a function that measures the max-
imum belief supported by Stakeholder such that X is useful to a set of top
requirements after evolution happens. This belief of usefulness for a set of
model element is inspired from a game in which Stakeholder play a game
together with Designer and Reality to decide which elements are going to
implementation phase.

Residual Risk (RRisk): of an element set X is the complement of total belief
supported by Stakeholder such that X is useful to set of top requirements
after evolution happens. In other words, residual risk of X is the total belief
that X is not useful to top requirements with regard to evolution. Impor-
tantly, do not confuse this notion of residual risk with the one in risk analysis
studies which are different in nature.

Given an evolutionary requirement model RM = (RM, r, r.) where ro— U {RM iy RMi}

is an observable rule, and r. = U {RMi X RMij} is a controllable rule, the
iJ
calculation of max belief and residual risk is illustrated in Eq. 1, Eq. 2 as follows.

MazB(X) = max Di (1)

RMZSRM; €S
RRisk(X) =1 — > b (2)
RMZS5RM €S

where S is set of potential evolutions in which X is useful.
S= {RM 2iy RM;[3(RM; = RM;;) € r. st.useful (X, RMij)}

One may argue about the rationale of these two metrics. Because he (or
she) can intuitively measure the usefulness of an element set by calculating the
Total Belief which is exactly the complement of our proposed Residual Risk.
However, using only Total Belief (or Residual Risk) may mislead designers in
case of a long-tail problem.

The long-tail problem, firstly coined by Anderson [1], describes a larger pop-
ulation rests within the tail of a normal distribution than observed. A long-tail
example depicted in Fig. 2 where a requirement model RM might evolve to
several potential evolutions with very low probabilities (say, eleven potential
evolutions with 5% each), and another extra potential evolution with dominat-
ing probability (say, the twelfth one with 45%). Suppose that an element A
appears in the first eleven potential evolutions, and an element B appears in the
last twelfth potential evolution. Apparently, A is better than B due to A’s total
belief is 55% which is greater than that of B, say 45%. However, at the end of
the day, only one potential evolution becomes effective (i.e. chosen by Reality)
rather than ‘several’ potential evolutions are together chosen. If we thus consider
every single potential evolution to be chosen, the twelfth one (45%) seems to be
the most promising and Mazx Belief makes sense here. Arguing that A is better
than B or versa is still highly debatable. Ones might put their support on the
long tail [1], and ones do the other way round [5]. Therefore, we introduce both
Residual Risk and Maxz Belief to avoid any misleading in the decision making
process that can be caused when using only Total Belief.

For a better understanding of Max Belief and Residual Risk, we conclude
this section by applying our proposed metrics to the evolution of SWIM Secu-
rity Services discussed in previous section. In Fig. 3, here we have an initial re-
quirement model RMO(ISS-ENT-1,ISS-BP-1) that will evolve to RM1(ISS-ENT-
2,ISS-BP-1), RM2(ISS-ENT-1,ISS-BP-2), and RM3(ISS-ENT-2,ISS-BP-2) with

Fig. 2. The long-tail problem.

Security Services
(ISS-ENT-1,
1SS-BP-1)

18%

42%

ISS-ENT-2,
ISS-BP-2

ISS-ENT-2,

ISS-ENT-1,

‘. 1SS-BP-1 g Bo
o) B m
(e[l e T & & EXa

Fig. 3. Evolution of the SWIM Security Service.

probabilities of 28%, 18% and 42%, respectively. There are 12% that RMO stays
unchanged. Each requirement model is represented as a bubble in which there
is a controllable rule with several design alternatives. Each design alternative is
an element set represented as a rounded rectangle that contains elements (such
as A, D, and G) to support (fulfill) requirements of that requirement model.

Table 3 shows some examples, where the first column displays element sets,
and the two next columns show values of max belief and residual risk. Notice
that the max belief and residual risk in the first row, where the element set is
{A, D}, are n/a which means that we are unable to find any potential evolution
that {A, D} can support all top requirements.

Table 3. Examples of Max Belief and Residual Risk

Element set Max Belief|Residual Risk
{A, D,} n/a n/a
{A,E, D, G, F} 18% 70%
{B3, D, G} 28% 60%
{B1, D, G, C} 28% 60%
{B3, D, E, G} 42% 0%
{B2,D, E, F, G} 42% 0%

In Table 3, {B3, D, E,G} and {B2,D, E, F,G} seem to be the best choices,
since they have a high max belief (42%) and low residual risk (0%). The zero
residual risk means these element sets are surely still useful after evolution. If
the cost of implementation is the second criteria and assume that each element
has equal cost, then {B3, D, E, G} seems to be better.

5 Handling Complex Evolution

If a model is too large and complex, instead of dealing with the evolution of the
whole model, we can consider evolution in each subpart. If a subpart is still too
large and complex, we can recursively divide it into smaller ones, each with its
local evolution rule, until we are able to deal with.

We then need to combine these local rules together to produce a global
evolution one for the whole model. For simplicity, we assume that:

ASS-1: Independence of evolutions All observable rules are independent. It
means that they do not influent each other. In other words, the probability
that an evolution rule is applied does not affect to that of other rules.

ASS-2: Order of evolutions Controllable evolutions are only considered after
observable evolutions.

As discussed, observable rules are analyzed on independent subparts. Prevail-
ing paradigms of software development (e.g., Object-Oriented, Service-Oriented)
encourage encapsulation and loosely coupling. Evolutions applying to subparts,
therefore, are often independent. Nevertheless, if there are two evolution rules
which influent each other, we can combine them into a single one. We assume
that dependent evolutions do happen, but not a common case. Hence manual
combination of these rules is still doable.

The second assumption is the way we deal with controllable rules. If we apply
controllable rules before observable ones, it means we look at design alternatives
before observable evolutions happen. This makes the problem more complex
since under the effect of evolution, some design alternatives are no longer valid,
and some others new are introduced. Here, for simplicity, we look at design
alternatives for evolved requirement models that will be stable at the end of
their evolution process.

After all local evolutions at subparts are identified, we then combine these
rules into a global evolution rule that applies to the whole model. The rationale of
this combination is the effort to reuse the notion of Max Belief and Residual Risk
(§4) without any extra treatment. In the following we discuss how to combine
two independent observable evolution rules.

Given two observable rules:
n m
ro = J {RM1 25 RM1 | and rop = | J { RM2 225 RM2;
i=1 j=1

Let r, is combined rule from r,; and r,2, we have:

ro= | {BRM1URM2 222 RML U RM2;
1<i<n
15j<m

Fig. 4 illustrates an example of combining two observable rules into a single
one. In this example, there are two subparts of SWIM Security Service: ISS-ENT
and ISS-BP. The left hand side of the figure displays two rules for these parts,
and in the right hand side, it is the combined rule.

In general case, we have multiple steps of evolution i.e. evolution happens
for many times. For the ease of reading, step 0 will be the first step of evolution,
where no evolution is applied. We use RMid to denote the i-th model in step d,
and 7,4,; to denote the observable evolution rule that applies to RMf y e Tod,i
takes RM{ as its original model.

fo1 - Fo = Fo1 % Foz2

]_“‘ (1-o)(1-2)

ISS-ENT-2,
ISS-BP-1

ISS-ENT-1,
ISS-BP-2

ISS-ENT-2,
ISS-BP-2

Security Services
(ISS-ENT-1,
ISS-BP-1)

Description of models

| REL RE2 RE3 RE4 | RB1 RB2 RB3 RB4
ISS-ENT-1[v/ v 1Ss-BP-1| v
ISSENT2| v v v v 155-BP-2 v v v

Fig. 4. Example of combining two observable evolution rules.

...
T - %‘
g frorz o [rors
................ T - I
H Py, P23 P24 P25 \Pzs P pos \P2o

Fig. 5. Multiple steps (phases) evolving requirement model.

The multi-step evolution begins with an original model RM?. This model
can evolve to one of the potential evolutions RM;. In the second step, each
RM} then also evolves to one of many potential evolutions RM 72 The evolution
stops after k steps. If we represent a model as a node, and connect a model to its
potential evolutions as we have done as aforementioned, then we have a tree-like
graph, called evolution tree with k-depth.

Fig. 5 illustrates a two-step evolution, in which observable rules are denoted
as dotted boxes. The original model lays on top part of a box, and all potential
evolutions are in sub boxes laid at the bottom. There are directed edges connect-
ing the original model to potential evolutions. The label on each edge represents
the probability such that original model evolves to target model.

In Fig. 5, an initial requirement model RMY evolves to either RM{, RMj}
or RMj. Likewise, RM] evolves to RM?, where i=1..3 and j=1..9. Here, we
have a ternary complete tree of depth 2. Generally, the evolution tree of a k-step
consecutive evolution is a complete k-depth, m-ary tree.

We can always collapse a k-step evolution into an equivalent 1-step one in
terms of probability by letting the original model evolve directly to the very last
models with the probabilities that are multiplication of probabilities of interme-
diate steps. Therefore, any k-step evolution has an equivalent 1-step evolution.
Hence all analyses discussed in §4 are applicable without any modification.

6 Limitation

Obviously there are limitations in this work:

— Real world applicability. Even though we work on a real world case study,
this work is still pure theory. It needs to be elaborated and then evaluated
with the industry. We plan to prove our work in the field of Air Traffic
Management (ATM), where we interact with designers and stakeholder of
an ATM system, and get their feedback for validation.

— Obtaining probability. Since evolution probabilities are obtained from stake-
holder, they are individual opinions. To deal with the problem, we shall work
on an interaction protocol with stakeholder to minimize inaccuracy, as well
as equip an appropriate mathematic foundation (e.g., Dempster and Shafer’s
theory) for our reasoning.

— Independence of evolution. Complex models may require many probabilities
that are not independent. This breaks the assumptions discussed in §5. Even
though designers can solve this problem by manually combining dependent
evolutions, we still need a more systematic way to deal with them.

7 Related Works

A majority of approaches to software evolution has focused on the evolution
of architecture and source code level. However, in recent years, changes at the
requirement level have been identified as one of the drivers of software evolu-
tion [4,12,31]. As a way to understand how requirements evolve, research in
PROTEUS [24] classifies changing requirements (that of Harker et al [11]) into
five types, which are related to the development environment, stakeholder, devel-
opment processes, requirement understanding and requirement relation. Later,
Lam and Loomes [15] present the EVE framework for characterizing changes,
but without providing specifics on the problem beyond a meta model.

Several approaches have been proposed to support requirements evolution.
Zowgi and Offen [31] work at meta level logic to capture intuitive aspects of
managing changes to requirement models. Their approach involves modeling
requirement models as theories and reasoning changes by mapping changes be-
tween models. However, this approach has a limitation of overhead in encoding
requirement models into logic.

Russo et al [26] propose an analysis and revision approach to restructure
requirements to detect inconsistency and manage changes. The main idea is to
allow evolutionary changes to occur first and then, in the next step, verify their
impact on requirement satisfaction. Also based on this idea, Garcez et al [4] aim
at preserving goals and requirements during evolution. In the analysis, a spec-
ification is checked if it satisfies a given requirement. If it does not, diagnosis
information is generated to guide the modification of specification in order to
satisfy the requirement. In the revision, the specification is changed according
to diagnosis information generated. Similar to Garcez et al, Ghose’s [9] frame-
work is based on formal default reasoning and belief revision, aims to address

the problem of inconsistencies due to requirement evolution. This approach is
supported by automated tools [10]. Also relating to inconsistencies, Fabrinni et
al [6] deal with requirement evolution expressed in natural language, which is
challenging to capture precisely requirement changes. Their approach employs
formal concept analysis to enable a systematic and precise verification of consis-
tency among different stages, hence, controls requirement evolution.

Other notable approaches include Brier et al.’s [3] to capture, analyze, and
understand how software systems adapt to changing requirements in an organiza-
tional context; Felici et al [8] concern with the nature of requirements evolving in
the early phase of systems; Stark et al [29] study the information on how change
occurs in the software system and attempt to produce a prediction model of
changes; Lormans et al [21] use a formal requirement management system to
motivate a more structural approach to requirement evolution.

8 Conclusion

We have discussed a rule-based representation of evolutions on requirement mod-
els. We proposed game-theoretic approach to explain the uncertainty of evolu-
tions. We also introduced two notions of max belief and residual risk to reason
on evolutionary models, in which the higher max belief and lower residual risk
models seem to be more evolution-resilient than others. Together with other
analyses (e.g., cost, risk), these values can help designers in making decision.

During the discussion, we provided many examples taken from a real world
project, SWIM. These examples not only help to explain better our idea, but
also show the promising applicability of our approach.

For future work, we plan to instantiate our approach to a concrete modeling
language (e.g., goal-based language) and apply to a more convincing case study.
We shall interact with stakeholder and designers, show them our approach and
get their feedback to validate the usability of proposed approach.

References

1. C. Anderson. The long tail. Wired, October 2004.

2. A. Anton and C. Potts. Functional paleontology: The evolution of user-visible
system services. TSE, 29(2):151-166, 2003.

3. J. Brier, L. Rapanotti, and J. Hall. Problem-based analysis of organisational
change: a real-world example. In Proc. of IWAAPF ’06. ACM, 2006.

4. A. d’Avila Garcez, A. Russo, B. Nuseibeh, and J. Kramer. Combining abductive
reasoning and inductive learning to evolve requirements specifications. In IEFE
Proceedings - Software, volume 150(1), pages 25-38, 2003.

5. A. Elberse. Should you invest in the long tail? Harvard Business Review,2008.

6. F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. Controlling requirements evolution:
a formal concept analysis-based approach. ICSEA ’07, 2007.

7. FAA. System wide information management (SWIM) segment 2 technical review.
Tech. report, 2009.

8. M. Felici. Observational Models of Requirements Evolution. PhD thesis, 2004.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

A. Ghose. A formal basis for consistency, evolution and rationale management in
requirements engineering. ICTAI ’99, 1999.

A. Ghose. Formal tools for managing inconsistency and change in re. In IWSSD
’00, Washington, DC, USA, 2000. IEEE Computer Society.

S. Harker, K. Eason, and J. Dobson. The change and evolution of requirements as
a challenge to the practice of software engineering. In RE 01, 1993.

J. Hassine, J. Rilling, J. Hewitt, and R. Dssouli. Change impact analysis for
requirement evolution using use case maps. In IWPSE 05, 2005.

M. Jackson. Problem Frames: Analysing € Structuring Software Development
Problems. Addison-Wesley, 2001.

C. F. Kemerer and S. Slaughter. An empirical approach to studying software
evolution. TSE, 25(4):493-509, 1999.

W. Lam and M. Loomes. Requirements evolution in the midst of environmental
change: a managed approach. In CSMR ’98, 1998.

M. LaMantia, Y. Cai, A. MacCormack, and J. Rusnak. Analyzing the evolution of
large-scale software systems using design structure matrices and design rule theory:
Two exploratory cases. In Proc. of WICSA 08, pages 83-92, 2008.

M. Lehman. On understanding laws, evolution and conservation in the large pro-
gram life cycle. J. of Sys. and Soft., 1(3):213 —221, 1980.

M. Lehman. Programs, life cycles, and laws of software evolution. Proc. IEEE 68,
9:1060 —1076, September 1980.

L. Lin, S. Prowell, and J. Poore. The impact of requirements changes on specifi-
cations and state machines. SPE, 39(6):573-610, 2009.

L. Liu and E. Eric Yu. Designing information systems in social context: A goal
and scenario modelling approach. Info. Syst, 29:187-203, 2003.

M. Lormans, H. van Dijk, A. van Deursen, E. Nocker, and A. de Zeeuw. Managing
evolving requirements in an outsourcing context: an industrial experience report.
In IWPSE 04, pages 149 —158, 2004.

T. Mens, J. Ramil, and M. Godfrey. Analyzing the evolution of large-scale software.
J. of Soft. Maintenance and Evolution: Research and Practice, 16(6):363-365,2004.
Program SWIM-SUIT. D1.5.1 Overall SWIM users requirements. Tech. report,
2008.

Project PROTEUS. Deliverable 1.3: Meeting the challenge of chainging require-
ments. Tech. report, Centre for Soft. Reliab., Univ. of Newcastle upon Tyne, 1996.
R. Ravichandar, J. Arthur, S. Bohner, and D. Tegarden. Improving change toler-
ance through capabilities-based design: an empirical analysis. J. of Soft. Mainte-
nance and Evolution: Research and Practice, 20(2):135-170, 2008.

A. Russo, B. Nuseibeh, and J. Kramer. Restructuring requirements specifications.
In IEE Proceedings: Software, volume 146, pages 44 — 53, 1999.

G. Shafer, V. Vovk, and R. Chychyla. How to base probability theory on perfect-
information games. BEATCS, 100:115 — 148, February 2010.

P. Soffer. Scope analysis: identifying the impact of changes in business process
models. J. of Soft. Process: Improvement and Practice, 10(4):393-402, 2005.

G. Stark, P. Oman, A. Skillicorn and A. Ameele. An examination of the effects of
requirements changes on software maintenance releases. J. of Soft. Maintenance:
Research and Practice, pages 293-309, 1999.

P. Zave and M. Jackson. Four dark corners of req. eng. TSEM, 6(1):1-30, 1997.
D. Zowghi and R. Offen. A logical framework for modeling and reasoning about
the evolution of requirements. ICRE ’97, 1997.

