
A Flexible Security Architecture to Support Third-party
Applications on Mobile Devices

Lieven Desmet†, Wouter Joosen†, Fabio Massacci‡, Katsiaryna Naliuka‡,
Pieter Philippaerts†, Frank Piessens† and Dries Vanoverberghe†

Lieven.Desmet@cs.kuleuven.be
†DistriNet Research Group, Department of Computer Science

Katholieke Universiteit Leuven, Celestijnlaan 200A, B-3001 Leuven, Belgium
‡Department of Information and Communication Technology

Università di Trento, Via Sommarive 14, I-38050 Povo (Trento), Italy

ABSTRACT
The problem of supporting the secure execution of poten-
tially malicious third-party applications has received a con-
siderable amount of attention in the past decade. In this
paper we describe a security architecture for mobile de-
vices that supports the flexible integration of a variety of
advanced technologies for such secure execution of applica-
tions, including run-time monitoring, static verification and
proof-carrying code. The architecture also supports the ex-
ecution of legacy applications that have not been developed
to take advantage of our architecture, though it can provide
better performance and additional services for applications
that are architecture-aware. The proposed architecture has
been implemented on a Windows Mobile device with the
.NET Compact Framework. It offers a substantial security
benefit compared to the standard (state-of-practice) security
architecture of such devices, even for legacy applications.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Access Controls

General Terms
Design, Security

Keywords
security architecture, mobile code

1. INTRODUCTION
Mobile phones and PDA’s have evolved over the past years

to become general purpose computation platforms. Many of
these devices support downloading third party applications
built on either the .NET Compact Framework, or Java Micro

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSAW’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-890-9/07/0011 ...$5.00.

Edition. However, supporting applications from potentially
untrustworthy sources comes with a serious risk: malicious
or buggy applications on a phone can lead to denial of ser-
vice, loss of money, leaking of confidential information on
the device and so forth.

Current devices already provide certain countermeasures
against these threats, with support for sandboxing and code
signing. The key idea is that unsigned code is severely lim-
ited in what it can do on the device, i.e. it runs in a strict
sandbox. Code that is signed by a trusted party can break
out of the sandbox. The device has a keystore that contains
the public keys of trusted parties.

This security model has a number of drawbacks. First, it
is not flexible: applications either run in a restricted sand-
box, or have full power. Second, no precise meaning is asso-
ciated with the signatures of trusted third parties: a signa-
ture either means that the application comes from the soft-
ware factory of the signatory or that the signatory vouches
for the software, but there is no clear definition of what
guarantees it offers. Hence, device owners trust the third
party both for (a) appropriate vetting of applications, and
(b) using a suitable notion of good behavior. Incidents [?]
show that the current security model is inappropriate.

The project Security of Software and Services for Mobile
Systems (S3MS) [?] is a research project under the 6th
Framework Programme of the European Commission that
addresses the shortcomings of the current security model,
by integrating a variety of existing and newly-developed se-
curity technologies into all the phases of the mobile applica-
tions life-cycle. The project is built on the notion of Security
by Contract: applications come with contracts describing
their security relevant behaviour.

In this paper, we describe the architecture of the run-time
environment on the mobile device developed in the context
of the S3MS project. The architecture integrates in a very
flexible way several state-of-the-art policy enforcement tech-
nologies, such as proof-carrying code and inlined reference
monitors. In addition, the security architecture offers ad-
ditional support for application contracts and the security-
by-contract paradigm. Thanks to the combination of differ-
ent enforcement techniques and the support for application
contracts, our security architecture is able to provide policy
enforcement for legacy applications, as well as architecture-
aware applications. However, the latter set of applications

result in a smaller run-time performance penalty, which is
an important characteristic for resource-restricted environ-
ments such as mobile devices. In addition, a first proto-
type implementation of the proposed security architecture is
available for Windows Mobile devices with the .NET Com-
pact framework.

The remainder of the paper is structured as follows. Sec-
tion ?? provides some background information on the security-
by-contract paradigm adopted by the S3MS project, existing
policy enforcement techniques, and policy languages. Next,
our flexible security architecture for mobile devices is pre-
sented in section ??, and section ?? describes our prototype
implementation. In section ??, the advantages and disad-
vantages of the presented architecture are discussed. Finally,
the presented work is related to existing research, and we of-
fer a conclusion.

2. BACKGROUND
The architecture described in this paper is developed in

the context of the European project S3MS [?]. In this sec-
tion, we describe the key notion of security-by-contract un-
derlying the S3MS project, and we briefly discuss the policy
enforcement techniques and policy languages considered in
the project.

2.1 The Security-by-contract Paradigm
A key ingredient in the S3MS approach is the notion of

“security-by-contract” to protect mobile applications . Mo-
bile applications can possibly come with a security contract
that specifies their security-relevant behavior. Technically,
a contract is a security automaton in the sense of Schneider
and Erlingsson [?], and it specifies an upper bound on the
security-relevant behavior of the application: the sequences
of security-relevant events that an application can generate
are all in the language accepted by the security automaton.
Mobile devices are equipped with a security policy, a secu-
rity automaton that specifies the behavior that is considered
acceptable by the device owner. The key task of the S3MS
device run-time environment is to ensure that all applica-
tions will comply with the device security policy. To achieve
this, the run-time can make use of the contract associated
with the application (if it has one), and of a variety of policy
enforcement technologies.

2.2 Policy Enforcement Techniques
The research community has developed a variety of coun-

termeasures to address the threat of untrusted mobile code.
These countermeasures are typically based on run-time mon-
itoring [?, ?, ?], static analysis [?], or a combination of
both [?, ?, ?]. Our run-time environment builds on this pre-
existing research. We briefly review the technologies sup-
ported in our system: cryptographic signatures, inline ref-
erence monitoring, proof carrying code and contract-policy
matching.

Cryptographic signatures. The simplest way to solve
the lack of trust is to use cryptographic signatures. The
application is signed, and is distributed along with this sig-
nature. After receiving this application, the signature can
be used to verify the source and integrity of the applica-
tion. Traditionally, when a third party signs an application,
it means that this third party claims the application is well-
behaved. Adding the notion of a contract, as is done in the
S3MS approach, allows us to add more meaning to claims

on well-behavior. A signature on the application and the
contract means that the third party claims that the appli-
cation respects the supplied contract. Moreover, what is
important is the fact that the decision whether the contract
is acceptable or not remains with the end user.

Inline reference monitoring. With inline reference
monitoring [?], a program rewriter inserts security checks
inside an untrusted application. When the application is ex-
ecuted, these checks monitor the behavior of the application
and prevent it from violating the policy. The key advantage
of this approach is that it does not require changes in the
runtime system or the trusted system libraries. It is an easy
way to secure an application when it has not been developed
with a security policy in mind or when all other techniques
have failed. The biggest challenge for inline reference moni-
tors is to make sure that the application can not circumvent
the inlined security checks.

Proof-carrying code. An alternative way to enforce a
security policy is to statically verify that an application does
not violate this policy. On the one hand, static verification
has the benefit that there is no overhead at runtime. On the
other hand, it often needs guidance from a developer (e.g.
by means of annotations) and the techniques for perform-
ing the static verification (such as theorem proving) can be
too heavy for mobile devices. Therefore, with proof carry-
ing code [?], the static verification produces a proof that the
application satisfies a policy. In this way, the verification
can be done by the developer, or by an expert in the field.
The application is distributed together with the proof. Be-
fore allowing the execution of an application, a proof-checker
verifies that the proof is correct for the application. Because
proof-checking is usually much more efficient than making
the proof, this step becomes feasible on mobile devices.

Contract-policy matching. Finally, when application
contracts (called application models in [?]) are available,
contract-policy matching [?, ?] is an interesting approach
to decide whether or not the contract is acceptable. When
deploying an application with a contract, the contract acts
as an intermediate between the application and the security
policy of the device. First, a matching step checks whether
all security-relevant behavior allowed by the contract is also
allowed by the policy. If this is the case, all other enforce-
ment techniques can be used to make sure that the appli-
cation complies to the contract. Besides decoupling the ap-
plication from the policy, the contract matching allows the
contracts to be much simpler than the policy. Therefore, it
may be more efficient and easier to technically enforce the
contract on a particular application instead of enforcing the
entire policy.

2.3 Policy Languages
In this paper, we make a clear distinction between ap-

plication contracts and device policies. Both are security
automata, but the first ones are associated with a partic-
ular application, while the later ones are associated with a
device.

A security automaton [?] is a Büchi automaton – the
extension of the notion of finite state automaton to infinite
inputs. A security automaton specifies the set of acceptable
(potentially infinite) sequences of security relevant events as
the language accepted by the automaton.

In our system, a policy identifies a subset of the methods
of the platform API as security relevant methods. Typical

examples are the methods to open network connections or
to read files. Security relevant events in our system are the
invocations of these methods by the untrusted application,
as well as the returns from such invocations. Hence, a secu-
rity automaton specifies the acceptable sequences of method
invocations and returns on security relevant methods from
the platform API.

Security automata have to be specified by means of a pol-
icy language. Our system is designed to support multiple
policy languages, including policy languages that support
multiple runs of the same application. The actual prototype
implementation supports already two languages, briefly in-
troduced in the following paragraphs.

2.3.1 The ConSpec Language
ConSpec [?] is directly based on the notion of security

automata, and is similar to Erlingsson’s PSLang policy lan-
guage [?]. Like PSLang, a ConSpec specification includes the
definition of state variables (that gives us the set of states of
the automaton) and the definition of what state transitions
are caused by each of the security relevant events. ConSpec
extends PSLang with support for multiple scopes.

A scope specifies whether the policy applies to a single
run of each application (scope Session), saves information
between multiple runs of the same application (scope Mul-

tisession) or gathers events from the entire system (scope
Global). If the scope of the policy is Global or Multises-

sion, then persistent state variables can be defined that are
accessible from different processes.

Security relevant events are defined by a full signature of
an API method and a time modifier: the event can corre-
spond to the start of a method call or the return of a method
call. In the latter case the return value of the method can
be taken into account when updating the security state.

Each event is accompanied with a sequence of guards that
specify the conditions, under which the event is allowed.
These conditions can involve state variables or parameters
of the event itself. Each guard triggers an update block that
may assign new values to the state variables. If no updates
are required this must be identified by using keyword skip.
If no guard condition is satisfied and there is no ELSE block
to handle this case then the security-relevant event violates
the policy, and the application must be terminated.

For a (toy) example of a ConSpec policy see figure ?? 1.

2.3.2 The 2D-LTL Language
An alternative to ConSpec is the 2D-LTL policy language [?],

a temporal logic language based upon a bi-dimensional model
of execution. One dimension is a sequence of states of execu-
tion inside each run (session) of the application, and another
one is formed by the global sequence of sessions themselves
ordered by their start time.

Correspondingly, the temporal operators of the language
can be split into two categories: local and global ones. Local
operators apply to the sequence of states inside the session,
for instance, “previously local” operator (YL) refers to the
previous state in the same session, while “previously global”
(YG) points to the state in a previous session. Other tempo-
ral operators are “once locally” (OL) – in some past state of

1Because of the string comparison in the policy, the policy
is vulnerable to canonicalization attacks. A real-life policy
would have to make sure the url is canonicalized before doing
the string comparison, but this is irrelevant for this paper.

SCOPE Session

SECURITY STATE

bool opened=FALSE

AFTER System.IO.File.OpenRead(string filename)

PERFORM

TRUE -> opened=TRUE

BEFORE System.Net.WebRequest.Create(string url)

PERFORM

not (url.StartsWith("http")) -> skip;

not opened -> skip;

Figure 1: ConSpec policy “No creating HTTP con-
nections after a local file has been accessed”

LET StartHTTPConnection DEF

BEFORE System.Net.WebRequest.Create(string url)

WITH url.StartsWith("http://")

END

LET FileOpen DEF

AFTER System.IO.File.OpenRead(string filename)

END

Figure 2: Definition of 2D-LTL predicates

this session, “once globally” (OG) – in some previous session,
“historically local” (HL) – in all past states of this session,
“historically global” (HG) – in all previous sessions etc.

To write a 2D-LTL formula, propositional and tempo-
ral operators are applied to the predicates. Predicates are
arbitrary boolean functions depending on states of execu-
tion. They give us some information about the state. In
our framework we support two kinds of predicates: those
that become true when a security-relevant API call has just
executed or is about to execute (close to ConSpec security-
relevant events), and those that depend on environmental
parameters.

For instance, the policy “Application is not allowed to
start a connection if it has opened local files in this session”
can be expressed as

HG (StartHTTPConnection→ ¬OL (FileOpen))

where predicate StartHTTPConnection corresponds to start-
ing a connection and FileOpen – to opening file for reading
(for an example of how predicates are linked to the actual
API see Fig. ??). Another example: to express the policy
“Application is not allowed to start a connection if it has
opened local files in any session” one needs the following
formula:

HG (StartHTTPConnection) → ¬OGOL (FileOpen) .

3. SYSTEM ARCHITECTURE
In this section, our security architecture for mobile devices

is presented. First, subsection ?? enumerates the most im-
portant architectural requirements for the security architec-
ture. Next, subsection ?? gives an overview of our architec-
ture, and highlights three important architectural scenario’s.
The following three subsections discuss some architectural
decisions in more detail.

3.1 Architectural Requirements
Before presenting and discussing our flexible security ar-

chitecture for mobile devices, the most important architec-
tural requirements for the on-device, run-time environment
are briefly discussed.

Secure execution of third-party applications The ar-
chitecture should give high assurance that applications
running on top of it can never break the device secu-
rity policy. This is the key functional requirement of
our architecture.

Support for the security-by-contract paradigm The ar-
chitecture should support the notion of application
contracts: by offering support for enforcement tech-
niques built upon the security-by-contract paradigm,
discussed in section ??, the architecture should provide
better performance for applications with contracts.

Flexible integration of enforcement techniques The se-
curity architecture should seamlessly integrate the set
of on-device enforcement techniques discussed in sec-
tion ??. In addition, the security architecture should
provide a flexible framework for adding, configuring or
removing additional on-device enforcement techniques.

Optimized for resource-restricted devices The security
architecture needs to be optimized for the use on resource-
restricted, mobile devices such as personal digital as-
sistants or smartphones. These device typically have
limited memory and processing power, and restricted
battery capacity. Also, their communication resources
are often limited: the devices can easily go offline, they
may have limited bandwidth or their data communica-
tion can be quite expensive. The architecture should
secure the execution of applications with a minimal
performance penalty during the application execution,
without compromising security during network discon-
nectivity.

Compatible with legacy applications To be compatible
with existing applications, it is important that the se-
curity architecture supports the secure execution of
architecture-unaware, legacy applications. Of course,
the fact that an application is architecture-unaware
may impact performance.

In the following section, an overview of our security archi-
tecture for mobile devices is presented. As will be explained
further, each of the enumerated architectural requirements
has impacted the overall architecture.

3.2 Overview
The S3MS security architecture is built upon the notion of

“security-by-contract”. Mobile devices are configured with a

security policy, specifying an upper bound on the security-
relevant behavior of mobile applications. In addition, appli-
cations can be distributed with a security contract, specify-
ing their security-relevant behavior.

The three main scenarios are: policy management and
distribution, application deployment and loading, and exe-
cution monitoring and run-time enforcement.

Policy management and distribution This scenario is
responsible for the management of different device poli-
cies, and their distribution and deployment onto mo-
bile devices.

Application deployment and loading This scenario is
responsible for verifying the compliance of a partic-
ular application with the mobile device policy before
this application is executed.

Execution monitoring and run-time enforcement This
scenario is responsible for monitoring and enforcing the
adherence of a running application to the policy of the
mobile device in the case where the previous scenario
has decided that this is necessary.

The three scenario’s operate on two different platforms:
on the platform of the policy provider and on the mobile
device.

Policy provider. Within the S3MS security architec-
ture, the policies are managed off-device by the Policy Provider
and a specific policy can be pushed to a particular device.
The policy provider could for instance be a company that
supplies its employees with mobile devices, but wishes to en-
force a uniform policy on all these devices. It could also be
an advanced end-user that owns his own device and manages
the policy using a PC that can be connected to his device.

Mobile device. The mobile device stores the policy and
is responsible for deploying, loading and running applica-
tions. If necessary, the mobile device also applies execution
monitoring and run-time enforcement to ensure compliance
to the device policy.

A classical security infrastructure for secure communica-
tion supports the policy provider and the mobile devices.
The policy provider, for instance, connects to mobile de-
vices through secure links, which guarantee the authenticity
and integrity of the communication. Similarly, if the mo-
bile device is using external, trusted services for more inten-
sive computations, these trusted services are also contacted
through secure links.

The underlying security infrastructure does however not
provide trust relationships between the application provider
and the mobile device, nor do provider and mobiles devices
necessarily share a trusted third party. The presented secu-
rity architecture therefore is also applicable to legacy appli-
cations.

Figure ?? shows an architectural overview of the device,
and of the software entities that are involved in the three
scenarios. Each of the software entities is now discussed in
more detail in the overview of the three scenarios.

Scenario 1: Policy Management and Distribution
The domain administrator manages device policies off-device
on the policy provider platform. To configure a particular
device with a given policy, the policy is pushed to the mobile

THE OLD PICTURE WAS BETTER.

Figure 3: Detailed architecture overview

device over a secure channel. This policy distribution is ini-
tiated by the domain administrator2 and executes partially
on the policy provider platform and partially on the mobile
device. As a result, the policy is stored on the mobile device
by the Policy Manager and the policy is activated. Policies
are securely stored on the device in the Persistent Policy
Store.

Figure 4: Distribution of a policy to a mobile device

In our architecture, on-device policies can not be edited.
However, the mobile device can manage multiple policies,
and switching between such pre-installed policies is sup-
ported.

Scenario 2: Application Deployment and Loading
The second scenario executes after downloading or installing
the application and before the first execution of the appli-
cation. The Application Deployer verifies the compliance of
the application with the given device policy, and it enables
the execution of the application in case of compliance. By
default, the execution of an application is disabled in order
to ensure that only compliant applications are executed on
the mobile device. Compliant applications are recorded in
the Certified Application Database.

To verify the compliance of the application with the device
policy, this scenario applies a flexible combination of the dif-
ferent policy enforcement techniques discussed in section ??.
For example, when an application contract is present, the
compliance can be verified by matching the application con-
tract and the device policy, and by verifying the compliance
of the application with the supplied application contract.
As shown in figure ??, each of the configured policy enforce-
ment techniques is applied sequentially until some form of
compliance is ensured.

In case of applying an inlined reference monitor, which
is the typical fallback scenario in our architecture, this sce-
nario is also responsible for instrumenting the application
to enforce the policy at run-time by means of an execution
monitor. The execution monitor and run-time enforcement
are further explained in scenario 3.

Scenario 3: Execution Monitoring and Run-time En-
forcement
Monitoring the application and enforcing the device policy
at run-time is completely executed on the device, as shown
in figure ??. The application initiates this scenario by at-
tempting to perform a security relevant method call. In this
scenario, the inlined Execution Monitor makes sure that the
execution of the application is suspended before and after
each security-relevant operation. Based on the policy, the
Policy Decision Point decides to continue with the execu-
tion or to terminate the application. To do so, the Policy
Decision Point uses stored policy state, system information

2The domain administrator is not necessarily the end user
of the phone. For instance for company phones it can be a
company’s system administrator.

parameters (such as the battery level) and parameters sup-
plied with the security-relevant operation. In addition, the
Policy Decision Point can also update the policy state.

Figure 6: Execution monitoring

3.3 Policy Representations
Our architectural requirements ask for flexibility in policy

enforcement techniques used, as well as for resource con-
scious implementations. However, the different enforcement
techniques impose different constraints on optimized policy
representations, and hence it is hard, or even impossible,
to find one optimal representation that is suitable for each
technique.

For instance, in a run-time monitor, the decision whether
an event is allowed or aborted relies only on the current
state of the policy. Therefore, an efficient representation for
runtime enforcement only contains the current state, and
methods for each event that check against the state, and
update it. On the other hand, contract/policy matching
checks whether or not the behavior allowed by the contract
is a subset of the behavior allowed by the policy. For this
task, a full graph representation may be required.

Figure 5: Verifying application/policy compliance

To deal with this problem, our architecture introduces
the notion of policy packages. A policy package is a set of
optimized representations (each geared towards a different
enforcement technique) of the same policy.

Figure 7: Compilation of a policy package

The policy provider is responsible for distributing the pol-
icy packages to the mobile devices. To do so, he uses a pol-
icy compiler to transform a given policy specification (e.g.
in ConSpec or 2D-LTL) to a policy package (figure ??). In
a similar vein, representation of application contracts can
be optimized towards different application-policy matching
algorithms, and hence contracts are supplied in our archi-
tecture in the form of a contract package. The design of the
policy package and the policy representations is depicted in
figure ??.

Figure 8: Policy package and policy representations

3.4 The Deployment Framework: Support for
a Variety of Policy Enforcement Techniques.

In order to achieve a powerful security architecture that
can incorporate a variety of state-of-the-art policy enforce-
ment techniques, our architecture includes a very config-
urable and extensible compliance engine. At deployment
time of an application, this compliance engine attempts to
ensure the compliance of the application by means of all
installed enforcement technologies. Each enforcement tech-
nology is represented as a compliance module. Each compli-
ance module can select which policy representations present
in the installed policy package (see discussion above) it will
use.

Figure ?? shows the design of the deployment framework
for deployment-time compliance verification. The class di-
agram includes the Compliance Engine and the extensible
set of ComplianceModules.

Each compliance verification technology is encapsulated in
a ComplianceModule. To verify the compliance of an appli-
cation with a policy, the Process(Application app) method is
executed on such a compliance module. The boolean result
of the method indicates whether or not the compliance veri-
fication is successful. As a side effect of executing the process
method, the application can be altered (e.g. instrumented
with an inline reference monitor). The compliance engine
instantiates the different compliance modules and applies
them sequentially until the compliance of the application
with the policy is ensured.

The order in which the compliance modules are applied,
and their particular configuration is made policy-specific.
This policy-specific configuration is part of the policy pack-
age. In this way, policies can optimize the deployment pro-
cess by favoring or excluding compliance modules (e.g. be-
cause they are optimal for the given policy, or because they
are resource-intensive or inappropriate).

3.5 The Default Enforcement Technology:
Inlining of the Policy

Of all enforcement technologies discussed in section ??,
only inlining is suitable for legacy applications, i.e. applica-
tions that come with no metadata such as contracts, proofs
or signatures. Hence, in our architecture inlining is the fall-
back technology: when all other compliance modules fail, the
inlining compliance module is used to ensure compliance of
the application to the device policy.

Several practical implementations of inline reference mon-
itors have been described in the literature [?, ?], and all of
them could in principle be integrated in our architecture.
Our default compliance module is very similar to existing
systems. Two noteworthy deviations are discussed below.

Concurrency and inlined reference monitoring. Since
basically all mobile device applications are multi-threaded,
our system has to deal with concurrency in inlined reference
monitoring.

Erlingsson’s seminal implementation of inline reference
monitoring [?] puts the burden of synchronization on the
policy writer, forcing the policy writer to take locks on the
policy state where necessary. This is undesirable in our sys-
tem, as explicit locking in the policy (1) makes composi-
tion of policies harder, as it is hard to see what additional
synchronization is needed when composing two preexisting
policies, and (2) complicates matching as contracts have no
synchronization information in them.

Existing systems that do provide support for composition
of policies such as Polymer [?] explicitly leave dealing with
concurrency as future work.

The conceptually simple solution is to lock the entire se-
curity state for the complete duration of a security-relevant
method call. However, the performance penalty of this sim-
ple solution can be devastating if blocking calls, for instance
listening on a socket, are security-relevant. Our current de-
sign is semantically equivalent to the simple solution, but
performs finer grained locking based on a simple partition-
ing of the policy state in disjoint lock regions.

Caller side versus callee side inlining. When secu-
rity relevant events are method call invocations and returns,
the security checks can be inlined in the calling code or in
the called code. Both approaches have advantages and dis-
advantages. With callee side inlining, it is easier to obtain
complete mediation, i.e. the assurance that every call is
monitored. But callee side inlining typically requires mod-
ification of the platform libraries, as some of the method
calls that need to be monitored are implemented in these
libraries. Moreover, on some mobile devices, the platform
libraries are in ROM, essentially ruling out callee side inlin-
ing for our prototype. Another issue with callee side inlining
is that it can cause a cyclic dependency between the library
and the policy enforcement assembly.

Because of the above issues, our design uses caller side
inlining. This makes achieving complete mediation harder,
and our current implementation can not yet handle all ap-
plications. We discuss the limitations in more detail in the
following section.

4. PROTOTYPE IMPLEMENTATION

Figure 9: Design of the deployment framework

We have implemented a first prototype of this security
architecture in the .NET Compact Framework on Windows
Mobile 5.

Our prototype includes policy compilers for both Con-
Spec, a policy specification language based on security au-
tomata, as well as 2D-LTL, a bi-dimensional temporal logic
language. The compiler outputs a policy representation
package that includes two policy representations, one suit-
able for inlining, and one suitable for signature verification.
A third one suitable for matching is currently under devel-
opment. The corresponding compliance modules that use
these representations are also implemented.

Compliance modules need not be aware of the source pol-
icy language. For instance, our runtime execution monitor
uses the same Policy Decision Point interface irrespectively
of the policy specification language used: we can reuse the
same inlined reference monitor and instrumentation support
with both specification languages.

Our current inliner implementation uses caller side inlin-
ing. Because caller side inlining needs to find the target of
a method call statically, it is harder to ensure complete me-
diation. Therefore, we impose some restrictions on the pro-
grams that are monitored: in the current prototype we dis-
allow for instance the use of delegates when these delegates
cross the boundary of the untrusted application, and the
use of reflection. In addition, to deal with virtual methods,
our inliner inserts an additional run-time check to dispatch
a security-relevant call to the appropriate Policy Decision
Point method, based on the dynamic type of the object.

A final noteworthy implementation aspect of our proto-
type is the way we ensure that only compliant applications
can be executed on the mobile device, i.e. only after the
application successfully passes the deployment scenario. In-
stead of maintaining and enforcing a Certified Application
Database, we decided to rely on the underlying security
model of Windows Mobile 5.0 in our prototype. The Locked
or Third-Party-Signed configuration in Windows Mobile al-
lows a mobile device to be locked so that only applications
signed with a trusted certificate can run [?]. By adding
a policy-specific certificate to the trusted key store, and
by signing applications with that certificate after success-
fully passing the deployment scenario, we ensure that non-
compliant applications will never be executed on the pro-
tected mobile device.

5. DISCUSSION AND FUTURE WORK
In this section, we offer a brief preliminary evaluation

of the presented security architecture based on the archi-
tectural requirements set forth in section ??. But further
experiments are needed: we also present a roadmap for a
further in-depth evaluation.

Secure execution of third-party applications Our ar-
chitecture assumes that the individual compliance mod-
ules are secure: a buggy or unreliable compliance mod-
ule can validate an application that does not comply
with the device policy. This is a weakness, but the
cost of building in redundancy (e.g. requiring two in-

dependent compliance modules to validate an applica-
tion) is too high. Apart from this weakness, our archi-
tecture supports high assurance of security through a
simple and well-defined compliance validation process,
and through the precise definitions of the guarantees
offered by security checks. An example is the treat-
ment of cryptographic signatures. Our security archi-
tecture relies on cryptographic signatures in several
places. But a key difference with the use of crypto-
graphic signatures in the current .NET and Java se-
curity architectures is the fact that the semantics of
a signature in our system are always clearly and un-
ambiguously defined. A signature on an application
with a contract means that the trusted third party at-
tests to the fact that the application complies with the
contract, and this is a formally defined statement.

Support for the security-by-contract paradigm Appli-
cations developed according to the S3MS methodology
will come with security contracts, and possibly with
metadata (proofs or signatures) that provide evidence
for the compliance of the application with the contract.
Our architecture includes several compliance modules
that can show compliance of such applications with
the device policy with considerably less overhead at
runtime.

Flexible integration of enforcement techniques The ar-
chitecture already incorporates different on-device en-
forcement techniques such as cryptographic signatures,
contract/policy matching and on-device inlining of a
reference monitor. Thanks to the pluggable compli-
ance modules and the concept of policy packages the
framework can easily be extended with additional on-
device enforcement techniques. In addition, the policy
configuration allows for policy-specific configuration of
the different compliance modules, including configura-
tion of the order in which they are applied to applica-
tions.

Optimized for resource-restricted devices Thanks to the
technology-specific policy representations, the perfor-
mance of each policy enforcement technique on the
device can be optimized: each technology can use its
own optimized representation. Moreover, for any given
policy, the compliance modules can be ordered such
that more efficient ones are tried first. In particu-
lar, for security-by-contract aware applications, com-
pliance with the device policy can be checked without
runtime overhead for the application.

Compatible with legacy applications Because of the use
of a general-applicable fallback compliance module (e.g.
on-device inlining of a reference monitor), the architec-
ture can also ensure security for architecture-unaware
legacy applications. The coverage does however de-
pend on the specific compliance module used. For ex-
ample, the inlined reference monitor used in our pro-
totype still has some restrictions on the applications
to be inlined: the use of certain delegates and reflec-
tion is for instance prohibited in order to ensure full

mediation. This can lead to the rejection of a legacy
application, even if it complies with the device pol-
icy. However, with further improvement of the fallback
compliance module, full coverage of legacy applications
is achievable with the presented architecture.

Based on this preliminary evaluation, the presented ar-
chitecture looks promising. However, a more in-depth ar-
chitectural evaluation and validation is necessary for a more
grounded conclusion. We see three important tracks for fur-
ther evaluation of the presented architecture.

First, an extensive architectural evaluation of the pro-
posed architecture is necessary. For instance, an architec-
tural trade-off analysis (such as ATAM [?]) with the differ-
ent stakeholders involved (such as mobile end users, telecom
operators, mobile application developers and vendors, mo-
bile device vendors, security experts, . . .), can evaluate and
refine several architectural trade-offs. To do so, it is im-
portant to have more concrete business scenarios and use
cases. Moreover, because of the intrinsic resource limita-
tions of mobile devices, an elaborate performance analysis
on the prototype implementation is necessary as a basis for
architectural evaluation and optimization.

Second, it is necessary to perform an end-to-end threat
analysis of the proposed architecture. Based on these re-
sults, a risk assessment will identify the most important se-
curity risks and will provide additional input for the archi-
tectural trade-off analysis.

Third, a further integration of existing enforcement tech-
niques in the prototype implementation is needed to validate
the flexibility of the deployment framework.

6. RELATED WORK
There is a huge body of related work that deals with

specific policy enforcement technologies for untrusted ap-
plications. This research area is too broad to discuss here.
Some of the key technologies were briefly discussed in sec-
tion ??. A more complete survey of relevant technologies can
be found in one of the deliverables of the S3MS project [?].

Even more closely related are those research projects that
have designed and implemented working systems building on
one or more of the technologies discussed above. Naccio [?]
and PoET/PSlang [?] were pioneering implementations of
run-time monitors. Polymer [?] is also based mainly on
run-time monitoring, but the policy that is enforced can de-
pend on the signatures that are present on the code. Model-
carrying code (MCC) [?] is an enforcement technique that
is very related to the contract matching based enforcement
used in the S3MS project. In MCC, an applications comes
with a model of its security relevant behavior, and hence
models are basically the same as contracts. The MCC pa-
per describes a system design where models are extracted
from the application by the code producer. The code con-
sumer uses the model to select a matching policy, and en-
forces the model at runtime. Mobile [?] is an extension
to the .NET Common Intermediate Language that supports
certified inline reference monitoring. Certifying compilers
[?] use similar techniques like proof carrying code, but they
include type system information instead of proofs.

7. CONCLUSION
We proposed a flexible security architecture for mobile

devices built upon the notion of “security-by-contract”. In

a very extensible way, the architecture integrates a variety
of state-of-the art technologies for secure execution of mo-
bile applications, and supports different policy specification
languages. In addition, the proposed architecture also sup-
ports the secure execution of legacy applications, although
a better run-time performance is achieved for security-by-
contract-aware applications.

The prototype of our architecture has been implemented
on a Windows Mobile 5 device with the .NET Compact
Framework, and includes already several compliance veri-
fication techniques and two policy specification languages.
This paper highlights the most important design decisions
that have been taken in this prototype implementation. It
discusses the advantages of the proposed security architec-
ture relative to the standard security architecture of mobile
devices.

We are not aware of other research projects that are de-
signing and implementing a code security architecture on a
mobile device. So our system seems to be the first evidence
that a flexible combination of code security technologies is
actually doable on todays mobile phones and PDA’s.

8. REFERENCES
[1] I. Aktug and K. Naliuka. ConSpec – a formal language

for policy specification. In Proceedings of the First
International Workshop on Run Time Enforcement
for Mobile and Distributed Systems (REM2007),
September 2007 (accepted).

[2] L. Bauer, J. Ligatti, and D. Walker. Composing
security policies with Polymer. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
305–314, June 2005.

[3] N. Dragoni, F. Massacci, K. Naliuka, R. Sebastiani,
I. Siahaan, T. Quillinan, I. Matteucci, and
C. Schaefer. S3ms deliverable d2.1.4- methodologies
and tools for contract matching, April 2007.

[4] U. Erlingsson. The inlined reference monitor approach
to security policy enforcement. PhD thesis, Cornell
University, 2004. Adviser-Fred B. Schneider.

[5] U. Erlingsson and F. B. Schneider. Irm enforcement of
java stack inspection. In SP ’00: Proceedings of the
2000 IEEE Symposium on Security and Privacy, page
246, Washington, DC, USA, 2000. IEEE Computer
Society.

[6] D. Evans and A. Twyman. Flexible policy-directed
code safety. In IEEE Symposium on Security and
Privacy, pages 32–45, 1999.

[7] K. W. Hamlen, G. Morrisett, and F. B. Schneider.
Certified in-lined reference monitoring on .net. In
PLAS ’06: Proceedings of the 2006 workshop on
Programming languages and analysis for security,
pages 7–16, New York, NY, USA, 2006. ACM Press.

[8] R. Kazman, M. Klein, and P. Clements. Atam:
Method for architecture evaluation. Technical Report
CMU/SEI-2000-TR-004, CMU/SEI, August 2000.

[9] F. Massacci and K. Naliuka. Multi-session security
monitoring for mobile code. Technical Report
DIT-06-067, UNITN, 2006.

[10] MSDN. Windows mobile 5.0 application security.
http://msdn2.microsoft.com/en-us/library/

ms839681.aspx, May 2005.

[11] G. C. Necula. Proof-carrying code. In POPL ’97:
Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 106–119, New York, NY, USA, 1997. ACM
Press.

[12] G. C. Necula and P. Lee. The design and
implementation of a certifying compiler. In
Proceedings of the 1998 ACM SIGPLAN Conference
on Prgramming Language Design and Implementation
(PLDI), pages 333–344, 1998.

[13] B. Ray. Symbian signing is no protection from
spyware. http://www.theregister.co.uk/2007/05/
23/symbian_signed_spyware/, May 2007.

[14] S3MS. Security of software and services for mobile
systems. http://www.s3ms.org/, 2007.

[15] F. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, 2000.

[16] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar,
and D. DuVarney. Model-carrying code: A practical
approach for safe execution of untrusted applications,
2003.

[17] D. Vanoverberghe, F. Piessens, T. Quillinan,
F. Martinelli, and P. Mori. S3ms deliverable
d4.1.0/d4.2.0 - run-time compliance state of the art,
November 2006.

[18] D. Walker. A type system for expressive security
policies. In Symposium on Principles of Programming
Languages, pages 254–267, 2000.

