
Matching Midlet’s Security Claims with a Platform Security

Policy using Automata Modulo Theory∗

Fabio Massacci Ida Siahaan
DIT, Universitá di Trento, - Italy
name.surname@dit.unitn.it

Abstract

Model-carrying code and security-by-contract have proposed to augment mobile
code with a claim on its security behavior that could be matched against a mobile
platform policy before downloading the code. In this paper we show that it is possible
to define very expressive policies — essentially with infinite cases — that can capture
realistic scenarios (e.g. ”only connections to urls starting with https”) while keeping the
task of matching computationally tractable. The key idea is the concept of Automata
Modulo Theory (AMT). AMT is an extension of Büchi Automata (BA), suitable for
formalizing systems with finitely many states but infinitely many transitions.

The second contribution is a decision procedure for matching the mobile’s policy
and the midlet’s security claims expressed as AMT by mapping the problem into a
variant of on-the-fly product and emptiness test from automata theory. The tractability
limit is essentially the complexity of the satisfiability procedure for the theories where
most practical policies require only polynomial time decision procedures.

1 Introduction

The paradigm of pervasive services [1] envisions a nomadic user traversing a variety of envi-
ronments and seamlessly and constantly receiving services from other portables, handhelds,
embedded or wearable computers. When traversing environments the nomadic user does
not only invoke services according a web-service-like fashion (either in push or pull mode)
but also download new applications that are locally available. These pervasive client down-
loads will appear because service providers will try to exploit the computational power of
the nomadic devices to make a better use of the services available in the environment [8].

Bootstrapping and managing security of services in this scenario is a major challenge
because the current security model adopted for mobile phones (the JAVA MIDP 2.0) is the
exact negation of this business idea: mobile code is run if its origin is trusted (i.e. digitally
signed by a trusted party). The level of trust of determines the privileges of the code and
untrusted code is forbidden to have any interaction with the environment (which is precisely
what we want to do).

Even if we accept the signature, we still have another problem: there is no semantics
attached to the signature. This is a problem for both code producers and consumers.

From the point of view of mobile code consumers they must essentially accept the code
as-is without the possibility of making informed decisions, while from code producer they

∗We would like to thank N. Bielova for implementing the matching prototype and the anonymous re-
viewers for the insightful comments that help to improve the presentation. Research partly supported by
the EU with project IST-2004-27004 S3MS - www.s3ms.org.

1

produce code with unbounded liability. They cannot declare which security actions the code
will do, because by signing the code they essentially declare that they did it. Consequently,
injecting an application in the mobile market is a time consuming operation as developers
must convince the operators that their code is not harmful.

Of course we could not ask ourselves any questions and just monitor everything. We
apply a security reference monitor which observes execution of a target system and halts
that system whenever it is about to violate some security policy of concern [21, 9]. While
security monitors remains the bottom-line action, we could be more effective if we start
asking some questions about the code.

The first traditional question is whether the code satisfies some pre-defined policy. The
Bytecode verifier in Java does exactly this first preliminary check. More advanced tech-
niques based on Proof-Carrying Code [17, 16] extend the scope of what can be actually
checked. One of the limitation of the approaches based on language-based security is that
the policy is tied to the programming language (as the name itself suggest) and therefore
it is difficult to customize the policy on a per-user base.

We need to lift the question to a more flexible one: does the code satisfy a user-defined
policy? In general case this is equivalent to arbitrary software verification which is not
practical for pervasive downloads. However the idea behind model-carrying code [23] and
security by contract [7] is that code should come accompanied with a ”digest” (a security
model or a security contract) that represents its essential security behavior. Then one only
needs to check the latter against the user predefined security policies.

The next question in the pipe is how do we know that the security claims are actually
true on the code. Again one possible solution is to use proof carrying code or trust relations
and digital signatures. As noted in [7] the presence of the security contract provides a
semantics to a digital signature, which was not present beforehand. When binding together
the code and the contract the signer takes liability for the security claims. Thus we can
assume that developers could use in-line monitors, static analysis or other off-line tools to
guarantee the compliance of the code with the contract1.

As the problem seems essentially solved, neither [23] nor [7] has actually solved the
problem of matching the security claims of the code with the security desires of the plat-
form. Matching can be done statically (e.g. a developer checking its claims on a variety
of Vodafone’s default policies) or at run time (e.g. a mobile platform deciding to actually
download a midlet and run it). In [23] and in other companion papers only finite automata
have been proposed and they are too simple to express even the most basic security require-
ment occurring in practice: a basic security policy such as only allows connections starting
with ”https://” already generates an infinite automaton. In [7] only a meta-level algorithm
has been given showing how one can combine policies at different levels of details (such as
object, session or multisession). The actual mathematical structure and algorithm to do
the actual matching of the mobile’s policy and the midlet’s security claims is not specified.

2 The Contribution of this Paper

In this paper we provide a formal model and an algorithm for matching the claims on
the security behavior of a midlet (for short contract) with the desired security behavior
of a platform (for short policy) for realistic security scenarios (such as the ”only https
connections” mentioned afore).

1Some surveys of usable technologies are available at www.s3ms-project.org.

2

The formal model used for capturing contracts and policies is based on the novel concept
of Automata Modulo Theory (AMT). AMT generalize the finite state automata of model-
carrying code [23] and extends Büchi Automata (BA). It is suitable for formalizing systems
with finitely many states but infinitely many transitions by leveraging on the power of
satisfiability-modulo-theory (SMT for short) decision procedures. AMT enables us to
define very expressive and customizable policies as a model for security-by-contract as in
[7] and model-carrying code [24] by capturing the infinite transition into finite transitions
labeled as expressions in defined theories.

The second contribution is a decision procedure (and its complexity characterization)
for matching the mobile’s policy and the midlet’s security claims that concretize the meta-
level algorithm of security-by-contract [7]. We map the problem into classical automata
theoretic construction such as product and emptiness test.

Since our goal is to provide this midlet-contract vs platform-policy matching on-the-fly
(during the actual download of the midlet) issues like small memory footprint, and effective
computations play a key role. We show that the tractability limit is the complexity of
the satisfiability procedure for the underlying theories used to describe labels: we use
NLOGSPACE and linear time algorithms for the automata theoretic part [14] with oracle
queries to a decision procedure solver2. Out of a number of requirements studies it seems
that most of the policies of interests can be captured by theories which only requires PTIME
decision procedures.

We have further customized the decision algorithm in order to exploit the characteris-
tics features of security policies. AMT is agreeable for security policies and one can use
security automata á la Schneider which can be mapped to a particular form of AMT (with
all accepting states and an error absorbing state) for which particular optimizations are
possible. Security automata specified transitions as a function of the input symbols which
can be the entire system state. Although infinite transition systems are really not of much
practical relevance, our security automata definition does not explicitly preclude them as
states can be infinite. However, AMT differs from security automata in transitions which
are environmental parameters rather than system states.

In the next section we present an overview of security-by-contract framework providing a
description of the overall life-cycle of mobile code in this setting and we also describe mobile
applications security requirements and contract specification as motivations for AMT .
Then, we introduceAMT and the corresponding automata operation (§4) and some specific
issues to be considered in AMT . In §5 we describe an approach for lifting finite state tools
to AMT .

3 Intuitions and Motivations

To understand better the motivation behind this work we consider how a midlet-lifecycle
would be in the model-carrying code or security-by-contract paradigms [23, 7] as shown
in Fig. 1. In the initial stage, namely contract/policy authoring and matching phase, a
developer gets hold of a policy template made available by a mobile phone operator, or his
contracting companies.

2In a nutshell AMT makes reasoning about infinite state systems possible without symbolic manipulation
procedures of zones and regions or finite representation by equivalence classes [13] which would not be
suitable for our intended application i.e. checking security claims before a pervasive download on a mobile
phone.

3

Figure 1: Application/Service Life-Cycle

Example 1 The Personal information management (PIM) system on the phone has the
ability to manage appointment books, contact directories, etc. in electronic form. A privacy
conscious user may restrict network connectivity by stating a policy rule: “After PIM was
opened no connections are allowed”. This contract permits executing Connector.open()

method only if PIM.openPIMList() method was never called before.

After, or better during the application development, the mobile code developers are
responsible to provide a description of the security behavior that their code finally provides.
Such a code can then undergo a formal certification process which can be done by the
developer’s own company, the mobile operator, phone manufacturer, or any other third
party for which the application has been developed. By using suitable techniques such as
static analysis or monitor in-lining or proof carrying code the code is certified to comply
with the developer’s contract. Subsequently the code and the contract are sealed together
with a digital signature and shipped for deployment.

Remark 3.1 In the sequel, we use the word policy for a platform security policy. We use
the word contract for security claims made by a code.

At deployment time of ”pervasive download” the target platform first checks that the
application security claims stated in the contract comply with the platform policy, namely
loading and contract matching phase. If a trusted signature is found, the application can
be run without further ado.

Example 2 The policy of an operator may only require that “After PIM was accessed only
secure connections can be opened”. This policy permits executing Connector.open(string

url) method only if the started connection is a secure one i.e. url starts with ”https://”.

Matching should succeed if and only if by executing an application on the platform every
behavior of the application that satisfies its contract also satisfies the platform’s policy. If
matching fails but we still want to run the application, then we use either a security monitor

4

in-lining into the code or run-time enforcement of the policy by running the application in
parallel with a reference monitor that intercepts all security relevant actions. However with
a constrained device where cpu cycles means also battery consumption, we need to minimize
the run-time overheads as much as possible.

Typically the policy will cover a number of issues such as file access, network connec-
tivity, access to critical resources or secure storage. A single contract can be seen as a
list of disjoint claims (for instance rules for connections). An example of rule for sessions
regarding PIM and connection is shown in Ex. 1, it could be one of the rules of a contract.
Another example is rule for a the methods invocation of a Java object as shown in Ex. 2.
This example can be one of the rules of a policy. Both examples describe safety properties,
which are the common properties we want to verify. Although most properties are safety
properties, liveness properties also exist as shown in Ex. 3.

Example 3 If the rule is that “The application uses all the permissions it requests” then for
each permission p at least one reachable invocation of a method permitted by p must exist in
the code. For example if p is io.Connector.http then a call to method Connector.open()

must exist in the code and the url argument must start with ”http”. If p is io.Connector.https
then a call to method Connector.open() must exist in the code and the url argument must
start with ”https” and so on for other constraints e.g. permission for sending SMS.

To represent the security behavior, provided by the contract and desired by the policy, a
system can be represented as an automata where transitions corresponds to platform APIs
as suggested by Erlingsson [9, p.59] and Sekar et al. [23]. In this case, the operation of
matching the midlet’s claim with platform policy is a classical problem in automata theory:
language inclusion. Namely, given two automata AutC and AutP representing respectively
the formal specification of a contract and of a policy we have a match when the language
accepted by AutC (i.e. the execution traces of the midlet) is a subset of the language
accepted by AutP (i.e. the acceptable traces for the policy). Assuming that the automata
are closed under intersection and complementation, the matching problem can be reduced
to an emptiness test:LAutC ⊆ LAutP ⇔ LAutC ∩ LAutP = ∅ ⇔ LAutC ∩ LAutP

= ∅. In other

words, there is no behavior of AutC which is disallowed by AutP . If the intersection is not
empty, any behavior in it corresponds to a counterexample.

The problem with the naive encoding into automata is that even the most basic security
policy such as the one we have shown in Ex. 1 and Ex. 2 will lead to automata with infinitely
many transitions if we spell out all possible values of the instantiated parameters. Fig.2a
represents an automaton for Ex. 2. Starting from state p0, we stay in this state while PIM
is not accessed (jop). As PIM is accessed we move to state p1 and we stay in state p1 only
if the started connection Connector.open(string url) method is a secure one i.e. url starts
with ”https://” or we keep accessing PIM (jop). We enter state ep if we start an unsecure
connection Connector.open(string url) e.g. url starts with ”http://” or ”sms://” etc. These
examples are from a Java VM. Since we do not consider useful to invent our own names for
API calls we use the javax.microedition APIs (though a bit verbose) for the notation
that is shown in Fig.2b.

4 Automata Modulo Theory

The theory of Automata Modulo Theory (AMT for short) is a combination of the theory of
Büchi Automata (BA) with the Satisfiability Modulo Theories (SMT) problem. In contrast
to classical security automata we prefer to use BA because besides safety properties, there

5

(a) Infinite Transitions Security Policies

joc(vjoc,1)
.
= io.Connector.open(url)

jop
.
= pim.PIM.openPIMList(. . .)

q
.
= io.Connector.type

is protocol type e.g. “http”

pr(q) = type
.
= permission qis for protocol type

p(url) = type
.
= url.startsWith(type)

(b) Abbreviations for Java APIs

are also some liveness properties which have to be verified, e.g. Ex 3. SMT problem, which
decides the satisfiability of first-order formulas modulo background theories, pushes the
envelope of formal verification based on effective SAT solvers. The theories of interest are,
the theory of difference logic DL the theory EUF of equality and uninterpreted functions,
the quantifier-free fragment of Linear Arithmetic over the rationals LA(Q) and that over
the integers LA(Z). As in [4] we are particularly interested in the combination of two or
more simpler theories.

Example 4 When comparing a policy and a contract where protocol(url)=’’https’’

and port(url)=8080, we do not need to extract a protocol from the url. It is enough that
we deal with protocol and port as uninterpreted functions and apply EUF .

Example 5 We can use LA(Q) when the actions of the policy or the contract sets limits
on resources such as no communication allowed if battery level falls below 30%.

This is not a complete list of theories, in sequel we consider only theories T such that
the T -satisfiability of conjunctions of ground literals is decidable by a T -solver [18].

We assume the usual notion of signature Σ with variables V = {x, y, z, v, ...}, function
symbols F = {c, d, f, g, ...} and predicate symbols P = {p, q, ...}. Terms and formulae are
defined in the usual way over the boolean connectives ¬,∨,∧. A first-order Σ-structure A
consists of a set A of elements as domain, a mapping of each n-ary function symbol f ∈ Σ
to a total function fA : An → A, a mapping of each n-ary predicate symbol p ∈ Σ to a
relation pA ⊆ An.

Let A denote a structure, φ a formula, and T a theory, all of signature Σ. (A, α) |= φ:
φ is true in A under the variable assignment α : V → A. φ is satisfiable in (satisfied by) A
: (A, α) |= φ for some α. We denote by E as a set of formulae.

Definition 4.1 (Automaton Modulo Theory (AMT)) A tuple AT = 〈E,S, q0,∆T , F 〉
where E is a set of formulae in the language of the theory T , S is a finite set of states,
q0 ∈ S is the initial state, ∆T : S × E → 2S is labeled transition function, and F ⊆ S is a
set of accepting states.

We say that (s, e, t) ∈ ∆T when t ∈ ∆T (s, e). The intuition in AMT is that a system
can be represented with variables representing parameters over invoked methods. Hence,
variables are only environment variables and we can represent them as edge variables with-
out memory. This observation leads to a subtle difference between traditional state variables

6

in infinite systems and edge variables. For example a guard x < 3 in classical hybrid au-
tomata for state variable x means that after taking the transition x must be smaller than
3. In our case, since x is some external parameter of a Java method, this means that this
edge will be taken each time the Java method is invoked with a value of x smaller than 3.

Definition 4.2 (AMT run) Let AT = 〈E,S, q0,∆T , F 〉 be an automaton modulo theory
T . A run modulo T of AT on a finite (respectively infinite) word (trace)w = 〈α0, α1, α2, . . .〉
of assignments is a sequence of states σ = 〈s0, s1, s2 . . .〉, such that:

1. s0 = q0

2. there exists expressions ei ∈ E such that si+1 ∈ ∆T (si, ei) and (A, αi) |= ei is satisfi-
able for all i ∈ [0 . . . |w|] (resp. i ∈ N).

A finite run is accepting if s|w| goes through some accepting states. An infinite run is
accepting if the automaton goes through some accepting states infinitely often as in BA.

A trace is a word in the language of AMT . The set α∗ denotes the set of finite words
over α while the set αω is the set of infinite words over α. The language of AMT is a set
of words. The transition function of AT may have many possible transitions for each state
and expression, hence AT may be non-deterministic.

Definition 4.3 (Deterministic AMT) AT = 〈E,S, q0,∆T , F 〉 is a deterministic au-
tomaton modulo theory T iff for every q ∈ S and every q1, q2 ∈ S and every e1, e2 ∈ E,
if q1 ∈ ∆T (q, e1) and q2 ∈ ∆T (q, e2), where q1 6= q2 then in the theory T the expression
e1 ∧ e2 is unsatisfiable.

Return to our examples Ex. 1, Ex. 2, and Ex. 3 we illustrate in Fig. 2a,Fig. 2b, and
Fig. 2c respectively howAMT can be used to formally specify safety and liveness properties.
The notation is explained in Fig.2b.

We define AMT operations for intersection and complementation requiring that the
theory under consideration is closed under intersection, and complementation (union is
similar to the standard one). However, in this paper we will only define complementation
and use on-the-fly approach for we are interested in on-device model checking.

AMT Complementation. There are several possibilities for BA complementation [5,
19]. We consider here only the complementation of deterministic AMT , for all security
policies in our application domain are naturally deterministic (as the platform owner should
have a clear idea on what to allow or disallow).

Definition 4.4 (AMT Complementation) Given an AMT AT = 〈E,S, q0,∆T , F 〉 the
complement automaton Ac

T = 〈E,Sc, qc0,∆
c
T , F

c〉 is:

1. Sc = S × {0} ∪ (S − F)× {1}, qc0 = (q0, 0), F c = (S − F)× {1},

2. and for every q ∈ S and e ∈ E

∆c
T ((q, 0), e) =

{
{(∆T (q, e), 0)} ∆T (q, e) ∈ F
{(∆T (q, e), 0), (∆T (q, e), 1)}, ∆T (q, e) /∈ F

∆c
T ((q, 1), e) = {(∆T (q, e), 1)}, if ∆T (q, e) /∈ F

7

(a) AMT rule of a contract from Ex. 1 (b) AMT rule of a policy from Ex. 2

(c) AMT rule of liveness from Ex. 3

Figure 2: AMT Examples

Proposition 4.1 Let AT be an AMT over a set of α. Then there is a (possibly nonde-
terministic) AMT Ac

T such that Lω(Ac
T) = αω − Lω(AT).

This is the general construction, but if we only consider the fact that we complement a
policy automaton for safety with a special property, namely it has all (but one) accepting
states. As we complement the states, we would have only one accepting state which is
(err, 1). However, we can collapse it with a non accepting state (err, 0). Hence, we do not
need to mark states with 0 and 1 and the only accepting state is (err). Furthermore the
complementation transitions remain the same as the original transitions.

Definition 4.5 (AMT Intersection) Given a nondeterministic AMT
〈
E,SC, qC0 ,∆

C
T , F

C
〉

and a nondeterministic AMT
〈
E,SP, qP0 ,∆

P
T , F

P
〉

, the intersection AMT automaton

〈E,S, q0,∆T , F 〉 is:

1. S = SC × SP × {1, 2}, q0 = (qC0 , q
P
0 , 1), F = FC × SP × {1},

2. ∆T = {((qC, qP, x), a, (q′C, q′P, y))|(qC, a, q′C) ∈ ∆C
T ∧ (qP, a, q′P) ∈ ∆P

T ∧ condition}

We use marker 1 when an accepting state of first component has been visited and 2
when accepting states from both components have been visited. The condition is defined
by the following rules: if qC ∈ FC ∧ x = 1 then y = 2, if qP ∈ FP ∧ x = 2 then y = 1,
otherwise x = y

Proposition 4.2 If theory T is decidable and let AC
T , AP

T be AMT . Then there is an

AMT AT such that Lω(AT) = Lω(AC
T) ∩ Lω(AP

T).

8

Algorithm 1 MatchSpec Function

Require: LC =
〈(

IDC
1 , SpecC1

)
, . . . ,

(
IDC

n , SpecCn
)〉

,
(
IDP , SpecP

)
Ensure: 1 if LC matches

(
IDP , SpecP

)
, 0 otherwise

1: if ∃
(
IDC , SpecC

)
∈ LC ∧ IDC = IDP then

2: if HASH(SpecC) = HASH(SpecP) then
3: return(1)
4: else if SpecC ≈ SpecP then
5: return(1)
6: else if SpecC v SpecP then
7: return(1)
8: else {Restriction: if same ID then same specification must match}
9: return(0)

10: else
11: MatchSpec

((
∗, ⊕(IDC , SpecC)∈LC

)
,
(
∗, SpecP

))

5 On-the-fly State Model Checking with Decision Procedure

The outer algorithm for matching the midlet’s claim with the security policy is taken
from [7] and in particular the MatchSpec function (Alg. 1). It checks the match between
a set of pairs LC =

〈(
IDC

1 , SpecC1
)
, . . . ,

(
IDC

n , SpecCn
)〉

and
(
IDP , SpecP

)
representing

respectively the rules of the contract and a rule of the policy to be matched and returns 1
if there exists a pair

(
IDC , SpecC

)
in LC that matches

(
IDP , SpecP

)
or the combination

of all the specifications in LC matches
(
IDP , SpecP

)
, otherwise 0.

Constructing the product automaton explicitly is not practical for mobile devices. At
first this can lead into an automaton too large for the mobile limited memory footprint.
Second, in order to construct a product automata we need software libraries for the explicit
manipulation and optimizations of symbolic states, which are computationally heavy and
not available on mobile phones. Furthermore we can exploit the explicit structure of the
contract/policy as a number of separate requirements. Hence, we use on-the-fly emptiness
test (constructing product automaton while searching the automata). On-the-fly emptiness
test can be lifted from the traditional algorithm by Coucubertis et al. [6] while modification
of this algorithm from Holzmann et al’s [15] considered as state-of-the-art (used in Spin
[14]). Gastin et al [11] proposed two modifications to [6]: one to find counterexamples
faster, and another to find the minimal counterexample.

In AMT we are interested in finding counterexamples faster and we combine algorithm
based on Nested DFS [22] with decision procedure for SMT. The algorithm takes as input the
midlet’s claim and the mobile platform’s policy as AMT and then starts a depth first search
procedure check safety (qC0 , q

P
0 , 1) over the initial state (qC0 , q

P
0 , 1). When a suspect state

which is an accepting state in AMT is reached we have two cases. First, when a suspect
state contains an error state of complemented policy (errP) then we report a security policy
violation without further ado.3 Second, when a suspect state which is an accepting state
in AMT does not contain an error state of complemented policy (SP\{errP}) we start a
new depth first searches (Alg3)from the suspect state to determine whether it is in a cycle,
in other words it is reachable from itself. If it is, then we report availability violation.

3The Error state is a convenient mathematical tool but the trust assumption of the matching algorithm
is that the code obeys the contract and therefore it should never reach the error state where everything can
happen.

9

Algorithm 2 check safety(qC, qP, x) Procedure

Require: state qC, state qP, marker x;

1: map(qC, qP, x) := in current path;
2: for all ((qC, aC, q′C) ∈ ∆C

T) do

3: for all ((qP, aP, q′P) ∈ ∆P
T) do

4: if (DecisionProcedure(aC ∧ aP) = SAT) then

5: y := condition(qC, qP, x, FC, FP)

6: if (map(q′C, q′P, y) = in current path ∧ ((qC ∈ FC ∧ qP = errP ∧ x = 1) ∨ (q′C ∈
FC ∧ q′P = errP ∧ y = 1))) then

7: report policy violation;

8: else if (map(q′C, q′P, y) = in current path ∧ ((qC ∈ FC ∧ qP ∈ (SP\{errP}) ∧ x =

1) ∨ (q′C ∈ FC ∧ q′P ∈ (SP\{errP}) ∧ y = 1))) then
9: report availability violation;

10: else if (map(q′C, q′P, y) = safe) then

11: check safety(q′C, q′P, y);

12: if (qC ∈ FC ∧ qP ∈ SP ∧ x = 1) then

13: check availability(qC, qP, x);

14: map(qC, qP, x) := availability checked;
15: else
16: map(qC, qP, x) := safety checked;

Algorithm 3 check availability(qC, qP, x) Procedure

Require: state qC, state qP, marker x;
1: for all ((qC, aC, q′C) ∈ ∆C

T) do

2: for all ((qP, aP, q′P) ∈ ∆P
T) do

3: if (DecisionProcedure(aC ∧ aP) = SAT) then

4: y := condition(qC, qP, x, FC, FP)

5: if (map(q′C, q′P, y) = in current path) then

6: if (q′P = errP) then
7: report policy violation;
8: else
9: report availability violation;

10: else if (map(q′C, q′P, y) = safety checked) then

11: map(q′C, q′P, y) := availability checked

12: check availability(q′C, q′P, y);

Function condition(s, t, x, F1, F2) returns 2 if(s ∈ F1 ∧ x = 1), returns 1 if (t ∈ F2 ∧ x = 2
), otherwise it returns x.

Remark 5.1 Our algorithm is tailored for particular AMT for security contract-policy
matching and exploits the particular form of the policy. A generic on-the-fly algorithm for
the BA emptiness test of an AMT is obtained by removing all specialized tests and reporting
only availability violation (corresponds to a non-empty automaton).

We are now in the position to state our main results:

10

Theorem 5.1 Let the theory T be decidable with an oracle for the SMT problem in the
complexity class C then:

1. The non-emptiness problem for AMT T is decidable in LIN − TIMEC.

2. The non-emptiness problem for AMT T is NLOG− SPACEC.

6 Conclusion and Related Work

Model-carrying code [23] and security-by-contract [7] proposed to augment mobile code
with a claim on its security behavior that can be matched against a mobile platform policy
before code downloading. We showed that it is possible to define very expressive (essentially
infinite) policies that can capture realistic scenarios while keeping the task of matching com-
putationally tractable. The key idea is the concept of Automata Modulo Theory (AMT).
AMT is an extension of Büchi Automata (BA), suitable for formalizing systems with finitely
many states but infinitely many transitions.

Infinite numbers of transitions in security policies by labeling each transition with a com-
putable predicate instead of an atomic symbol has been studied in [20]. Security automata
were later implemented in several systems for example PoET/PSLang toolkit [10], which
can enforce security policies whose transitions pattern-match event symbols using regular
expressions. Edit automata [2] are another model for achieving this. Edit automata extend
security automata to model the transforming effects of in-lined reference monitors. This
was implemented in the Polymer system [3] to dynamically compose security automata.
However, all mentioned approaches focus on the relations between code and security claims
on the code (which we call contract), while AMT focuses between the security claims of
the code and the platform desired security behavior. Most recently, the Mobile system [12]
implements a linear decision algorithm that verifies that annotated .NET binaries satisfy
a class of policies that includes security automata and edit automata. This work fits into
step three in our lifecycle while AMT falls into steps one and five.
AMT makes it possible to match the mobile’s policy and the midlet’s contract by map-

ping the problem into a variant of on-the-fly product and emptiness test from automata
theory, without symbolic manipulation procedures of zones and regions nor finite repre-
sentation of equivalence classes. The tractability limit is essentially the complexity of the
satisfiability procedure for the theories, called as subroutines, where most practical policies
require only polynomial time decision procedures.

A known problem with security automata and infinity yet to be addressed is the encoding
of policies such as “we must allow certain strings that we have seen in the past”. If the set
of strings is unbounded, then it is difficult (if not impossible) to encode it with finite states.
Another interesting problem for future work is a scenario when the claimed security contract
is missing (as it is the case for current MIDP applications). In that case, based on the
platform security policy, the ”claimed” security contract could be inferred by static analysis
as an approximation automaton. If such an approximation is matched, then monitoring the
code becomes unnecessary. The feasibility of this approach depends on the cost of inferring
approximation automata on-the-fly.

References

[1] J. Bacon. Toward pervasive computing. IEEE Pervasive Comp. Magazine, 1(2):84, 2002.

11

[2] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In Found. of Comp.
Security, 2002.

[3] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with polymer. In Proc. of
the ACM SIGPLAN 2005 Conf. on Prog. Lang. Design and Implementation, pages 305–314.
ACM Press, 2005.

[4] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P. Rossum, and R. Sebastiani.
Efficient satisfiability modulo theories via delayed theory combination. In K. Etessami and
S. Rajamani, editors, Proc. of the 17th Int. Conf. on Computer Aided Verification (CAV’05),
volume 3576 of LNCS, pages 335–349. Springer-Verlag, 2005.

[5] J. Büchi. On a decision method in restricted second-order arithmetic. In E. N. et al., editor,
Int. Cong. on Logic, Methodology and Philosophy of Science, pages 1–11. Stanford University
Press, 1962.

[6] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms for
the verification of temporal properties. Formal Methods in Sys. Design, 1(2-3):275–288, 1992.

[7] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward a Semantics
for Digital Signatures on Mobile Code. In Proc. of the 4th European PKI Workshop Theory
and Practice (EUROPKI’07). Springer-Verlag, 2007.

[8] N. Dragoni, F. Massacci, C. Schaefer, T. Walter, and E. Vetillard. A security-by-contracts
architecture for pervasive services. In Proc. of the 3rd Int. Workshop on Security, Privacy and
Trust in Pervasive and Ubiquitous Computing. IEEE Press, 2007.

[9] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement. Tech-
nical report 2003-1916, Department of Computer Science, Cornell University, 2003.

[10] U. Erlingsson and F. Schneider. IRM enforcement of Java stack inspection. In Proc. of the
2000 IEEE Symp. on Security and Privacy, pages 246–255, 2000.

[11] P. Gastin, B. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN. In Proc. of
the 11th Int. SPIN Workshop, volume 2989 of LNCS, pages 92–108. Springer-Verlag, 2004.

[12] K. Hamlen, G. Morrisett, and F. Schneider. Certified in-lined reference monitoring on .net. In
Proc. of the 2006 workshop on Prog. Lang. and analysis for security, pages 7–16. ACM Press,
2006.

[13] T. Henzinger, R. Majumdar, and J. Raskin. A classification of symbolic transition systems.
ACM Trans. Comput. Logic, 6(1):1–32, 2005.

[14] G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley
Professional, 2004.

[15] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In Proc. of the
2nd Int. SPIN Workshop, pages 23–32. American Mathematical Society, 1996.

[16] G. Necula. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-SIGACT Symp. on
Princ. of Prog. Lang., pages 106–119. ACM Press, 1997.

[17] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In Proc. of the 7th
USENIX symposium on Operating Systems Design and Implementation, pages 229–243. ACM
Press, 1996.

[18] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: from
an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J. of the ACM,
53(6):937–977, 2006.

12

[19] S. Safra. On the Complexity of omega-Automata. In IEEE Symp. on Found. Comp. Science
(FOCS’88), pages 319–327, White Plains, New York, USA, 1988. IEEE Press.

[20] F. Schneider. Enforceable security policies. ACM Trans. on Inf. and Sys. Security, 3(1):30–50,
2000.

[21] F. Schneider, J. Morrisett, and R. Harper. A language-based approach to security. In Infor-
matics - 10 Years Back. 10 Years Ahead., pages 86–101. Springer-Verlag, 2001.

[22] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. Technical Report
2004/06, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik,
November 2004.

[23] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. DuVarney. Model-carrying code:
a practical approach for safe execution of untrusted applications. In Proc. of the 19th ACM
Symp. on Operating Sys. Princ., pages 15–28. ACM Press, 2003.

[24] V. Venkatakrishnan, R. Peri, and R. Sekar. Empowering mobile code using expressive security
policies. In Proc. of the 2002 workshop on New security paradigms, pages 61–68, 2002.

13

