
Security-By-Contract for the Future Internet ?

Fabio Massacci1, Frank Piessens2, and Ida Siahaan1

1 Universita‘ di Trento, Italyname.surname@disi.unitn.it
2 Katholieke Universiteit Leuven, Belgiumname.surname@cs.kuleuven.be

Abstract. With the advent of the next generation java servlet on the smartcard,
the Future Internet will be composed by web servers and clients silently yet busily
running on high end smart cards in our phones and our wallets. In this brave new
world we can no longer accept the current security model where programs can be
downloaded on our machines just because they are vaguely “trusted”. We want to
know what they do in more precise details.
We claim that the Future Internet needs the notion ofsecurity-by-contract: In
a nutshell, a contract describes the security relevant interactions that the smart
internet application could have with the smart devices hosting them. Compliance
with contracts should verified at development time, checked at depolyment time
and contracts should be accepted by the platform before deployment and possibly
their enforcement guaranteed, for instance by in-line monitoring.
In this paper we describe the challenges that must be met in order to develop a
security-by-contract framework for the Future Internet and how security research
can be changed by it.

1 The End of Trust in the Web

The World Wide Web evolved rapidly in 90’s with a highlight in 1995 when the Java
Applet enabled secure mobile code for the Web. In this millennium the notion of the
Web has changed: rather than a network, the Web has become a platform where people
migrate desktop applications. We have richer applications such as WebMail, Social Web
sites, Mashups, Web 2.0 applications, etc. this is further supported by technologies such
as Asynchronous JavaScript and XML (AJAX), .NET, XML, SOAP (Web Services).

Fact of Life 1 The security model of the current version of the web is based on a simple
assumption: the good guys develop their .NET or Java application, expose it on the web,
and then spend the rest of their life letting other good guys using it while stopping bad
guys from misusing it.

The business trend of outsourcing processes [16] or the construction of virtual or-
ganizations [18] have slightly complicated this initially simple picture. Now running a
“service” means that different service (sub)components can be dynamically chosen and
different partners are chosen to offer those (sub)services.

? Research partly supported by the Projects EU-FP6-IST-STREP-S3MS, EU-FP6-IP-
SENSORIA, and EU-FP7-IP-MASTER. We would like to thank Eric Vetillard for pointing
to us the domain of Next Generation Java Card as the Challenge for the Future Internet.



Hence we need different trust establishment mechanisms (see e.g. [23, 22]). A large
part of the WS security standards are geared to solve some of these problems: WS-
Federation defines the mechanisms for federating trust; WS-Trust enables security to-
ken interoperability; WS-Security [3] covers the low level details such as message con-
tent integrity and confidentiality; WS-Security Policy [9] details lower level security
policies .

Still, the assumption is the same:the application developer and the platform owner
are on the same side. Traditional books on secure coding [20] or the .NET security
handbook [24] are pervaded by this assumption.

Unfortunately, this assumption is no longer true for the brave new world of Web 2.0
and the Future Internet. Already now a user downloads a multitude of communicating
applications ranging from P2P clients to desktop search engines, each of them plough-
ing through the user’s platform, and springing back with services from and to the rest of
the world. Most of these applications will be developed by people and companies that
a lay user had never known they existed (at least before downloading the application).

It looks like we are simply back to the good old security model of Java applets
[15] and good confinement would do the job. Nothing could be more wrong: applets
are light pieces of code that would not need access to our platform. Indeed, to deal
with the untrusted code either .NET [24] or Java [15] can exploit the mechanism of
permissions. Permissions are assigned to enable execution of potentially dangerous or
costly functionality, such as starting various types of connections. The drawback of
permissions is that after assigning a permission the user has very limited control over
how the permission is used. Conditional permissions that allow and forbid use of the
functionality depending on such factors as bandwidth or the previous actions of the
application itself (e.g. access to sensitive files) are also out of reach. Once again the
consequence is that either applications are sandboxed (and thus can do almost nothing),
or the user decided that they are trusted and then they can do almost everything.

The mechanism of signed assemblies from trusted third parties does not solve the
problem either.

Fact of Life 2 Currently a signature on a piece of code only means that the application
comes from the software factory of the signatory, but there is no clear definition of what
guarantees it offers. It essentially binds the software with nothing.

Loosely speaking, the mobile software deployment process is identical to the hiring
process of the aristocratic armies. In order to hire an officer you don’t ask for his CV,
you don’t stipulate a contract with him and set targets. You just ask for his father’s name
and depending on that name you make him lieutenant, major or general. You grant him
the privileges of the rank and trust that he’ll not betray the name of the family.

The (once) enthusiast installers of UK Channel 4 on demand services 4oD [1] might
tell a different story [29]. What is best than download a client that allows you to see
almost free movies from your favorite TV channel? After all you are downloading from
a reputable and trusted broadcaster. It is not shady software from a hacker web site.
Only in the fine print of the legal terms of use (nowhere in the FAQs and only visible
after a long scrolling down of legalese) you find something you most likely would like
to know beforehand (extracted from the web site on 31st of July 2008):



If you download Content to your computer, during the License Period, we may upload this from your
computer (using part of your upstream bandwidth) for the purpose of transferring Content to other users of the
Service. Please contact your Internet Service Provider (”ISP”) if you have any queries on this.

As one of the many unfortunate users of the system noticed [29], there is no need of
contacting your ISP. They will contact you pretty soon and will not be pleasant. . .

Fact of Life 3 We end up in a stale-mate. We built our security models on the assump-
tion that we could trust the vendors (or at least some of them). The examples from
reputable companies such as Channel 4 (or BBC, Sky TV etc.) show that this is no
longer possible. Still we really really want to download a lot of software.

2 The Smart(Card) Future of the Web

The model that we have described above is essentially the web of the personal comput-
ers. We, as world-wide consumer3, accept the idea that PC applications fails, that PC
are ridden with viruses, spyware and so on. So we do not consider this a major threat

Fact of Life 4 None of the users complaining about 4oD [29] have considered their
PC or their Web platform “broken” because it allowed other people to make use of it.
They did not consider returning their PC for repair. They considered themselves being
gullible users ripped off by an untrusted vendor.

There is another domain at the opposite side of the psychological spectrum: smart-
card technology. This technology enjoyed worldwide deployment in 90’s with Java Card
Applets and their strict security confinement. At the beginning of the millennium, many
applications such as large SIM cards, emerging security and identity management busi-
nesses are implemented on smart-cards to address mobile devices security challenges
[19]. Still, smart-cards have essentially led a sheltered life from the Web problems we
have described. When used in mobile phones they just acted as authenticator and with-
drawn from the picture immediately.

(Un)fortunately, the smartcard technology evolved with larger memories, USB and
TCP/IP support and the development of the Next-Generation Java Card platform with
Servlet engine. This latter technology is a full fledged Java platform for embedded
Web applications and opens new Web 2.0 opportunities such as NG Java Card Web
2.0 Applications. It can also serve as alternative to personalized applications on remote
servers so that personal data no longer needs to transmitted to remote third-parties.

Prediction 1 The Future Internet will be composed by those embedded Java Card Plat-
forms running on high end smart cards in our phones and our wallets, each of them
connecting to the internet and performing secure transactions with distributed servers
and desktop browsers without complicated middleware or special purpose readers.

We still want to download a huge amount of software on our phones but there is a
huge psychological difference from a consumer perspective.

3 We should distinguish between the computer scientist or security expert and the computer,
even if savvy, user.



Fact of Life 5 If our PC is sluggish in responding,we did something wrong or down-
loaded the wrong software, if our phone is sluggish,it is broken.

Idea 1 In the realm of next generation Java card platforms we cannot just download a
software without knowing what it does. The smart card web platform must have a way
to check what is downloading.

3 Security by Contract for the Smart Future Internet

In the past millennium Sekar et al. [32] have proposed the notion of Model Carrying
Code (MCC) as the seminal work on which our research agenda for the Smart Future
Internet is based. MCC requires the code producer to establish a model regarding the
safety of mobile code which captures thesecurity-relevant behaviorof the code. The
code consumers checks their policies against the model associated with untrusted code
to determine if this code will violate their policy.

The major limitation was that MCC had not fully developed the whole lifecycle and
had limited itself to finite state automata which are too simple to describe realistic poli-
cies. Even a simple, basic policy such as “Only access url starting with http” could not
be addressed. TheSecurity-by-Contract (S×C) framework that we have developed for
mobile code [11, 10] builds upon the MCC seminal idea to address thetrust relation-
shipproblem of the current security models in which a digital signature binds a contract
with nothing.

Idea 2 In S×C we augment mobile code with a claim on its security behavior (anap-
plication’s contract) that could be matched against a mobileplatform’s policybefore
downloading the code. A digital signature does not just certify the origin of the code
but also bind together the code with a contract with the main goal to provide a seman-
tics for digital signatures on mobile code.

This framework is a step in the transition from trusted code to trustworthy code.
This idea is nice but we must develop it fully in order to really make a significant

advance over the initial intuition from model carrying code. So we should consider
the full lifecycle. A contract should be negotiated and enforced during development,
at time of delivery and loading, and during execution of the application by the mobile
platform. Figure 1 summarizes the phases of the application/service life-cycle in which
the contract-based security paradigm should be present.

At development timethe mobile code developers are responsible for providing a
description of the security behavior that their code finally provides. Such a code might
also undergo a formal certification process by the developer’s own company, the smart
card provider, a mobile phone operator, or any other third party for which the applica-
tion has been developed. By using suitable techniques such as static analysis, monitor
in-lining, or general theorem proving, the code is certified to comply with the devel-
oper’s contract. Subsequently, the code and the security claims are sealed together with
the evidence for compliance (either a digital signature or a proof) and shipped for de-
ployment.



Fig. 1: Application/Service Life-Cycle

At deployment time, the target platform follows a workflow similar to the one de-
picted in Fig.2 (see also [35]). First, it checks that the evidence is correct. Such evidence
can be a trusted signature as in standard mobile applications [40]. An alternative evi-
dence can be a proof that the code satisfies the contract (and then one can use PCC
techniques to check it [28]).

Once we have evidence that the contract is trustworthy, the platform checks, that
the claimed policy is compliant with the policy that our platform wants to enforce. If it
is, then the application can be run without further ado. This may be a significant saving
from in-lining a security monitor.

At run-timewe might want to decide to still monitor the application. Then, as with
vaccination, we might decide to inline a number of checks into the application so that
any undesired behavior can be immediately stopped or corrected.

4 What is a Contract for the Smart Future Internet?

The first challenge that we must address is finding an appropriate language for defining
contracts and policies.

Definition 1. A contractis a formal complete and correct specification of the behavior
of an application for what concerns relevant security actions (Virtual Machine API
Calls,Web Messages etc).

By signing the code the developer certifies that the code complies with the stated claims
on its security-relevant behavior.

On the other side we can see that users and mobile phone operators are interested
that all codes that are deployed on their platform are secure. In other words they must
declare their security policy:



Fig. 2: SxCWorkflow

Definition 2. A policy is a formal complete specification of the acceptable behavior of
applications to be executed on the platform for what concerns relevant security actions
.

Technically, a contract can be a security automaton in the sense of Schneider [17],
and it specifies an upper bound on the security-relevant behavior of the application:
the sequences of security-relevant events that an application can generate are all in the
language accepted by the security automaton. We can have a slightly more sophisticated
approach using B̈uchi automata [34] if we also want to cover liveness properties that
can be enforced by Edit automata [4]. This definition can be sufficient for theoretical
purposes but it is hardly acceptable for any practical use.

State-of-the-Art 1 All theoretical papers [17, 4, 34] define the security behavior as a
set of “actions” as ground terms but real programs are not made by “actions”, they
have API calls, OS calls, and those calls have a number of parameters. Even the most
basic security policy if we simply instantiate the API parameters into ground actions
will lead to automata with infinitely many transitions that we cannot even write down.

Example 1.The policy of smart card provider may require that “After PIM (the Per-
sonal Identification Module) APIs were accessed only secure connections can be opened”.
This policy permits executing the JavaConnector.open(string url) method
only if the started connection is a secure one i.e.url starts with ”https://”.

Fig.3a represents an automaton for Ex. 1. Starting from statep0, we stay in this
state while PIM is not accessed (jop). As PIM is accessed we move to statep1 and we



(a) Infinite Transitions Security Policies

joc(vjoc,1)
.
= io.Connector.open (url)

jop
.
= pim.PIM.openPIMList (. . .)

q
.
= io.Connector. type

is protocol type e.g. “http”

pr(q) = type
.
= permissionqis for protocoltype

p(url) = type
.
= url.startsWith (type)

(b) Abbreviations for Java APIs

Fig. 3: Infinite Transitions Security Policies

stay in statep1 only if the started connectionConnector.open(string url) method is a
secure one i.e.url starts with ”https://” or we keep accessing PIM (jop). We enter state
ep if we start an unsecure connectionConnector.open(string url) e.g.url starts with
”http://” or ”sms://” etc. These examples are from a Java VM. Since we do not consider
useful to invent our own names for API calls we use thejavax.microedition
APIs (though a bit verbose) for the notation that is shown in Fig.3b.

Idea 3 For S×Cfor mobile code (.NET and Java) a variant of the PSLANG language
[2] has been proposed whose formal counterpart is the notion ofautomata modulo
theory[25] where atomic actions are replaced by expressions that can finitely capture
infinite values of API parameters.

Challenge 1 Identify a suitable language for the specification of contracts and policies
at a level of abstraction that is suitable for the smart future internet that can be used
for all phases of the life-cycle (Fig.1) both at development and deployment time (Fig.2)

It is indeed important that the language is able to be used in all steps. A language
perfect for matching that cannot be enforced at run-time or that can only be verified
with a costly interactive theorem prover is not going to be very effective.

5 Application-contract compliance

So far we have only defined a language for describing the behavior of smart-card web
applications. There is no a-priori guarantee that this statement is correct.

Idea 4 Static analysis can be used at development time to increase confidence in the
contract. With static analysis, program analysis and verification algorithms are used in
an attempt toprovethat the application satisfies its contract.



The major advantages of static analysis are that it does not impose any runtime over-
head, and that it shows that all possible executions of a program comply with the con-
tract. The major disadvantage is that the problem of checking application-contract com-
pliance is in general undecidable, and so automatic static analysis tools will typically
only support restricted forms of contracts, or restricted forms of applications, or the
tool will be conservativein the sense that it will reject applications that are actually
compliant, but the tool fails to find a proof for this.

The S3MS project for mobile code has shown that static analysis is feasible for
limited forms of contracts (e.g. for contracts that are stateless), or in combination with
runtime verification [37].

The programs and services running on the embedded servlet will be significantly
more complex and have actions at different level of abstractions whose full security
implications can be understood by considering all abstraction levels at once. The chal-
lenges for static analysis are many: with expressive notions of security contracts, veri-
fying application-contract compliance is actually as hard as verifying compliance with
an arbitrary specification [31].

Prediction 2 Contracts for applications in the Smart Future Internet will have a com-
plexity that that is comparable to the level of abstractions of current concurrent models
that are used for model checking hardware and software systems (in1010 states or
transitions and beyond).

A standard approach to make program verification and analysis algorithms scale
to large programs is to make themmodular: make sure that the algorithm can check
parts (classes / methods / . . . ) of the program independently. This is particularly hard
for application-contract compliance checking, because the security state of the contract
is typically a global state, and the structure of the contract and its security state might
not align with the structure of the application.

State-of-the-Art 2 For modular verification algorithms, annotations are required on
all methods to specify how they interact with the security state, and not only on methods
that are relevant for the contract at hand.

Clearly, this annotation overhead is prohibitive, so a key challenge is to look for ways
to reduce the annotation burden.

Idea 5 An interesting research question is whether a program transformation (similar
to the security-passing style transformation used for reasoning about programs sand-
boxed by stack inspection [39, 33]) can improve this situation.

Idea 6 A second approach to address scalability is to give up soundness of the analysis,
and to use the contract as a model of the application in order to generate security tests
by applying techniques from Model Based Testing [38].

Losing soundness is a major disadvantage: an application may pass all the generated
tests and still turn out to violate the contract once fielded. However, the advantages
are also important: no annotations on the application source code are needed, and the
tests generated from the contract can be easily injected in the standard platform testing
phase, thus making this approach very practical.



Fig. 4: Example of Automata Modulo Theory for the policy from Ex. 1

Challenge 2 One particularly interesting research challenge to be addressed here is
how to measure the coverage of such security tests. When are there enough tests to give
a reasonable assurance about security?

It is easy to automatically generate a huge amount of tests from the contract. Hence it
is important to know how many tests are sufficient, and whether a newly generated test
increases the coverage of the testing suite.

6 Matching Contract and Policy on the Smart Future Internet

Suppose our language constructs allowed the developer to provide a verified contract.
Now we are at the time of deployment and, as users, we would like precisely to check
whether our intriguing application will not use our upward bandwidth as the 4oD unfor-
tunate users. We must therefore identify the next key component of the SxC paradigm,
namelycontract-policy matching.

The operation of matching the application’s claim with the platform policy requires
that the contract is trustworthy, i.e. the application and the contract are sealed together
with a digital signature when shipped for deployment or by shipping a proof that can
checked automatically. We will return on this issue in a later section but for the moment
let’s take it for granted.

Idea 7 We must show that the behavior described by the contract is acceptable accord-
ing to our platform policy.

A simple solution is to build upon automata theory, interpret contract and policy as
automata and use language inclusion [6]. Given two such automata AutC (representing
the contract) and AutP (representing the policy), we have a match when the language
accepted by AutC is a subset of the language accepted by AutP .

As we have already shown in Figure3a this cannot be done just be instantiating the
variables of API calls in order to obtain the usual set of ground actions. A solution that
we have used in the S3MS project has been to introduce the notion ofautomata modulo
theoryin which actions labelling the transactions of the finite state automata are instead
expressions constraining the value of the arguments of an API call [25]. In Figure4 we
show the automaton modulo theory corresponding to the infinite automaton in Figure3a.



Once the policy and the contract are represented as automata then one can either use
language inclusions [25] or simulation [26] to check whether the contract is acceptable
according our platform policy.

Such solution is only partial because the automata that we have envisaged do not
store the values of the arguments of allowed/disallowed APIs. As a result the policy
below cannot be yet matched.

Example 2.After connecting to a URLX then the application is only allowed to con-
nect to the same URLX”.

Such policy would allow us to solve the 4oD problem: once the site connect to Channel4
web site it can only connect to this site again. So no bandwidth can be used while acting
as a P2P servent.

In order to do this a potentially promising research could be to build a version of
automata modulo theory that is able to exploit the usage of action arguments that is
typical of process algebra approaches. For instance, one could exploit the works on
history-dependent automata (HD-automata) [27, 14] which extended automata by local
names on states and labels.

Challenge 3 Contracts and policies for the future internet must be history-dependent:
the arguments of past allowed actions (API calls, WS invocations, SOAP messages) may
influence the evolution of future access control decision in a policy.

Further, in our current implementation of the matcher that runs on a mobile phone,
security states of the automata are represented by variables over finite domains e.g.
smsMessagesSent ranges between 0 to 5. [2, 5]. A possible solution could be to extend
the work on finite-memory automata [21] by Kaminski and Francez or other works [30]
that studied automata and logics on strings over infinite alphabets through register and
pebble automata.

Challenge 4 Define matching for contracts and policies that allows to compactly rep-
resent states with potentially infinite state spaces without giving up effective matching.

The last clause of the challenge (“without giving up effective matching”) is essential.
Remember that our model of the Future Internet is built up by powerful smartcards run-
ning their own web servers and clients and sitting on our mobile phones, devices and
cars. We cannot wait for two hours of BBD construction using current model check-
ing technologies before deciding that an interesting travel program discovered at our
arriving airport is not good for our phone.

Hence we arrive here in the same corner that we ended up during the discussion on
static analysis.

Idea 8 Another approach to address scalability is to give up soundness of the matching
and use algorithms for simulation and testing.

Also in this case losing soundness is a major disadvantage: a contract may pass the
matching and still turn out to violate the policy once fielded. However, the advantages
are also important. A quick decision with high probability of correctness is significantly
better than no decision due to memory consumption: if users get tired of waiting or the



device has not enough battery to run a full test, users might decide to run the program
anyhow and we would end up in a bad situation.

Challenge 5 One particularly interesting research challenge to be addressed here is
how to measure the coverage of approximate matching. Which value should give a
reasonable assurance about security? Should it be an absolute value? Should it be in
proportion of the number of possible executions? In proportion to the likely executions?

An interesting approach could be to recall to life a neglected section of the classical
paper on model checking by Courcoubetis et al [7] in which they traded off a better
performance of the algorithm in change for the possibility of erring with a small prob-
ability.

7 Inlining a monitor on Future Internet Applications

What happens if matching fails? or what happens if we do not trust the evidence that the
code satisfies the contract? If we look back at Fig.2 monitor inlining of thecontractcan
provide strong assurance of compliance. Here, we highlighting the research challenges
that still remain.

With monitor inlining [13], code rewriting is used to push contract checking func-
tionality into the program itself. The intention is that the inserted code enforces compli-
ance with the contract, and otherwise interferes with the execution of the target program
as little as possible. Monitor inlining is a well-established and efficient approach [12],
and the S3MS project has shown that inlining can be used today as a contract compli-
ance technique [36].

However a major open question is how to deal with concurrency efficiently.

Prediction 3 Servents in the Smart Future Internet will need to monitor the concurrent
interactions of tens of untrusted multithreaded programs.

An inliner needs to protect the inlined security state against race conditions. So all
accesses to the security state will happen under a lock. A key design choice for an
inlining algorithm is whether to lock across security relevant API calls, or to release the
lock before doing the API call, and reacquiring it when the API call returns.

The first choice (locking across calls) is easier to get secure, as there is a strong
guarantee that the updates to the security state happen in the correct order. This is much
trickier for an inliner that releases the lock during API calls. However, an inliner that
locks across calls can introduce deadlocks in the inlined program, because some of
the security relevant API calls will themselves block. And even if it does not lead to
deadlock, acquiring a lock across a potentially blocking method call can cause serious
performance penalties.

The S3MS project has provided a partial solution by partitioning the security state
into disjoint parts, and replacing the global lock, by per-part locks. This improves effi-
ciency, but depending on application and policy, it can still introduce deadlocks.

Challenge 6 How to inline a monitor into a concurrent program so that it cannot create
a deadlock in future interactions with other unknown programs yet to be downloaded.



The ability to resist to changes in context (i.e. new concurrent programs downloaded
after the inlined program) is essential for usability. The inlined version of 4oD should
not get in the way if later on I want to download a (inlined) role-playing game. Of
course it is possible that two malicious software downloaded at different instants might
try to cooperate in order to steal some data. The security monitor should be able to spot
them but not be deadlocked by them.

If inlining is performed by the code producer, or by a third party, the code consumer
(the client that actually runs the application) needs to be convinced that inlining has
been performed correctly. Without a secure transfer of the guarantees of application-
contract compliance to the client, it would be easy for an attacker to modify either the
application or the contract, or it would be possible for an application developer to lie
about the contract.

Cryptographic signatures by a trusted (third) party is a first solution even if it
transfer the risk from the technical to the legal domain. The trusted party vouches for
application-contract compliance. Note the difference with the use of signatures in the
traditional mobile device security model. In the security-by-contract approach, a signa-
ture has a clear semantics [11]: the third party claims that the application respects the
supplied contract. Moreover, what is important is the fact that the decision whether the
contract is acceptable or not remains with the end user. If an application claims that it
will not connect to the internet and instead it does, at least you can bring the signatory
to the court for fraudulent commercial claims.

An alternative solution is whether we can use the techniques of Proof-Carrying-
Code (PCC) [28] for this. In PCC, the code producer produces a proof that the code has
certain properties, and ships this proof together with the code to the client. By verifying
the proof, the client can be sure that the code indeed has the properties that it claims to
have.

State-of-the-Art 3 Proof verification is a relatively simple process, so the key issue in
PCC systems is how to generate the proofs (and how to keep them compact). Currently
proof generation requires essentially PhD students working on an interactive theorem
prover for hours or months using complicated logics and type systems. In other words,
it is unfeasible.

The difficulty of the endeavour is that the code has not been produced to be verified
compliant against a security property but usually to actually do some business. In other
words, the code producer is not aware of the property and the property producer is not
aware of the code. In this scenario verification is clearly an uphill path.

Idea 9 When we inline a contract we know precisely what code we are inlining and
also what property the inlined code should satisfy. So, instead of asking a PhD student
to annotate the code, we can ask the inliner to do this automatically for us. Indeed we
could ask the inliner to generate the proof directly.

This should make it relatively easy to check that code complies with the contract: the
generation of a proof should be easier, and the size of the proof would also be acceptable
for inlined programs. Preliminary results from the S3MS project for PCC for inlined
sequential Java [8] show that this is indeed the case.



Challenge 7 Identify automatic inlining mechanisms that inline a monitor for a secu-
rity contract and generate an easily checkable proof for industrial applications in the
Smart Future Internet.

8 Beyond Micro-Security for the Future Internet

In the discipline of economics there is a traditional distinction between micro-economics
and macro-economics. According the Wordnet dictionary at Princeton University, the
former is “the branch of economics that studies the economy of consumers or house-
holds or individual firms” while the latter is “the branch of economics that studies the
overall working of a national economy”.

Idea 10 We can now draw a parallel of the notion of micro- and macro- research into
the realm of security research.

microsecurity is the branch of IT security research that studies the security of individ-
ual digital services, components, or organizations

macrosecurity is the branch of IT security research that studies the overall security
behavior of a large population of digital entities.

State-of-the-Art 4 All our ideas and challenges and the 99.9% of all security research
in the world has been in the field of microsecurity. We have been fixing, breaking and
proving correct an individual service or protocol or the interaction betweenN entities
discussing the individual interactions between them.

The picture is slowly changing as epidemiological studies on viruses appeared and re-
search targetting population is starting. For example, researchers at NEC Japan are con-
sidering solutions to the problem of SPAM mails that do not focus on better filtering
algorithms on the client (i.e. a micro-security solutions) and works if a “population” of
servers as a whole adopts the much simpler measures of throttling email invoices to the
average rate.

Challenge 8 In the Future Internet few millions of smart servents will adopt and en-
force a type of contract (e.g. by Axalto) and some other millions of servents (e.g. by
G&D) might adopt different contracts. What can we say about the population as a
whole? How will security incidents spread? What kind of private data will be lost?

If we are able to meet this challenge, then macro-security will be born.

References

1. Channel 4. 4od. Available on the web http://www.channel4.com/4od/index.html, 2008.
2. I. Aktug and K. Naliuka. Conspec - a formal language for policy specification. In Proc. of the

1st Workshop on Run Time Enforcement for Mobile and Distributed Systems (REM2007),
2007.



3. Bob Atkinson, Giovanni Della-Libera, Satoshi Hada, Maryann Hondo, Phillip Hallam-
Baker, Johannes Klein, Brian LaMacchia, Paul Leach, John Manferdelli, Hiroshi Maruyama,
Anthony Nadalin, Nataraj Nagaratnam, Hemma Prafullchandra, John Shewchuk, and Dan Si-
mon.Web Services Security. Microsoft, IBM, VeriSign, 1.0 edition, April 2002. available via
http://www-128.ibm.com/developerworks/webservices/library/ws-secure/
on 25/10/2005.

4. L. Bauer, J. Ligatti, and D. Walker. Edit automata: Enforcement mechanisms for run-time
security policies.Int. J. of Inform. Sec., 4(1-2):2–16, 2005.

5. N. Bielova, M. Dalla Torre, N. Dragoni, and I. Siahaan. Matching policies with security
claims of mobile applications. InProc. of the 3rd Int. Conf. on Availability, Reliability and
Security (ARES’08). IEEE Press, 2008.

6. E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, 2000.
7. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms

for the verification of temporal properties.Formal Methods in Sys. Design, 1(2-3):275–288,
1992.

8. M. Dam and A. Lundblad. A proof carrying code framework for inlined reference monitors
in Java bytecode. Submitted for publication, 2008.

9. Giovanni Della-Libera, Martin Gudgin, Phillip Hallam-Bakerand Maryann Hondo, Hans
Granqvist, Chris Kaler, Hiroshi Maruyama, Michael McIntosh, Anthony Nadalin, Nataraj
Nagaratnam, Rob Philpott, Hemma Prafullchandra, John Shewchuk, Doug Walter, and Riaz
Zolfonoon. Web Services Security Policy Language. IBM and Microsoft and RSA Security
and VeriSign, 2005.

10. L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan, and D. Vanover-
berghe. Security-by-contract on the .net platform.Information Security Technical Report,
13(1):25–32, 2008.

11. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward a Se-
mantics for Digital Signatures on Mobile Code. InProc. of EuroPKI’07. Springer-Verlag,
2007.

12. Erlingsson and Schneider. SASI enforcement of security policies: A retrospective. InWNSP:
New Security Paradigms Workshop. ACM Press, 2000.

13. Ulfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack inspection. InIEEE
Symposium on Security and Privacy, pages 246–255, 2000.

14. G.L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking verification envi-
ronment for mobile processes.ACM Trans. Softw. Eng. Methodol., 12(4):440–473, 2003.

15. L. Gong, G. Ellison, and M. Dageforde.Inside Java 2 Platform Security: Architecture, Api
Design, and Implementation. Addison-Wesley Professional, 2003.

16. G. Goth. The ins and outs of it outsourcing.IT Professional, 1:11–14, 1999.
17. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for enforcement

mechanisms.TOPLAS, 28(1):175–205, 2006.
18. C. Handy. Trust and the virtual organization.Harvard Business Review, 73:40–50, 1995.
19. Mike Hendry. Smart Card Security and Applications. Artech House, 2nd edition edition,

2001.
20. Michael Howard and David LeBlanc.Writing Secure Code. Microsoft Press, 2nd edition

edition, 2002.
21. M. Kaminski and N. Francez. Finite-memory automata.Theor. al Comp. Sci., 134(2):329–

363, 1994.
22. Y. Karabulut, F. Kerschbaum, F. Massacci, P. Robinson, and A. Yautsiukhin. Security and

trust in it business outsourcing: a manifesto. In S. Etalle and P Samarati, editors,Proceedings
of STM’06, ENTCS. Elsevier, 2006.

23. Günter Karjoth, Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Service-oriented
Assurance - Comprehensive Security by Explicit Assurances. InProc. of QoP’05, 2005.



24. B. LaMacchia and S. Lange..NET Framework security. Addison Wesley, 2002.
25. F. Massacci and I. Siahaan. Matching midlet’s security claims with a platform security policy

using automata modulo theory. InProc. of The 12th Nordic Workshop on Secure IT Systems
(NordSec’07), 2007.

26. Fabio Massacci and Ida S. R. Siahaan. Simulating midlet’s security claims with automata
modulo theory. InProc. of the 2008 workshop on Prog. Lang. and analysis for security,
pages 1–9, New York, NY, USA, 2008. ACM.

27. U. Montanari and M. Pistore. History-dependent automata. Technical Report TR-98-11,
Dip. Informatica, University of Pisa, 5 1998.

28. G.C. Necula. Proof-carrying code. InProc. of the 24th ACM SIGPLAN-SIGACT Symp. on
Princ. of Prog. Lang., pages 106–119. ACM Press, 1997.

29. CNET Networks. Channel 4’s 4od: Tv on demand, at a price.Crave Webzine, January 2007.
30. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alpha-

bets.TOCL, 5(3):403–435, 2004.
31. F.B. Schneider. Enforceable security policies.TISSEC, 3(1):30–50, 2000.
32. R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-carrying

code: a practical approach for safe execution of untrusted applications. InProc. of the 19th
ACM Symp. on Operating Sys. Princ., pages 15–28. ACM Press, 2003.

33. Jan Smans, Bart Jacobs, and Frank Piessens. Static verification of code access security policy
compliance of .net applications.Journal of Object Technology, 5(3):35–58, 2006.

34. C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement under memory-
limitation constraints.Inform. and Comp., 206(2-4):158–184, 2007.

35. D. Vanoverberghe, P. Philippaerts, L. Desmet, W. Joosen, F. Piessens, K. Naliuka, and
F. Massacci. A flexible security architecture to support third-party applications on mobile
devices. InProc. of the 1st ACM Comp. Sec. Arch. Workshop, 2007.

36. D. Vanoverberghe and F. Piessens. A caller-side inline reference monitor for an object-
oriented intermediate language. InProceedings of the 10th IFIP International Conference
on Formal Methods for Open Object-based Distributed Systems (FMOODS’08), volume
5051/2008 ofLecture Notes in Computer Science, pages 240–258. Springer, 2008.

37. D. Vanoverberghe and F. Piessens. Security enforcement aware software development.In-
formation and Software Technology, 2008. doi:10.1016/j.infsof.2008.01.009.

38. Margus Veanes, Colin Campbell, Wolfram Schulte, and Nikolai Tillmann. Online testing
with model programs. InESEC/FSE-13: Proceedings of the 10th European software engi-
neering conference held jointly with 13th ACM SIGSOFT international symposium on Foun-
dations of software engineering, pages 273–282, New York, NY, USA, 2005. ACM.

39. Dan S. Wallach, Andrew W. Appel, and Edward W. Felten. Safkasi: a security mechanism
for language-based systems.ACM Trans. Softw. Eng. Methodol., 9(4):341–378, 2000.

40. B.S. Yee. A sanctuary for mobile agents. In J. Vitek and C.D. Jensen, editors,Secure Internet
Programming, pages 261–273. Springer-Verlag, 1999.


