Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

ISSN 2214-2726

Vol. 18 Nos. 2-3
September 2013

JOURNAL OF

INFORMATION

SECURITY

AND APPLICATIONS

]

Smart Card and RFID Security

Issue Editors: L.M. Cheng and K.W. Wong

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

Available online at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jisa

Load time code validation for mobile phone
Java Cards

@ CrossMark

Olga Gadyatskaya “*, Fabio Massacci ®, Quang-Huy Nguyen ",
Boutheina Chetali®
@ Department of Information Engineering and Computer Science, University of Trento, via Sommarive 14,

38123 Trento, Italy
P Trusted Labs, rue du Bailliage 5, 78000 Versailles, France

ABSTRACT

Over-the-air (OTA) application installation and updates have become a common experi-
ence for many end-users of mobile phones. In contrast, OTA updates for applications on
the secure elements (such as smart cards) are still hindered by the challenging hardware

Keywords:
Load time application validation
Secure elements
and certification requirements.
The paper describes a security framework for Java Card-based secure element appli-

Security-by-Contract
Java Card
cations. Each application can declare a set of services it provides, a set of services it wishes
to call, and its own security policy. An on-card checker verifies compliance and enforces
the policy; thus an off-card validation of the application is no longer required.
The framework has been optimized in order to be integrated with the run-time envi-
ronment embedded into a concrete card. This integration has been tried and tested by a
smart card manufacturer. In this paper we present the architecture of the framework and
provide the implementation footprint which demonstrates that our solution fits on a real
secure element. We also report the intricacies of integrating a research prototype with a
real Java Card platform.
© 2013 Elsevier Ltd. All rights reserved.

A common assumption is that only few and limited ap-
plications will be loaded on the secure element, but this is no

1. Introduction

Smart handsets are providing increasingly sensitive services
(e.g. finance, access) that are often updated over the air (OTA) in
a dynamic fashion. The deployment of Java-enabled (U)SIM
cards, which use the GlobalPlatform® card technology, have
further enabled OTA application downloads for 3G and GSM
mobile networks (some hundred millions (U)SIM cards utilize
the GlobalPlatform infrastructure). For security reasons, finan-
cial or similarly sensitive services are usually hosted together by
a secure element, such as a smart card (Langer and Oyrer).

* Corresponding author. Tel.: +39 0461 283828; fax: +39 0461 282093.

longer the case: the trusted elements quickly evolve into multi-
tenant platforms following the trends of smartphone markets
(Bouffard et al., 2011b). For example, leading smart card
manufacturers, such as Gemalto, Oberthur and Gieseck-
e&Devrient, already offer Facebook or Twitter applications to
be loaded onto the (U)SIM card, and a healthcare application”
was recently proposed.

From a security perspective it is important that the appli-
cations are confined (the Java Card firewall does precisely that),

E-mail addresses: olga.gadyatskaya@unitn.it, gadyatskaya@disi.unitn.it (O. Gadyatskaya), fabio.massacci@unitn.it (F. Massacci),
quang-huy.nguyen@trusted-labs.com (Q.-H. Nguyen), boutheina.chetali@trusted-labs.com (B. Chetali).
! GlobalPlatform™ is a standard set of specifications for card contents management (GlobalPlatform Inc., 2011).
2 http://medicmobile.org/2011/06/06/medic-mobile-announces-the-first-mobile-sim-app-for-healthcare. Accessed on the web in Jan.

2013.

2214-2126/$ — see front matter © 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jisa.2013.07.004

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129 109

but from a business perspective we would like them to talk to
each other within the secure element: when German transit
authorities launch a Near-Field Communication (NFC)-based
ticketing service® and VISA pushes its payment SIM application
payWave,* they may want to collaborate. Therefore, control of
interactions among applications is a crucial requirement for the
overall protection guaranteed by the secure element.

In order to allow interactions across the firewall, Java Card
(JC) applications interact through Shareable interfaces (Classic
Edition, 2011). A Shareable interface method (or service for
short) is just a Java method that can be called through the
firewall. The traditional solution to restrict access to a service
on Java Card is to embed access control checks in the service
code. In this case the only way to add or remove possible
callers from the code is to re-install the application (this is
how the code updates are implemented on Java Card). In
many cases it is not possible to remove an application refer-
enced by other applications on Java Card. So, even if we just
want to add the possibility of being called by another appli-
cation, we will need first to delete all other calling applica-
tions, then re-install the updated application, and then re-
install all callers again. Therefore, on Java Card separation of
access control to a service from implementation of the service
provides is a desirable feature: when considering multi-
tenancy, applet providers want to be able to restrict access
to their services in a declarative and independent fashion.

Our alternative solution would be to validate the bytecode to
be well-behaved with respect to interactions while loadingon a
secure element. The target of our research is to perform appli-
cation validation directly on the secure element (the (U)SIM card
with its severely limited resources) to ensure the following goals:

applications can be loaded OTA;

applications can declaratively control (allow or block) access
to their shared services by other applications on the card,
without mixing it with functional code;

e the access control policy can mention any applications,
even if at any time we only have few of them installed;
application bytecode should be validated by the card itself to
respect the interaction policies of the other applications
already on the card during loading time.

This must be achieved under the following constraints:

e no modification to the current application loading protocol,
the JC firewall and the virtual machine (VM) implementation
of the secure element;

e most part of the trusted computing base is in ROM (non-

modifiable non-volatile memory);

application providers can set-up their security policies

directly without bothering the secure element owner for

individual policy changes.

For mobile phones, a number of proposals for application
certification at load time have been put forward in the past

3 https://www.touchandtravel.de/, accessed on the web in Jan.
2013.

* http://www.visaeurope.com/en/cardholders/visa_paywave.
aspx, accessed on the web in Jan. 2013.

years, but most research proposals stop at load time checking
of the application manifest and use the phone normal pro-
cessor for checking (Enck et al., 2009; Ongtang et al., 2009).
Other approaches propose to check interactions at run-time
requiring VM/platform modifications (Bugiel et al., 2012; Enck
et al., 2010), suggest to check interactions off-device (Chin
et al., 2011) or advocate application rewriting (Xu et al., 2012).

So far for smart cards the combination of all elements has
not been achieved, and our new contribution is to achieve it
by designing a complete working solution. In the smart card
world interactions among the applications can be certified,
but then the card has to be locked (new applications cannot
be loaded, existing ones cannot be removed). For example, the
TaiwanMoney Card (Taiwan) based on the Multos technology
combines a Mondex payment application with a transport
application.’ This approach of locking the card is not feasible
for OTA-loaded applications. The off-device validation tech-
niques were proposed for Java Card applications (e.g. the
works by Bieber et al. (2002) and Avvenuti et al. (2012)), but
they cannot work in practice for the OTA loading, because
they require an independent verification authority, with
whom application providers need to negotiate any single
change; and full formal verification cannot be ported to the
device itself because of the computational constraints.

Our contribution. Our target is to achieve the same security
level, as offered by Java Card itself, while allowing the flexi-
bility of OTA updates on a very restricted platform. We do not
aim to achieve more security than the current methods of
embedding access control checks in the application code or
off-line bytecode validation. Our proposal allows to immedi-
ately address the OTA-loading demands for access control
mechanisms in the context of application communication
and service calls. The policies that our system can enforce are
simple, but they are substantial given the resources available.

In this paper we report on the engineering aspects that can
achieve all the goals mentioned above along with the constraints
of the secure element environment: at most 10 KB of memory
footprint and at most 1 KB of RAM consumed for validation. Our
system is able to process applications of sizeable complexity,
such as the electronic identity applet (Philippaerts et al., 2011). A
further challenge that we have faced is the need to maintain
confidentiality of the Java Card platform implementation. In the
article we report how we had overcome this problem. We also
present an abstract model of a multi-tenant secure element
platform based on deployed applications and shared/invoked
services and demonstrate that the validation process of our
framework keeps the platform secure across the updates.

The rest of this article is structured as follows. Section 2
presents a high-level overview of our solution. The back-
ground information on the Java Card technology is given in §3;
the notions of a contract and a security policy of the platform
are introduced in §4. Algorithms of the framework compo-
nents are discussed in §5. We demonstrate correctness of the
presented solution in §6. We present the final architecture of
the framework in §7 and discuss the performance (§8) and
security (§9) of our solution. We overview related work (§10)
and then conclude (§11).

5 http://en.wikipedia.org/wiki/TaiwanMoney_Card. Accessed on
the web in Jan. 2013.

110 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

2. Our approach

The threat model. The third-party application providers do not
trust each other. We assume an attacker that can load appli-
cations (applets for short) on the secure element, remove her
own applets or update the security policy of her applets. The
attacker aims to gain access to sensitive services of other
applet providers, which possibly are former business partners.

The platform owner is trusted by the application providers
to make sure that the platform implementation is correct.
However, she does not want to be involved in the costly se-
curity validation of day-by-day policy or code changes for
applet providers. The responsibility of the platform owner is
to make sure that the platform implementation is correct. So
we assume that for any applet its development and deploy-
ment steps were correct and the bytecode respects the Java
abstractions. We do not consider application spoofing in the
threat model, because the means for protection against this
attack are already provided by the GlobalPlatform middleware
(GlobalPlatform Inc., 2011) (GlobalPlatform offers a set of
primitives to implement authentication with external clients
and establish encrypted communication channels).

Our solution. We propose a system to ensure secure co-
existence and sharing of capabilities between multiple appli-
cations in a mobile phone multi-tenant Java Card. Our system
does so through requiring access control lists for each service
interface that can be verified by the system at load time. The
specification of these lists is moved from functional code to a
dedicated bytecode component and stored on card separately
in a cumulative policy structure; so that the policy can be
updated without requiring cumbersome reinstalls upon
changes. The system fits within a state of the art (U)SIM card,
is compliant with the standard applet deployment protocol
and the Java Card Run-time Environment (JCRE).

Our framework improves the current JC security architec-
ture by performing the application code validation upon
loading. An applet aware of the new security architecture will
now bring a contract (a component of the code stating the
policy and the details of the inter-application communica-
tions the applet participates in). Contracts of deployed applets
will be collected by the platform and stored as the platform
security policy in a memory-efficient format. The contract of a
new applet will be matched with the actual loaded code on the
secure element and with the current security policy of the
platform. If both checks are successful, the applet will be
accepted and its contract will be added to the policy. Other-
wise it will be rejected and removed. Fig. 1 summarizes the
workflow for load time validation and the new components of
our framework: the claimChecker, the PolicyChecker and
the pPolicyStore. Fig. 1(b) shows the position of the new
components in the stack, for more details see Fig. 6.

Following the strategy to keep the platform secure after
each addition and deletion of an applet (we call these changes
platform evolution), our framework during the application
removal process checks that the platform after the removal
will continue to be secure. The ClaimChecker is not invoked
in this case, because the code was already verified to be
compliant with the contract. Only the PolicyChecker
component is invoked, and it decides if the application can be

removed (see §5.2 for more details). We also support a flexible
application policy update. On Java Card the application code is
updated by removing the current application and subse-
quently loading its new version, because the security policy of
an applet is embedded into the functional code. The sxcC
approach enables a way to update the security policy of an
application without reinstalling the code. The checks
executed for application policy update are similar to those
done for application deletion.

Our framework has been integrated with the existing JCRE
components. We do not deal with applet authentication in
this paper, because we rely on the GlobalPlatform authenti-
cation and delegation mechanisms, and we only focus on the
access control. We do not modify the standard application
deployment process, the Java Card Virtual Machine (JCVM) or
the existing firewall mechanism. Our approach ensures
backward compatibility: cards that are not aware of the new
framework can work with applets that are aware of it, and
vice-versa.

3. Background on Java Card

Our solution targets devices in the field, thus we have devel-
oped it for Java Card 2.2.2 (the previous stable generation (SUN
Microsystems, 2006)) and Java Card 3.0.4 (the latest specifica-
tion of the Classic edition (Classic Edition, 2011)), that is fully
backward-compatible with Java Card 2.2.2. The alternative
version of Java Card is 3.0.1 Connected edition, that supports
more standard Java features, such as servlets and service
factories. However, to the best of our knowledge this version is
not yet adopted by the industry. This claim can be supported
by the fact, that, while the Java Card 3.0 appeared in two
editions in 2008 (SUN Microsystems, 2008), only the Classic
edition is regularly updated by Oracle (the latest version 3.0.4
dated 2011 (Classic Edition, 2011)), while the Connected edi-
tion is frozen at the version 3.0.1 dated 2009 (SUN
Microsystems, 2009).

There are not so many novel features of the Java Card
platform that are available in the last specification 3.0.4, but
were not available in the Java Card 2.2.2. The new features are:
guaranteed integer support, the latest cryptographic algo-
rithms (4096-bit RSA), alignment with the latest contactless
protocol standards and garbage collector; but these features
are irrelevant for the scope of this paper.

Fig. 2 summarizes the main components of the platform
and the steps of applet development and deployment. The
JCRE comprises the JCVM, a set of the Java Card API, the
Installer and the Loader (Classic Edition, 2011). The standard
implementation of the JCRE includes components imple-
mented in Java Card (the Java Card Interface in Fig. 2) and
components implemented in C (the Native Interface in Fig. 2).
Calls from the JC components to the native components are
processed without hinderance; calls from the native compo-
nents to the JC components are prohibited, and lower level
primitives have to be used.

Application development and deployment. A developer writes a
package in Java, then he compiles it into .class files and af-
terwards converts it into a CAP (Converted APplication)
format. CAP files consist of several optimized components in a

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

111

Contract Contract
Appl App N

e e e i o e i e e
'
:/Pollcy Store

U
\ i Policy Store

: Java Card Interface 1

i
1
i
i
i
5 wlevepomy ,)| Claim Policy |1
i
. N 1"
CAE E Claim Checker Policy Checker |! CheCker CheCker "
BVECOU || ot — Linkingand |,1 Native Interface "
.| 71 | Contract Contract Installation e e — e == "
Contract Loadirg E matches Yes matches I .
1| Bytecode? Policy? E | JCRE |
] 1] femimimcmcmcmem
E Integrated :
i with the JCRE |

Device hardware

Free the memory

(a) The workflow for loading

J | Native OS |
| |

(b) The stack

Fig. 1 — The validation workflow for loading and the Java Card stack with the new components.

predefined format in order to reduce the amount of memory
needed for storing an applet; they include a single Constant
Pool component, a Method component with all methods in-
struction sets, etc. For conversion the Export files of imported
packages are required, and during conversion the Export file of
the converted package is produced. Export files contain fully-
qualified names and signatures of exported interfaces and
methods, and are used for interoperability purposes.

A package can contain one or multiple applets; an applet is
a class extending javacard.framework.Applet. A library
package does not contain any applets. Libraries cannot be
remotely invoked from a terminal or executed. For simplicity
we will consider that each package contains exactly one
applet and we will use words package, application and
applet interchangeably, except for when explicitly stated
otherwise.

The deployment includes the following steps. Upon
receiving a CAP file, the Installer uses the Loader API to pro-
cess the file and perform some checks specified in Classic
Edition (2011). Upon finalization of the linking process an
applet instance can be created. When the applet is no longer
wanted, the Installer, upon performing the necessary checks,

can remove the applet instance and the CAP file from the
memory (the removal process).

Java Card packages and applets are uniquely identified by
their AID (Applet IDentifier) assigned by the ISO/IEC 7816-5
standard. An AID is a long byte array and the CAP file structure
is optimized to avoid multiple repetitions of the same AID. The
AID of an imported package is listed only once in the Import
component of the CAP file and a 1 byte identifier (a tag) of this
package is used in the CAP file. On the card the loaded pack-
ages are further referred to by their local identifiers assigned by
the JCRE, which maintains the AID — local identifier corre-
spondence. We will denote the AID of package A as AIDj4.

Application interactions. Applets from different packages are
isolated by the JCRE firewall. The firewall confines each ap-
plet’s actions to the applet’s context. Each JC package (a CAP
file) has its own context, so objects can communicate freely
within the same package. For this reason we can consider that
each package contains one applet, as it is not possible to
mediate the communications within a package. Since a
package is loaded in one pass, a malicious applet cannot be
later added to an honest applet package. However, a malicious
applet can arrive in another package.

.Jjava
A 4

/ | instance

AppletB\

’ AppletA | Firewall

Compiler T
e S R T T e
i Java Card !
" Installer Java Card API Htarface, |
| 1| Pr— TS TS TS T T T TO TO TS TS TS Fo T T T T e e e e
.class gl :
Exportfile | Loader JCVM Native Native |
! (Interpreter) API Interface i

1
Converter _—_— .. :
Native OS
Exportfile
CAP file \l Device hardware /l

Fig. 2 — The traditional Java Card architecture, applet development and deployment process.

112 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

The interesting part is interactions of applets from
different contexts. The JCRE allows only methods of Shareable
interfaces (the interfaces extending javacard.framework.-
Shareable) to be accessible through the firewall. If an applet
desires to share some methods, it implements a Shareable
interface (SI). This applet is called a server and the shared
methods are called services. An applet that calls a service is
called a client.

In order to realize the applet interaction scenario the client
has necessarily to import the Shareable interface of the server
and to obtain the Export file of the server, which lists shared
interfaces and services and contains their token identifiers. The
server Export file is necessary for conversion of the client
package into a CAP file. In a CAP file all methods are referred to
by their token identifiers, thus during conversion from class files
into a CAP file the client needs to know correct token identi-
fiers for services it invokes from other applets. As Shareable
interfaces and Export files do not contain any implementa-
tion, it is safe to distribute them. The Export files consumption
for conversion is presented schematically in Fig. 2.

The current JC security mechanism to enforce access
control for service invocations is the context control JC APIL. A
server applet can check who is calling upon receiving a
request for the shared object or using the getPre-
viousContextAID () APIlin the service code. We illustrate this
in the following motivating example.

3.1. A motivating example

We consider two applets installed on a secure element. Purse
is a payment applet (e.g. payWave) and Transport is a tick-
eting applet (e.g. the DBahn NFC-based ticketing applet). The
public transportation system provides gate terminals that can
communicate to the Transport applet and check if the ticket
was paid. The ticket can be paid by the device holder through
specific payment terminals. If the Purse applet allows to
share its payment service with the Transport applet, then the
tickets can be purchased through pPurse, and the device
holder does not need to wait in the line to payment terminals,
as the ticketing process can be seamlessly executed by the
gate terminals.

Fig. 3 contains a sanitized code snippet from the purse
applet (we stripped off the details for the sake of clarity, the
functionality of the payment service of the actual applet is
different). The Purse applet has a service payment () provided
in Shareable PaymentInterface. Access control for this ser-
vice is implemented as the context control API usage upon
actual service execution (method JCSystem.getPre-
viousContextAID(), line 23 in Fig. 3) and the requesting
client AID check upon provision of the object implementing
the SI (line 32 in Fig. 3).

The access control list (ACL) clientAIDs[] is currently
hard-coded within the Purse code (line 6 in Fig. 3) and it can be
updated only if Purse is reinstalled. If the Purse provider does
not want to reinstall the applet any time the ACL is updated,
she might choose not to implement the service access control
at all. Unfortunately, in this set-up any other applet on the
card that knows the appletAID of Purse can invoke it. For
instance, the device holder can further load a new application
MessagingApp, which provides him access to the common

01 byte ClientsNumber = 1;

02 byte [] TransportAIDset =
{0x01,0x02,0x03,0x04,0x05,0x0C, 0x0A} ;

03 final AID TransportAID = JCSystem.lookupAID
(TransportAIDset, (short) 0, (byte) TransportAIDset.length) ;
04

05 //the access control list

06 AID [] clientAIDs = {TransportAID};

07 //ACL check implementation

08 public short authorizedClient(AID clientAID) {

09 for (short i=0; i<ClientsNumber; i++)

10 if (clientAIDs[i] .equals(clientAID))

11 return i; //clientAIDs is in the ACL
12 return -1;

13}

14 //SI definition
15 public interface PaymentInterface extends Shareable {

16 //definition of the payment service
17 byte payment(short account number) ;
18

}
19 public class PaymentClass implements PaymentInterface ({
20 byte payment code = 0x08;
21 public byte payment (short account number) {

22 //implementation of the service

23 AID clientAID = JCSystem.getPreviousContextAID() ;

24 if (authorizedClient (clientAID) == -1) //ACL check
25 return (byte) 0x00; //no service is provisioned
26 else return payment code; //provision of the service
27 }

28 }

29 public PaymentClass PaymentObject;

30

31 public Shareable getShareableInterfaceObject(AID oAid,
byte bArg) {

32 if (authorizedClient (ocAid) != -1) // ACL check

33 if (bArg = InterfaceDetails)

34 //provision of the SI object

35 return (Shareable) (PaymentObject) ;

36 else

37 ISOException. throwIt (ISO7816.SW WRONG DATA) ;
38 return null; //nothing is provisioned_ -

39 }

Fig. 3 — A sanitized snippet of the Purse applet. It contains
the ACL defined in the code, and definition,
implementation and provision of the payment service.

social network websites. This new applet may try to access the
sensitive payment () method of Purse, and if no controls were
implemented, execute the payment process. However, as the
payment service is sensitive, Purse has to use the cumber-
some embedded access control checks.

We argue that the context control API usage is not flexible,
as the list of the authorized clients is embedded in the code of
the server applet. Our framework gives the Purse applet the
possibility to redefine the ACL with the allowed clients for the
payment () service without reinstallation.

4, Contracts

High-level description. A provided service s can be identified as a
tuple (AIDq, t;, t,,), Where ATD, is the unique AID of the package
that provides the service s, t; is the token identifier for the
Shareable interface where the service is defined, and t,, is the
token identifier for the method s in the Shareable interface. A
called service can be identified as a tuple (AIDg, t;3, t®), where
AID;is the AID of the package providing the called service. More
details on the called service identification are given in Sec. 5.1.

The services provided and called by the applet A are listed
into the application claim, denoted AppClaim,. We denote the

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS I8 (2013) 108—129 113

export classes {
class_info {
token 0

// packagePurse/PaymentInterface
// Shareable interface token

name_index 3 // packagePurse/PaymentInterface

export methods count 1

methods {
method_info {
token 0 // shared method token

name_index 0 // payment

Fig. 4 — Shareable interface and method token identifiers of
the purse’s payment service in the Export file.

provided services set of application A as Provides, and the
called services set as Calls,.

The application policy, denoted AppPolicy, contains two
parts: sec.rules and func.rules. For the applet A sec.ru-
les, is a set of authorizations for access to the services pro-
vided by A. A security rule is a tuple (AIDg, t;, t,), where AIDg is
the AID of the package B that is authorized to access the
provided service with the interface token identifier t; and the
method token identifier t,. In other words, (AlDa, t;,t,) is a
service provided by A.

func.rules, is a set of functionally necessary services for A,
we consider that without these services provided on the
platform A cannot be functional (so there is no point to load it).
Functionally necessary services can be identified in the same
way as called services, moreover, we insist that
func.rules, S Calls,. We do not allow to declare arbitrary
services as necessary, but only the ones that are at least
potentially invoked in the code.

The application claim and policy compose the application
contract, denoted Contract. Contracts are delivered on the
card within Custom components of the CAP files.

Definition 4.1. For an applet A Contract, is a tuple (AppClaim,,
AppPolicy,), where AppClaim, is a tuple (Providesa, Calls,) and
AppPolicy, is a tuple (sec.rules,, func.rules,).

Contract realization. Token identifiers are used by the JCRE
for linking on the card in the same fashion as Unicode strings
are used for linking in standard Java class files. For a service
(AIDa, ty, t,) provided by A, the token identifier t; is listed in

the class_info. token structure of the corresponding inter-
face declaration in the A’s Export file, and the token identifier
tn is listed in the corresponding method_info.token. Fig. 4
presents an excerpt from the Export file of the Purse applet
with the token identifiers of the Shareable interface and the
method of the payment service. The Export file is consumed
by the Transport applet during conversion in order to replace
the fully-qualified names with the corresponding token
identifiers.

In Table 1 we provide examples of contracts of the Purse
and Transport applets in the standard Java fully-qualified
names and in the token identifiers notation. Contract can
be embedded within the Custom component of the CAP file
using the CAP modifier tool we have developed, in this way it
is delivered on board following the standard CAP file loading
protocol.

The choice to use Custom components is motivated by the
fact that CAP files carrying Custom components can be
recognized by any JC Installer, as the JC specification requires.
To write contracts we use structures and naming that are
similar to the ones defined for CAP files (Classic Edition, 2011).
After applying the standard JC tools (Compiler and Converter),
we modify the converted CAP file by appending the Contract
Custom component and modifying the contents of the
Directory component (by increasing the counter of the
Custom components amount and specifying the length of the
Contract Custom component), so that the Installer can
recognize that the CAP file contains a Custom component.
Note that this part does not need to be trusted: whatever er-
rors will be introduced in this part will simply mean that the
applet is rejected by our framework. More details of the tool
can be found in §7.

5. The components’ algorithms
5.1. The ClaimChecker algorithm

High-level description. The ClaimChecker is the component that
parses the CAP file and matches the contract with the CAP file
bytecode. The algorithm starts by retrieving the contract from
the Custom component, then it executes the check on the
provided services. The Export file of the package contains the

Table 1 — Contracts of Purse and Transport applets.

Contract structure

Fully-qualified names

Token identifiers

Purse
Provides
Calls
sec.rules

PaymentInterface.payment ()

func.rules

Transport
Provides
Calls
sec.rules
func.rules

Transport is authorized to call PaymentInterface.payment ()

Purse.PaymentInterface.payment ()

(0, 0)

(0x01020304050C, 0, 0)

(0x010203040508B, 0, 0)

114 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

explicit token identifiers of each Shareable interface and its
methods. However, as the Export file is not delivered on the
card, the claimChecker algorithm relies on the CAP file itself
and extracts the necessary token identifiers from the Export
and the Descriptor components. In the Descriptor component
the algorithm retrieves all the interfaces defined in this pack-
age, for each interface it checks within the Export component,
whether this interface is marked as Shareable. If this is the
case, the algorithm retrieves the method token identifiers for
this interface in the Descriptor component interface entry and
verifies that the pair <interface token, method token> is pre-
sent in the Provides set. After processing all the interface
entries in the Descriptor component, the algorithm ensures
that all services declared in the Provides set were found.

For the called services the algorithm starts again from the
beginning of the Descriptor component. It retrieves the Method
component offset to the beginning of each method of the cur-
rent package and stores the offset in the temporary buffer. We
note that in case there are too many methods in the CAP file,
the algorithm processes them in batches, to ensure that the
limited temporary buffer is not exceeded. Then the algorithm
accesses each method of the package in the Method compo-
nent with these offsets and checks that the invoked services
are all declared in the calls set of the contract. Afterwards, the
algorithm ensures that all called services declared in the calls
set were found. Algorithm 5.1 contains a short English
description of the operations done with the CAP file compo-
nents. We demonstrate correctness of this approach in Sec. 6.

The process of the called service identification is illustrated
in Fig. 5, it presents a (sanitized) source code snippet of the
Transport applet and the corresponding excerpts from the
CAP file. Transport invokes the payment service in line 08 of
the code snippet (the Transport source code is explained in
§3). This invocation corresponds in the bytecode to the in-
struction invokeinterface (2160), which is resolved in the CAP
file to invocation of the service (0x01020304050B, 0, 0), that is
the Purse’s payment service.

To implement the ClaimChecker we needed a subset of
the Loader API to access the beginning and the length of CAP
components. This subset (CAPlibrary) also contained some
of the data structures and constants available on the device
and some additional functions necessary to access the data
from the CAP file that was stripped off during loading and
stored separately. An example of a function available in the
CAPlibrary is the function serving the AID of the loaded
package, because it was stored in the card registry together
with the assigned local identifier, and is no longer available in
the CAP file. The claimChecker algorithm uses variable-
length temporary buffers, that do not exist on a smart card.
The actual implementation explores just one 256 byte length
temporary buffer. The academic partner followed the JC
specifications for re-implementing the caplibrary for testing
purposes and directing the prototype.

Sharing the cAPlibrary with the minimal Loader APl among
the smart card manufacturer and the academic partners was our
solution to the platform confidentiality problem. Without this

Require: A CAD file.
Ensure: True/False, Contract.

13: Header Component: get the current package AID;

15: if Not Muatch then return False
16: else return {True, current package AID, Coniract}

1: Custom Component: get Conrract;

2: // Start with the provided services

3: Descriptor Component: go through the interfaces and the interface methods;

4: Export Componcnt: get tokens of Shareable interfaces;

5: check for match with the provided services in the contract;

G: //Proceed to the called services

7: Import Component: get package AIDs of imported packages and their indices;

&: for ecach ATD check it is declared in the Contract;

9: Descriptor Component: go through the classes and obtain the offset of cach method, store it in the teruporary butfer;
10: Method Component: for cach siored method ollscl parse the bylecode Lo idemifly called services;
11: if a service invocation is found then
12: Constant Pool Component: check the called service {AID, interface token, method token) to be present in the Calls set;

14: The Final Check: rvcturn True ill the collecled sets match with the Contract

Algorithm 5.1 — The claimChecker algorithm English description.

Engineering aspects. The JCRE imposes some restrictions on
method invocations in the applet code. Only the opcode
invokeinterface in the code allows to switch the context to
another application. Thus, in order to collect all potential
service invocations we analyze the bytecode and infer from
the invokeinterface instructions possible services to be
called. During execution the JCVM expects three operands
(nargs,idcp, t,,) with this instruction and an object reference
ObjRef on the stack. There nargs contains number of argu-
ments of the invoked method (plus 1); 1dcp is an index into the
Constant Pool of the current package, the Constant Pool item
at idep index should be a reference to the interface type
CONSTANT_Classref; t, is the interface method token of the
method to be invoked and objectRef is the reference to the
object to be invoked. The id.; index in the Constant Pool
component is used to identify the AID of the called package
from the Import component.

set of API our implementation could not be integrated with a real
card. In the same time, one of the main concerns of the smart
card manufacturer partner was minimization of disclosure of
the proprietary implementation details.

5.2. The PolicyChecker component

The PolicyChecker component executes contract-policy
compliance checks. It needs to retrieve the security policy of
the card from the PolicyStore and the loaded contract from
the ClaimChecker. The contract is then converted into the
internal on-card format. Intuitively, during loading of applet B
the PolicyChecker has to check that (1) for all the services
from callsg, Bis authorized by their providers to call them; (2)
for all services from Providesy all applets that can invoke
these services are authorized by B; (3) all the services from
func.rules; are provided.

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129 115

01 private void connectServer () {

09 return;
10 }

o | 02 final AID appletAID = JCSystem.lookupAID AID length 6 Import

§. (serverAppletAID, (short)0, (byte)serverAppletAID.length) ; AID_(1.2.3.4.5.b} } component e
a| o3 if (appletAID == null) S
E 04 ISOException.throwIt (ISO7816.SW_CONDITIONS NOT_SATISFIED); 1116 %
=1 os PaymentObject = (PaymentInterface) constantPool[16]{.. Constant §
k] t 1 package_token 1 =
o | (JCSystem.getAppletShareableInterfaceObject (appletAID, e; ern: kpacoage_ oxen el %5
-g T e L))) £ class_token component 3
e =4
ol 06} . // bytecode of newBalance () ‘;
; 07 private void newBalance() { getstatic a 17; <
g // Actual service invocation TeEEca 5 thi; 2; Method o

08 payment code = PaymentObject.payment (account number) ; € ---___ I invokeinterface 2 16 0; component

package_info[1]{..

putfield b 3;
return;

Fig. 5 — AID, interface and method token identifiers of the invoked payment service in the CAP file of the Transport applet.

Algorithm 5.2 specifies the policy checks to be executed for
each type of change on the platform. It rejects all updates
(returns False) if they do not comply with these checks.
Notice, that the PolicyChecker component executes only the
checks for deployment of a new applet and removal of an
existing one (lines 2—8). In case of an application policy update
the PolicyStore component handles the check (lines 9—18).

For applet A we denote as shareable, C{AIDA} x N x N
the set of services provided by this applet. In practice, for a
package A we define shareable, as a set of meaningful
shared services. Namely, for each service s = (AIDa, t;, t,,,) such
that t; =
tn=export_file.export_classes[i].-methods[]j].token
s belongs to shareable, (the structures in this definition

export_file.export_classes[i].token and

Require: Speeification of the update ou the plattorm UpdateSpect fication, platform polieyv.
Ensure: True il the updale is compliany with the policy; False otherwise

1: switch UpdateSpecification do

2: case Deployment of a new package I3

3: for all deployed applets A € A do

ER if I3 ¢ sec.rulesa(Providesa M Callsp) then return False;

R if A ¢ sec.rulesg(Providesg M Callsa) then return False;

6: if func.rulesg Q |J Providesy then return False;

AFA
return True;
7 case Removal of alrcady deployed package B
2 if Providesg M { |J func.rulesp} # §) then return False:
AEA
return True;

9: case Policy update for already deployed package It £ A
10: switch PolieyUpdaieSpec ficaiion do
11: case Addition of an authorization rule for some applet 7 to access a service [3.s to sec.rulesg return True;
12: case Removal of an authorization rule for some applicalion €' 1o access a service B.s [rom sec.rulesg
13: if I3.s € Calls¢ then return False;
14: else return True;
15: case Addirion of a service (".s to func.rulesy
16: if s ¢ |J Providesa then return False;

AZA
17: else return True;
13: case Removal of a service (7.5 from func.rulesg return True;
Algorithm 5.2 — The policyChecker algorithm description.
6. The correctness proof represent the contents of the Export file of the package A). If £,

In order to demonstrate correctness of the proposed sxc
approach we define an abstract model of the JCRE, following
the specification. Let A, be a domain of package AIDs and As
be a domain of services (identified as tuples (AIDa,t, ty,)),
where AIDae A, is the AID of the package providing the ser-
vice. A package execution is defined by the set of methods of
this package. Let A be a CAP file and .74 be a set of methods of
this CAP file. A method me.#Z, is defined by the set of its in-
structions. Let #, be the set of opcodes of the method m. Let
Ba = Upe s, #m be abytecode of CAP file A. For the package A,
we will also denote its CAP file data (specifically, the Constant
Pool, Descriptor, Export and Import components) as

ConstPool,.

Definition 6.1 (Application). On the secure element platform a
deployed application A is a tuple (AIDa,.Za, ConstPooly).

or t, are not meaningful token identifiers (there is no struc-
ture with the value t; = export_file.export_classes
[i].token or there is no method with the corresponding t,,
token defined for this interface in the Export file), then
(AIDg, t;, ty) €shareable,.

Definition 6.2. (Platform)Platform ® is a set A of currently
deployed applications.

Definition 6.3. (Platform Security Policy)Security policy .7 of the
platform consists of the contracts of all the applications A={Aq, ...,
A,} deployed on the platform: % = Ua. a{Contracta, }

The taxonomy of the JCVM instructions. The JCVM specifica-
tion v. 3.0.4 (Classic edition) defines 109 instructions,
including 4 instructions that can be used to invoke methods.

These are invokeinterface, invokespecial, invokestatic

116 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

and invokevirtual. The instruction invokeinterface is
used for invocation of interface methods and it allows to
invoke services across package contexts. Other method invo-
cation instructions cannot be used for service invocations, as
the firewall will allow (at most) to switch context to the JCRE
context upon execution of these instructions. In Table 2 we
present a taxonomy of the JCVM instructions that we will use
to reason about applet execution. The taxonomy is based on
the possibility of a context switch upon execution of in-
structions, and we cluster the method invocation instructions
in a separate class of instructions.

Theorem 6.1. In the presence of the SxC framework all methods
invoked by any deployed application B are authorized by the plat-
form policy, or are allowed to be invoked by the JCRE.

Proof. The proof by contradiction goes over all possible
cases of method invocation on the platform. We first assume
the theorem does not hold: B is a deployed application and it
invokes some method not authorized in the platform policy (B
cannot invoke a method against the JCRE rules, otherwise the
platform implementation is incorrect). Since B is a deployed
application, it has been validated by the claimChecker and
the PolicyChecker, also all executed application policy up-
dates of B were validated. Possible cases are: B invokes its own
method, B invokes a method of yet undeployed applet A, and B
invokes a method of installed applet A. The first two situations
are obvious. In the last situation we reason by the type of the
executed instruction, discussing each possible instruction
type in the taxonomy. We omit the cases I-V for brevity, the
full proof is provided in the §Appendix B. Here we only discuss
the case when the executed instruction is a method invoca-
tion instruction, as the most interesting.

Table 2 — The JCVM instructions taxonomy.

Type Instructions

I Arithmetic instructions and other instructions that do
not modify executions. These are instructions like
iadd, bspush or dup. These instructions cannot throw
run-time exceptions or security exceptions. The JCVM
after execution of this instruction proceeds to the next
instruction.

I Instructions that can throw a run-time exception
(the JCVM can halt or modify the flow), but not
a security exception. These are instructions like
irem (remainder int) or idiv

111 Instructions that modify the execution flow. These
are instructions like goto, ifnull or jsr. These
instructions define branches in the execution flow.

1A% Instructions that define returns from methods,
like ireturn or return.
\Y% Instructions that can throw SecurityException,

excluding the method invocation instructions. These
are instructions like checkcast or iastore (all operations
with arrays). These instructions require the JCRE to check
whether the access to objects is legal, but they do not
invoke methods.

VI Instructions that invoke methods: invokeinterface,

invokespecial, invokestatic and invokevirtual.

Case VI. The next instruction is an invocation instruction
(type VI). These instructions (except for the invokestatic
instruction) expect to find an object on the stack and invoke a
corresponding method of this object. The method A.s can be
invoked if B has a reference to the object objref of A that
implements A.s. The JCVM does not check correctness of the
object ownership upon execution of the invocation in-
structions, but does this during the casting instructions
execution (instructions checkcast and instanceof).

B cannot maliciously cast an object of A into its own object
or an object from a third party C due to the typechecking rules
for casting. Therefore, an attempt of casting into B’s own (or
third-party) interface or class will result in a run-time excep-
tion and the JCRE will halt B’s execution. If B will cast an object
of A into the JCRE’s own type (such as Shareable), the object
will be accessible, but it will not be possible to invoke the
method A.s from this object.

We now discuss the invocation instructions.

Case VI-invokeinterface. If the next instruction is invo-
keinterface which invokes a method of A, then the second
operand idcp of this instruction references an externally
defined interface (we prove this in §Appendix B). The JCRE
firewall will allow to invoke a method across contexts if and
only if the invoked interface method belongs to the JCRE or to
a Shareable interface, as defined in [(Classic Edition, 2011),
Sec.6.2.8 of the JCRE specification]. Therefore, the invoked
method is a service of A; and no other method of A (not from a
Shareable interface) can be invoked by the invokeinterface
opcode.

The PolicyChecker verifies that for all services A.sq, such
that A.s; € Callsy and A.s; € Provides,, there will be the
corresponding service authorization present in sec.rules,:
(A.s1,B) € sec.rules,. Therefore, either (a) A.s & Callsgor (b)
A.s & Provides,. We can prove that both these cases lead to a
contradiction. Therefore, if invokeinterface is the next
executed instruction in the context of B and a service of applet
A is invoked, then B was authorized to invoke it in
sec.rules,.

Case VI-invokespecial. The next instruction is invokes-
pecial. According to the JCRE specification the object refer-
ence on the stack cannot belong to another context when
executing this instruction. Therefore only B’s own method can
be invoked.

Case VI-invokestatic. The next instruction is invoke-
static. This instruction accesses a static method that be-
longs to a class, and not an instance. Classes do not have
contexts, as objects do; public static fields and methods are
accessible from any context [(Classic Edition, 2011), Sec.6.2 of
the JCRE specification]. Therefore, if B was able to invoke a
static method of A, the JCRE allows it (no context switch
happens, the invoked method belongs to the current context
of package B).

Case VI-invokevirtual. The next instruction is invoke-
virtual. If the object reference on the stack references an
object from another context, the firewall will allow the invo-
cation if and only if the reference belongs to the JCRE [(Classic
Edition, 2011), Sec. 6.2.8 of the JCRE specification]. Thus upon
execution of this instruction B can only invoke its own method
or a JCRE method, but cannot invoke methods of another
applications.

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129 117

T

]

1

: \
instance 1| AppletA : Applet B

E PP Firewall PP

]

Compiler

1

Installer || Policy Store |l JavaCard | JavaCard 1
Interface !

1

.class

JCRE
5

Exportfile

Converter =

| | | i
| ; : N
i Claim ymm === Native | Native i
j Loader : Checker i el ! VM APl |Interfacet
i v _Checker _i || i
I_______________________J ________________________ l

Native OS

Exportfile

CAP file ! |
: !

Device hardware /|

v
CAP N CAP file with
Modifier | o contract

Fig. 6 — The Java Card architecture and the loading process enhanced with the sxC on-device validation.

So, for all JCVM instructions B cannot illegally invoke a
method of another application A. The last case is if A used to
authorize B to invoke A.s and B was deployed legally, but at
some point AppPolicy, was updated to remove this authori-
zation. This update could have been executed if and only if
A.s & Callsg. Again, by construction of the ClaimChecker, B
cannot invoke A.s unless this is declared in callsg. Therefore,
A cannot remove an authorization until B is removed.

7. The prototype design

The requirements on the implementation were elaborated by
the smart card manufacturer.

e The loading protocol should be unchanged. Secure elements that
ignored the framework should be able to work with applets
that were aware of it and secure elements incorporating the
framework should be able to work with applets ignoring it
(backward compatibility). We use Custom components in
the CAP files to deliver contracts. Cards ignoring the
framework would just ignore the Custom component (i.e.
the policy of the applet). And vice-versa, applets unaware of
the new framework (those without a contract) in an indus-
trial setting can be processed by the cards aware of the new
security mechanism. These applets will be validated to
provide 0 services and call O services. If some services or
service calls are present in the code, an applet with an
empty contract will simply be rejected.

Minimize changes to the existing JCRE code. Modification to the
loading code should be kept to a minimum, as the addition
to the functions of the Loader API can have negative impact
on its trustworthiness (and the certification with respect to
Common Criteria®). Modification of some other parts of the
JCRE, like the JCVM or the firewall, were ruled out of

¢ Common Criteria is a standard for security certification.

consideration due to prohibitive cost and required interac-
tion with multiple stakeholders (e.g. Oracle).

e Very small persistent and volatile memory footprints. The pro-
totype footprint could be up to 10 KB of non-volatile memory
for storing the prototype itself and the security policy of the
card across sessions, and could not use more than 1 KB of
RAM (for computation and data structures). The latter
requirement was further strengthened by the decision to
use a 256 bytes auxiliary temporary buffer to store the
temporary computational data. Because this is a buffer fixed
by the platform, our prototype consumes no additional RAM
for its computation. On different cards different amounts of
RAM are available (from 1 KB to 5 KB on modern cards). Thus
this temporary buffer restriction ensures the highest
interoperability.

The sxc architecture. Fig. 6 depicts the modified architecture
and the changes to the development and the deployment
processes of Fig. 2, the gray elements belong to the sxc pro-
cess and the dashed arrows denote the new steps of the
development process. We can notice that the deployment
process of Java Card is unchanged; and the sxc process adds
just one step after the standard Java Card development pro-
cess (the development and addition of the contract).

The most challenging task was identifying the location and
the mechanism of interaction with the PolicyStore. The
PolicyStore has to reside in the EEPROM, because the se-
curity policy has to be maintained across card sessions and it
has to be modifiable. However, only the Java Card components
(applets or the Installer) can allocate the EEPROM space upon
the card issuance finalization, and the native components,
such as the Loader, cannot do it. Thus the sx¢ prototype had
to be broken into a native part and a Java Card part. The
ClaimChecker was definitely the native part to be written in
C, because it needed to access the Loader API. The Policy-
Store was definitely a part to be written in Java Card. The
PolicyChecker could, in fact, be written in both languages
and successful implementations of the PolicyChecker

118 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

component as an applet exist (Dragoni et al, 2011;
Gadyatskaya et al., 2012). We have chosen to implement it in
C to ease delivery of the contract. For the memory optimiza-
tion reasons (to decrease the amount of separate functions)
the PolicyChecker functionality was implemented in the
SxCInstaller component. The SxCInstaller is imple-
mented fully in C and it serves as an interface with the plat-
form Installer.

The JCRE is implemented in a way that calls from a Java
Card component to a native component (for example, from
the Installer to the sxCInstaller) are processed without
hinderance. Unfortunately, calls from a native component to a
Java Card component are prohibited, unless lower level
primitives are used. Our solution is to introduce the Policy-
Store on the card as a class in the Installer. The Installer,
when invoking the sxCInstaller, serves it a pointer to the
current security policy array, and the access to this array is
done through a native APIL

An alternative architecture was to implement a Policy-
Store applet that would maintain the security policy. The
problem of native-Java Card communication was solved by
the usage of the APDU buffer. This solution would have
required less modifications to the platform implementation
and the sxc prototype could have been tested directly on a PC
simulator outside the premises of the platform implementa-
tion owner. The trade-off is that all policy data structures have
to fit into the APDU buffer. Standard Java Card platforms have
buffers of 128 B and 256 B, thus only a very small policy could
be maintained (256 B buffer only allows up to 4 applications).
In contrast, the usage of native API allows us to increase the
security policy size and to have more applications loaded on
the card (but it requires more modifications to the platform).

When the actual integration with the device was per-
formed, we have found out that the APDU buffer could not be
used during the loading process (platform-specific imple-
mentation detail of our smart card vendor). So we could not
compare the practical efficiency of the two architectures.

The developer prototype. The standard Java Card Development
Kit from Oracle’ does not support Custom components, so we
have developed a CAP modifier tool to embed contracts into
CAP files. It is available in our developer version of the tool.
The CAP modifier tool allows users to choose to add services to
Provides, Calls/func.rules and sec.rules sets, then the
dialog will appear where users can insert the necessary AIDs
and tokens. When the contract is ready it can be saved for
future usage. The contract can also be embedded into the
chosen CAP file, and then the CAP modifier can generate the
scripts necessary to communicate the CAP file to the card.

The carPlibrary was shared by the partners; the smart
card manufacturer has the actual implementation of the
CAPlibrary runnable on the device. For the developer pro-
totype we implemented the caplibrary following the JC
specifications.

We have made available the sxc prototype version for
testing purposes®; it runs on a PC and can be used by applet

7 http://www.oracle.com/technetwork/java/javacard/overview/
index.html, accessed on the web in Jan. 2013.
& Accessible from http:/disi.unitn.it/ ~ gadyatskaya/SxCdeveloper.

zip.

developers to practice the sxc scheme. It also includes several
testing scripts, the CAP modifier tool to embed the contracts,
the CAP files of the running example applets and a user
manual.

7.1. Policy management

The PolicyStore is responsible for storing the security
policy of the card. It has to be organized efficiently, so that
the PolicyChecker algorithm is fast while the space
occupied by the security policy data structures is small.
Once a new applet has been validated (both the Claim-
Checker and the PolicyChecker returned True), the se-
curity policy of the card is modified by including the
contract of the new applet. The sxCInstaller stores the
contract in the buffer, and the PolicyStore retrieves it and
adds to the policy data structures. In case some applet is
removed, after the PolicyChecker has approved this
change, the PolicyStore will remove the contract of this
applet from the policy.

For the contract-policy compliance check we have used bit
vectors, assuming up to 10 loaded applets at each moment of
time (the 11th will be rejected by the current implementation,
but it is possible to free the space by removing something
loaded), each applet can provide up to 8 services. These
numbers are more than enough for modern secure elements:
from our personal experience, current numbers are respec-
tively 4—7 deployed packages (most of them libraries) and 0—1
services. In the same time, our policy format is not restricted
with respect to possible authorized clients AIDs, these are
unconditioned.

Notice that the PolicyStore only maintains the security
policy data structures and performs updates, but the main
contract-policy compliance check is executed by the pPoli-
cyChecker, which retrieves the policy from the dedicated
platform buffer.

The possibility of applet policy update without reinstalla-
tion is one of the main benefits of the sxc approach. To up-
date the policy, the applet provider needs to contact the
PolicyStore. We consider atomic updates: addition or
removal of an authorization to sec.rules and addition or
removal of a necessary service to func.rules. A possible
AppPolicy update scenario for the example in §3.1: the Purse
applet provider chooses to allow the applet MessagingaApp to
call its service payment ().

The application provider needs to transmit to the poli-
cyStore component an APDU (Application Protocol Data Unit)
sequence specifying the type of the update to be executed, the

Table 3 — The sxc framework components sizes.

Component Compiled (PC) Compiled (device) LOCs
SxCInstaller 10 KB 1KB 178
ClaimChecker 10 KB 0.9KB 170
Total (C) 20 KB 2KB 348
PolicyStore 6 KB 6 KB 148
Total sxc 26 KB 8 KB

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129 119

25

20

15
10
5 1111l
0
&\ (\’b‘_\ < @Q\

&8 NN S SO
N > £ < NZ 3 [
ST A A
o & 2 O > 9 &
006 o «0‘ e b N A \\\
& @
® <°

(a) Comparison of embedded native components (b) Comparison of embedded components sizes com-
sizes (.obj files compiled on a PC Win32 Simula- piled on device (in KB).

tor, in KB).

Fig. 7 — Sizes of the prototype components and their comparison with the JCRE components sizes.

AlIDs of the applets in question (which applet’s policy has to be
updated and which is the AID in the security or functional
rule). The PolicyStore runs the check if the suggested up-
date leaves the card in a secure state, and executes the update
in case of a positive result. Notice that the necessary step of
the applet provider authentication should be present in the
policy update protocol; it can be implemented using the
standard GlobalPlatform middleware.

8. Resource analysis of the implementation

Several features are important for the embedded software.
Traditionally for smart cards the mostimportant feature is the
memory footprint of the new components. For instance, a
study of commercial Java Cards (Mostowski et al., 2007) lists
memory available on the card as the second card feature, after
the supported specifications; while the run-time performance
of cryptographic primitives arrives much later. In the NFC
world the user experience is crucial, and it is required that the
applet operations (such as execution of the payment process
by the purse applet and the ticketing operation by the
Transport applet in the example in §3.1) are very fast (frac-
tions of seconds). In contrast, the OTA deployment of applets
can take more time, because it can be executed by the stake-
holders, while performing other operations such as updating
status or charging money. Therefore, the load time perfor-
mance overhead for our framework is not as important as the
memory footprint. The sxc framework components run al-
gorithms that are linear in the size of the processed CAP file;
the load time overhead is insignificant in comparison with the
operations performed by the Loader and the Linker JCRE
components. In the same time, our framework actually re-
duces the applets’ execution time, because the ACL checks are
not performed anymore.

Therefore, we first focus on the memory footprint. Since
integration with an actual device is very costly, we first
measured the footprint of the prototype compiled on a PC
Win32 simulator (for compilation we used the Microsoft Vi-
sual C compiler cl.exe with appropriate options). Table 3
presents the data on the components sizes. The target

device is an in-use Infineon smart card integrated circuit (an
actual multi-application (U)SIM secure element). The Poli-
cyStore component was measured as a CAP file, because it is
the actual size on device. We also provide the number of lines
of the source code (LOCs). To give a feeling on the level of
optimization, Fig. 7 compares the embedded native sxcC
components sizes with sizes of the standard native JCRE
components (the Loader and the Linker compiled on the PC
simulator); Fig. 7(b) compares the sizes of the sxC components
compiled on device with on-device sizes of the Installer
(measured as a CAP file), the Loader and the Linker compo-
nents. The total size of the sxC prototype is bigger than the
Loader or the Linker, because the PolicyStore is imple-
mented in Java Card, while Loader and Linker are native
components and thus are highly optimized.

It should not be surprising that the size of the native
components compiled on a PC is an order of magnitude bigger
than the size of the native components deployed on a device.
This decrease of size is explained by multiple optimizations to
the native components structure carried out before deploy-
ment. For example, the device memory is smaller, so all
pointers and integers are shorter.

For the RAM allocation, in addition to the auxiliary tem-
porary buffer, the sxc prototype allocates less than 100 B (only
local variables, no transient arrays are used). The EEPROM
consumed by the PolicyStore for the security policy data
structures is 390 bytes (two arrays, 135 B and 255 B).

Processed applets. Table 4 presents the relevant details of
some of the applets we used to test the prototypes. The Purse
and Transport applets were developed by the smart card

Table 4 — Details of applets used for testing and
evaluating the sxC prototype.

Applet CAP file # of methods # of services LOCs
size in CAP file (.java)
Purse 2.5 KB 6 1 66
Transport 2.5KB 5 0 92
EID 11.2 KB 81 1 1419
ePurse 4.7 KB 16 1 431

120 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

manufacturer partner for functionality testing relevant for
client—server interactions. The ePurse is another electronic
purse applet provided by the smart card manufacturer. The
EID applet is an open-source electronic identity applet
(Philippaerts et al., 2011); originally it did not include any
services, so we have added 1 Shareable interface including 1
method.

There is no agreed industry benchmark for the represen-
tative size of the “average” applet. However, generally a CAP
file of 10 KB is already a big applet, most telecom applets are
between 1 and 10 KB.

9. Security analysis

We now review and discuss the security assumptions behind
our guarantees.

Correct implementation of the Java Card development,
deployment and execution environments. Soundness of the
framework algorithms relies on the correct implementation
of the JCRE and the JCVM, and we assume they are in full
compliance with the specifications (Classic Edition, 2011).
For instance, we require that the only way for applets to
communicate is through Shareable interfaces. Another
crucial assumption is that the bytecode is trustworthy and it
respects the Java type safety assumptions. These assump-
tions are standard for the JCRE security.

We base correctness of our technique on the guarantees
offered by the JCRE (§6). For example, we expect that illegal
(security-violating) context switches upon execution of a
JCVM instruction correspond to security exceptions thrown by
the JCVM (class SecurityException) The JCRE specification
defines how the context switches should be handled (the
firewall rules). If an instruction makes an attempt to switch
context illegally (not following the rules), a security exception
will be thrown. The current execution will be aborted and the
sensitive resources will be protected. This is why we consider
instructions able to throw this exception separately in the
taxonomy. Another special type of exceptions is System-
Exception, which can be thrown by the JCVM at any point of
the execution. This exception type handles the JCVM errors.
For the other exception types, besides SecurityException
and SystemException, the specification expects that appli-
cation providers can catch these exceptions and handle them
correctly. Any uncaught exception results cause the JCVM to
halt, the current applet execution is aborted. We consider that
in case of an uncaught exception, the JCRE context will
become the active context.

¢ The package AIDs cannot be spoofed. The AIDs are assigned
uniquely following the ISO standard. The existence of the
AID impersonation attacks (registration of a new applet
instance with a spoofed AID (Montgomery and Krishna,
1999)) and the need for reliable CAP file and applet authen-
tication techniques are acknowledged by the JC practi-
tioners for a very long time. The GlobalPlatform middleware
provides the means for secure card content management
(including delegation) and offers sophisticated mechanisms
for application and terminal authentication. A full industrial
implementation of our framework can leverage these

mechanisms. So we assume the applet code is authentic
and assigned to an authentic AID. We also assume that the
platform correctly authenticates applet owners for the pol-
icy updates. Our focus is on the code permissions and ser-
vice invocations.

e Access control to services is specified per a package rather
than per an applet instance. The service access control
policies enforced by our framework are based on the pack-
age AIDs, while the current JC methods of service access
control are based on the applet instance AIDs. However, the
package AIDs are more trusted than the applet instance
AlDs, as the package AIDs cannot be modified after the
conversion, while the applet instance AIDs can be changed
freely. In the same time, as all applets of the same package
can freely communicate, granting access for one applet
instance means in practice granting access for its whole
package. Thus the package-based access control does not
worsen the granularity of the current JC access control
policies. As well, in practice the industry only needs the
ACLsbased on the applet provider identity (access is granted
only to the trusted partners).

In the current paper we assumed that each package includes
exactly one applet. Our approach can also be directly applied
in the case when a single package includes multiple applets;
no changes to the contract model or the framework compo-
nents are required.
Regarding the abstract model of the platform, we have con-
jectured 1—1 correspondence between packages deployed on a
card and instantiated applets. In fact, the card can host
deployed packages that are not instantiated. If we do not
consider library packages and enforce the condition that each
package does not implement Shareable interfaces defined in
other packages, then the un-instantiated packages can not
participate in the inter-package communication (in both roles
of a server and a client), therefore our security theorem still
holds. A single package can be instantiated multiple times, but
all applet instances will belong to the same context and they
can be treated as the same instance.

e Restricted amount of deployed packages. There is no sub-
stantial limitation on the number of packages mentioned in
the policy (as authorized clients), but in order to improve the
policy management efficiency our prototype allows at most
10 packages to be deployed, validated and listed in the se-
curity policy at any given time. For modern secure elements
10 loaded packages is a significant amount: from our expe-
rience, usually high-end multi-applet cards carry around
4—7 packages, most of them being library packages used for
personalization (like GlobalPlatform), loaded at the card
manufacturer premises. However, the limit on the number
of deployed packages can be restrictive for the industry, as
we target open secure elements of the future. Our imple-
mentation can be improved by enabling dynamic scaling of
the policy structures.

¢ No services defined outside applets. JC allows library pack-
ages that do not contain any applets, but they can define
Shareable interfaces. We have investigated an extension of
the current proposal in order to consider also library pack-
ages and to capture implementation of a service defined in a
separate package and to strengthen the demands on the
functionally necessary services by requiring that the service

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129 121

is provided if there is a class implementing the interface
defining this service. To deal with these problems it is
possible to expand the contracts by including in the App-
Claim also the set of service definitions declared in the
current package. There will be a set of defined services and a
set of actually provided services. The calls set will be based
on invocations of defined services (because CAP files contain
the interface token, but not the actually invoked class), and
the Provides set will refer to the services implemented in
the current package. The PolicyChecker will ensure that
the policy of the package implementing a service is more
liberal than the policy of the package defining this service.

The pre-loaded libraries (those are deployed at the card

manufacturer premises before the card issuance) in the in-

dustrial setting can be accounted in the policy structure from
the very beginning.

e Each applet implements only services declared in this pack-
age. We interpret provided services as services that are
declared in the Export file of the package. Thus the sxC
approach to ensure the functionally necessary services avail-
ability requires a commitment from the server that the actual
implementation of the declared services will exist at run-time.

e The called services are identified in the bytecode by the
static token identifiers. While analyzing the code, we could
try to track the object references on the stack, thus inferring
all possible objects of the server that could be referenced by
the client during the invokeinterface opcode execution.
Unfortunately, only the server’s code defines which objects
it will provide and to whom. It is even possible the server is
not yet on the card when the client is loaded (and it could
never arrive). Thus the load time analysis can be only as
precise as the static tokens provided in the client’s code.

e The application policy update is secure. The sxC framework
is fully compliant with the standard JC application update
scheme — when an application is removed and then rede-
ployed again. This scheme has to be used when the func-
tional code needs to be updated (including removal of an
external service invocation or addition of a provided
Shareable interface). We have proposed a novel flexible
approach to update the security policy of an application
without redeployment. However, this scenario introduces
new potential insecurities, because it exposes a new
communication scenario with the Installer. Therefore to be
used in practice full security evaluation and certification of
the additional features of the Installer and the application
policy update protocol is required.

10. Related work
10.1. The Java Card security

The Java Card platform attacks and countermeasures. The security
of the Java Card platform and the novel security issues raised
by the open multi-application architecture are discussed in the
community for more than a decade (Girard and Lanet, 1999).
The hardware and software attacks on the platform (the side-
channel and fault-injection attacks) are outside of the scope of
this article. The interested reader can find the detailed

overview of the latest advances in these kinds of attacks and
the efficient countermeasures in Barbu et al. (2011), Barbu et al.
(2012a), Bouffard et al. (2011a), Bouffard et al., (2011b),
Markantonakis et al. (2009) and Leng (2009). Among the tools
for enabling security on Java Card are the bytecode verifier
(executed off-card or on-card) (Bouffard et al., 2011a), a hard-
ened defensive JCVM (Lackner et al., 2012; Dubreuil et al., 2012)
and a system for control flow integrity verification for Java Card
(Bouffard et al., 2011b). Regarding the applet interactions se-
curity on Java Card, W. Mostowski and E. Poll have investigated
in Mostowski and Poll (2008) the potential of abuse of the
Shareable interface mechanism (among discussing other types
of attacks on JCRE); they have demonstrated that with the
Shareable interface mechanism the JCVM can be tricked into
the type confusion, and observed that all tested cards with the
on-card bytecode verifier rejected applications with Shareable
interfaces. The authors hypothesize that this rejection of the
sharingapplets (being, strictly speaking, incompatible with the
JC specifications) is a safety measure, because the on-card
bytecode verifiers are not able to detect the type mismatch.
The run-time countermeasures against this attack are dis-
cussed in Bouffard and Lanet (2012). However, the only prac-
tical attack that exists in the literature (Mostowski and Poll,
2008) assumes collaborating malicious client and server ap-
plets. A standalone malicious applet (being it a client or a
server) cannot lead the JCVM to a type confusion.

One of the most eminent features of the updated Java Card
Classic edition is the garbage collector (Classic Edition, 2011).
G. Barbu et al. have investigated the replay attacks against the
Java Card platform with the enabled garbage collector (Barbu
et al., 2012b). In the reply attack an honest applet is removed
while a malicious applet retains the references to the honest
applet objects (the references can be guessed by using the
rules of the reference assignment on Java Card, that are quite
simplistic). These objects are not garbage collected, but cannot
be accessed due to the firewall mechanism. However, if a new
applet is immediately installed, it might be assigned the same
context identifier, and the malicious client will pass the object
references to the new applet. Being an applet from the “same”
context as the object references, the new applet can access the
objects of the original applet, that is now removed; thus the
firewall mechanism can be bypassed.

The communication protocols of the smart card and the host
terminal and their security are also outside the scope of this
article. The interested reader can find a summary of the control
flow difficulties in these protocols in Li and Zdancewic (2004).

The paradigm shift in the card ownership model. The traditional
smart card business model assumes a centralized controlling
authority (“issuer”) that manages the card. Application pro-
viders have to negotiate with the card issuer the terms for
loading and removal of applications; the card holder does not
take any decision or any responsibility in this model. Recently
the proposals of a user-centric open multi-application card
appeared (Akram et al.,, 2010; Sauveron, 2009). In the new
proposed paradigm the card holder is responsible for taking
the decision to install or remove an applet. In the same time,
the application providers require certain security guaranteed
for their applets on the shared platform,; this can be ensured
by sufficient security mechanisms available on the card
(Akram et al., 2010; Dragoni et al., 2001).

122 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

The NFC secure element security. M. Roland et al. in (2012)
overview the existing approaches for secure element imple-
mentation in the NFC-enabled mobile devices. They conclude
that the introduction of smart cards into mobile phones as
secure elements for NFC transactions can lead to unexpected
vulnerabilities due to the current lack of standardization for
the NFC card communication protocols. The standard smart
card communication protocols used for NFC transactions can
introduce, for instance, the denial of service attack: any phone
application can trigger an authentication protocol with the
device secure element, and the standard authentication pro-
tocols on some devices, such as Nokia 6131 and Samsung
Galaxy S, allow only for limited number of authentication
attempts. After reaching the threshold the card will be
brought to the terminated state, from which it cannot be
brought back to a working state. Therefore, a malicious
smartphone application can render the secure element
terminated.

Akram et al. (2012) identify a cooperative architecture
scheme for the NFC-based mobile services that merges the
Trusted Service Manager architecture, traditionally adopted in
the NFC trials, and the user-centric smart card model. The
authors allow the device holders to take the decision on
installing an applet, but the users now have to pay for this to
the card controlling authority (a telecom operator) that has
provided the open secure element infrastructure.

Application code verification. The smart card applications are
quite sensitive and usually require a tedious formal verifica-
tion and certification process (Narasamdya and Perin, 2009).
To facilitate the formal verification process G. Barthe et al.
have developed the JACK tool for validation of security of the
Java Card applets (Barthe et al., 2006). JACK can verify Java
source and bytecode, it includes automatic annotation gen-
eration algorithms and integration with the Coq prover.
VeriFast (Philippaerts et al., 2011) is another tool for auto-
mated verification of Java and C programs, that can be used for
the Java Card programs verification.

Run-time verification for Java Card. Souza da Costa et al. (2012)
are the pioneers in application of the run-time verification
techniques on Java Card. They have proposed the JCML (a
specification language for Java Card applications derived from
the JML) and an implementation for it (a compiler that gen-
erates the run-time verification code). The solution is based on
the Design-by-Contract approach: some logical assertions are
added to the source code to specify its contract. The assertions
are verified at run-time. In contrast to the sxC approach, the
application contracts in Design-by-Contract deal with lower
level code properties, such as code invariants, preconditions
and postconditions for the code parts. The experiments in
Souza da Costa et al. (2012) show viability of the JCML lan-
guage adoption for Java Cards. However, this language does
not improve the application communication access control
mechanism, because the assertions are still embedded in the
applet code.

10.2. Control of applet interactions on Java Card
Control of interactions for predefined sets of applets. Most of the

proposals for the control of applet interactions consider only
static scenarios, when the set of applets to be deployed on the

card is known in advance and can be analyzed at the premises
of the card issuer or the trusted controlling authority (Girard,
1999; Schellhorn et al, 2000; Bieber et al., 2002; Huisman et al.,
2004). For example, Avvenuti et al. (2012) have developed the
JCSI tool that verifies that a set Java Card applications respects
pre-defined information flow policies. As we have discussed,
the static scenarios are not appropriate with the dynamic
nature of the novel NFC-enabled platforms.

Dynamic applet interactions scenarios. Similar to ours card
evolution scenarios (application loading and removal) are
considered in Fontaine et al. (2011b), where Fontaine et al.
propose the TCF mechanism to enforce transitive control flow
policies on Java Card. These policies capture application col-
lusions, when two or more applications engage into a chain of
method invocations. These policies are stronger than the
policies enforced by the sxc framework, which captures only
the direct method invocations. The main limitation of the TCF
prototype is the focus on security domains and not on package
AlDs. Security domains are very coarse grained administrative
security roles, typically used to delegate installation privileges
(usually a handful). As a consequence we can provide a much
finer access control list. Therefore, while the sxc code-
contract and contract-policy checking steps can be accom-
modated by the TCF mechanism, this mechanism does not
support as rich set of authorized clients, as the sxc approach
does. We do not see an immediate solution to this problem,
because the finer access control lists for TCF will require
substantial memory resources to store the policy.

In (2011a) Fontaine et al. develop other types of policies
suitable for open multi-application Java Cards: the “global”
policies that allow to specify in a centralized manner sets of
prohibited method invocation chains across multiple appli-
cations and the full-fledged information flow policies, that are
inspired by the work of Ghindici and Simplot-Ryl (2008). The
information flow verification systems suitable for small Java-
based devices proposed in Fontaine et al. (2011a) and
Ghindici and Simplot-Ryl (2008) include off-device and on-
device steps. The off-device step consists of creation of an
information flow certificate (an information flow contract,
that contains the information flows within the application
and the secret/public annotations) for each application. Then
on device this certificate is checked in a proof-carrying-code
fashion and matched with the information flow policies of
other applications. The information flow policies are very
expressive, but no practical implementation of the proposed
systems for Java Card exist, due to the resource and other
constraints. For example, the mechanism proposed in
Ghindici and Simplot-Ryl (2008) cannot be implemented for
the Java Card Classic edition, because the latter does not allow
custom class loaders, and even implementation for the Java
Card Connected edition 3.0.1 may not be effective due to sig-
nificant amount of memory required to store the information
flow policies.

In the user-centric card ownership model the application
interactions are very important, as there is no central con-
trolling authority and it is difficult to have even implicit trust
in applets installed on the card. Akram et al. (2011) propose an
on-card framework for run-time applet authentication and
verification, that can augment the Java Card firewall. The
authors argue that the AID impersonation attack (Mostowski

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129 123

and Poll, 2008), when an applet can masquerade itself as
bearing a legitimate AID of another applet, is quite dangerous
in the user-centric model, when there is no controlling au-
thority to check which applets are installed; and therefore the
platform requires a set of protocols (based on the trusted
certification authority signatures and applet hashes) for
establishing trust between applets on the card. However, in
presence of the trusted certification authority the validity of
the applet AIDs can be established off-card (at least for the
applets that have passed the certification process). We can
expect that the load time sxcC code validation performed by
the card itself can be very beneficial for the user-centric open
smart cards, because with our proposal each platform is in-
dependent and is always maintained in a secure state with
respect to applet interactions.

The investigation of the Security-by-Contract techniques
for Java Card is carried out in Dragoni et al. (2011),
Gadyatskaya et al. (2012) and Gadyatskaya et al. (2011) tar-
geting dynamic scenarios when third-party applets can be
loaded on the platform. Dragoni et al. (2011) and Gadyatskaya
etal. (2012) propose an implementation of the PolicyChecker
component as an applet. While possible in theory, it has not
solved in any way the actual issue of communication between
that native and the JC components that we have addressed
here. This problem might only be solved if the authors of
Dragoni et al. (2011) and Gadyatskaya et al. (2012) could have
access to the full Java-based JCRE implementation. The spec-
ifications of the JC technology do not prohibit this, but in
practice full Java-based implementations do not exist. Our
ClaimChecker algorithm is more practical than the algorithm
in Gadyatskaya et al. (2011), which runs in one pass over a CAP
file, but needs to allocate memory to store temporary data. For
big CAP files (e.g. EID) the dynamic memory allocation is
prohibitive and it is necessary to reuse the space, though
increasing the number of runs over the CAP file.

10.3. Multi-tenant platforms

We survey the existing techniques for other most relevant
multi-tenant platforms.

Android. Typically, mobile applications (apps) for Android
are written in Java and compiled into DEX binaries. These bi-
naries are loaded on the Android platform and are executed by
the DVM (Dalvik Virtual Machine). Access to sensitive re-
sources on the platform is guarded by permissions, which are
granted to apps at the installation time. For some sensitive
permissions (like the GPS sensor access) the user is prompted.

Enck et al. (2009) have developed the Kirin security service
for Android that performs lightweight app validation at
installation time. The Kirin installer parses the manifest of the
loaded app and extracts the requested permissions. These
permissions are then compared with a predefined set of Kir-
in’s security rules and if a dangerous functionality access is
requested, the user is notified. Kirin is implemented as an app
showing feasibility of running on device.

Ongtang et al. (2009) were the first ones to advocate the
need of Android apps to protect themselves. They proposed
new types of app policies to be enforced on Android by the
Saint framework, among them permission assignment policy
that protects permissions for accessing app interfaces and

interface exposure policy that controls how the interfaces are
used. Saint regulates permissions assigned to apps at instal-
lation and enforces the app interactions policies.

Proposals for Android that suggest off-device verification
(such as Blasing et al., 2010; Enck et al., 2011) performed by the
user generally do not take into account that an average user is
not security-aware and he/she would probably not consider
the security threats of inter-app communications. For secure
elements this approach is not possible. Off-device app byte-
code rewriting to enforce security is a powerful technique (Xu
et al., 2012), as one could modify apps to use a specific policy-
regulated API for communications, or even to remove unau-
thorized interactions. Unfortunately, rewriting is dubious
from the business perspective. There is no clear understand-
ing who is liable in case a rewritten app failed. Is it the
developer or the rewriter (user/app market)?

Run-time monitoring of execution and inter-app commu-
nications is another known technique. Run-time monitors
capture the exact app behavior and are more precise than the
over-approximating static code analysis. An example of
lightweight app interaction policies enforcement at run-time
is presented in Ongtang et al. (2009), richer policies are elab-
orated, for instance, in Bugiel et al. (2012), Enck et al. (2010) and
Felt et al. (2011). However, the precision comes at the price of
run-time overhead.

JavaME, .Net. The sxC paradigm was proposed for multi-
application mobile devices (JavaME and .NET technologies)
(Bielova et al., 2009; Desmet et al., 2008). In the original sxc
scheme an application arrives on the mobile platform equip-
ped with a contract and signed by the developer. The contract
contains a suitable formal model of application security-
related behavior, such as the number of SMS sent per execu-
tion or access to the sensitive user agenda. A security policy
set by the user or the telecom provider defines allowed and
forbidden actions. The contract is matched by the device with
the security policy before the execution (Bielova et al., 2009). In
case of failure an inlined reference monitor is used (Desmet
et al.,, 2008). This approach allows to run even potentially
dangerous applications in a sandbox environment.

In our scheme for Java Card the contract is matched with
the applet bytecode; while in the sxC scheme for mobile de-
vices the contract-code compliance has to be trusted and is
based on the digital signature of the provider. The contract-
code matching step is, essentially, missing. Also, in the sxC
scheme for mobile devices the security policy of the mobile
platform is defined by the user or by the telecom provider.
This is justified because the policy protects the sensitive re-
sources of the user. However, in our scheme for JC the cu-
mulative security policy is composed by the contracts of all
applets currently loaded on the card, because the platform
protects the sensitive resources of the applets.

On-market verification. There are smartphone markets, such
as Apple Store and Google Play, where the platform providers
(Apple and Google, respectively) perform some off-board
checks of apps, but these checks do not aim at the app in-
teractions. Apple’s official statement’ says “Most rejections
are based on the application containing quality issues or

° http://www.apple.com/hotnews/apple-answers-fcc-
questions/, accessed on the Web in Jan. 2013.

124 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

software bugs, while other rejections involve protecting con-
sumer privacy, safeguarding children from inappropriate
content, and avoiding applications that degrade the core
experience of the iPhone”.

Besides bug and nudity checking the process is geared to
ban competitors of Apple or its partners. Google Voice was
rejected for “replacing ...Apple user interface with its own
user interface for telephone calls, text messaging and voice-
mail”. Aside from banning competitors, Apple mostly relies on
identity verification to avoid malware on the market. In the
same time, the off-device verification techniques that could be
done on the app market are of limited applicability to the
inter-app communication security, because the market does
not fully know the set of apps already installed on devices and
it is infeasible to validate all possible combinations of apps.

On-board credentials. The on-board credentials (ObC)
approach is developed by Ekberg et al. (2008) and Kostiainen
et al. (2009). The authors develop a security architecture for
hosting credentials (secret keys and algorithms) on multi-
tenant secure hardware platforms. Their approach enables
open credential platforms, where each credential provider can
load her secret data independently. There are also (restricted)
means for interactions of the provisioned programs. To enable
interactions (with the purpose to access a secret data or an
algorithm), the credential provider has to create a new family
and endorse the authorized programs (by submitting the
family secret key and the program hash) to this family. On
board ObC programs are validated with respect to hashes, that
is yet another form of signature verification. We perform on
device semantic validation on what programs do and invoke.
A revocation of access is not directly supported in the ObC
paradigm; in order to prevent usage of a credential by no
longer trusted partner one needs to disable the old credential
and load a new one with a different hash.

The sxc framework is complementary to the ObC tech-
nology and could be used for its enhancement. The current
approach of endorsement induces a significant run-time
overhead for credential execution. The ObC interpreter lan-
guage can be modified to include the specific instruction for
credential invocation, similarly to the Java Card system. Then
the load time code validation can be leveraged in order to
speed up the run-time computations and enable better revo-
cation mechanism.

11. Conclusions and outlook

In the paper we have presented the sxC prototype imple-
mentation that can be embedded on a real device. The sxc
prototype aims to ensure security of application interactions
on Java Card during applet loading or removal. It also handles
applet policy updates that do not require reinstallation. We
have demonstrated that our framework is correct with respect
to the JCRE specification.

We perceive the separation of the security code from the
functional code as a significant improvement in the OTA
loading setting, because it easies updates of the policy and
decreases the execution time of applications. However, there
is also a downside in it: the applications cannot execute
selectively based on who is calling them at the moment.

If the platform owner wants to deploy a full isolation policy
on the secure element, our framework provides a noninvasive
way to do it. The ClaimChecker can ensure that loaded ap-
plets do not provide and do not call any services; the JCRE
implementation does not need to be modified and re-certified.

We have presented a full ecosystem for the on-device sxc
validation: the CAP modifier tool to embed contracts into CAP
files and the sxc framework that includes the ClaimChecker
and the sxCInstaller components written in C and inte-
grated with the card native components, and the Policy-
Store component written in Java Card and integrated with
the Installer. We have also discussed integration with an
actual device. We believe that these results are interesting for
anyone looking into enhancing application security using
secure elements.

Potential market acceptance. Besides the technical aspects
there is also a more general question: how mature is the
market to accept this solution? At present, most companies
using JC are not yet ready to forgo the cushioned assurance of
certification of interactions for the most sensitive applets
locked on the card. Yet, there is an interesting trend that
makes our technology appealing.

From an industry perspective what is important is the se-
curity of the whole product (the secure element platform
combined with all loaded applets). This was ensured by se-
curity certification for compliance with Common Criteria or
other industry standards (VISA, etc.). Due to the costs and
operational constraints of the security certification, the in-
dustry is now partitioning applications into highly sensitive
ones and less sensitive (“basic”) ones. The topmost sensitive
applications would still be certified at the manufacturer’s
premises and possibly pre-loaded, but the “basic” applets
would no longer be certified. Rather, the product as a whole
would be certified secure but open for OTA loading of “basic”
applets.

Since “uncertified” (in the Common Criteria sense) does not
mean “insecure”, those “basic” applets are still subject to a
large number of security rules and validation checks needed
to ensure security of the final product. These checks are so far
performed off-card before loading. In the context of OTA
loading of the “basic” applets, the sxc approach is thus
promising. It could allow to get rid of (a part of) the off-card
security checks, performing them on board instead. This will
reduce the time-to-market for service providers and facilitate
the deployment of those applets.

Acknowledgments

We thank Eduardo Lostal for developing the prototype. This
work was partially supported by the EU under grants EU-FP7-
FET-IP-SecureChange and FP7-IST-NoE-NESSOS.

Appendix A. Implementation details

The detailed ClaimChecker algorithm. Algorithm Appendix A.1
follows the English description in Alg. 5.1. In order to access
the components of the CAP files on the secure element we use
the caplibrary library provided by the smart card

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129 125

manufacturer. For the sake of clarity some simple checks
performed by the algorithm are written only in English. The
received CAP file is a byte array which is structured accord-
ingly to the CAP file specification. Thus the algorithm refers
directly to items (fields) of the structures defined in the CAP
file specification (Classic Edition, 2011) and we indicate which
component structures belong to in the object-oriented nota-
tion.

refers to an internally defined interface; 3) upon execution of
invokeinterface (nargs,idgp, t,) [ObjRef] the ObjRef object
reference is incompliant with the interface resolved from id.p.

Let wus assume invokeinterface (nargs,idgp,ty)
[ObjRef] is executed and the cP[id.p] item refers to an
externally defined interface, but the current ObjRef on stack
refers to the object belonging to the current CAP file context.
The referenced object has to implement the interface speci-

Require: A CAP file, byte TempBufferCalls|], byte TempBufferOffsets|].
Ensure: True/False, Contract.
1: //Custom Component: get Contract;
: //Descriptor Component: go through the interfaces and the interface methods;
3: boolean found = False;
short InterfaceToken:
for i = 0 to Descriptor.classescount do
if classes[i] has a flag ACC_INTERFACE = 0x40 in the access_flags then
//Export Component: pet tokens of shareable interfaces;
for j = 0 to Export.classes_count do
if Export.class_exports[j].class_offset = Descriptor.classes[i].this_class_ref then
// this is an exporied sharcable interface;
found = True;
InterfaceToken = j;
//check for match with the provided services in the contract;
if found then
for j = 0 to Descriptor.classes[i].method_count do
found = False;
for k = 0 to Contract.provides_count do
if { InterfaceToken, Descriptor.classes[i].method[j].token) = Contract.provides[k] then
found = True;
if found = False then
//there is no declared provided serviee return False
else return False
chieck that all provides_info were found;
//Proceed to the called services
short PackageToken;
: //Import Component: get package AIDs of imported packages and their indices;
//for cach server ATD in the Contract check it is imported;
for i = 0 to Contract.calls_count do
for j = 0 to Import.count do
if Contract.calls[i].server AID matches with Import.packages[i].AID then
PackageToken = j;

if some declared called AID is not imported then return False;

store the called services info in TempBufferCalls[] in the following fortnal (PackageToken, Contract.calls|i].interface token
Contract.calls(i].service token);
31: short method number = 0;
35: //Descriptor Component: po through the classes and obtain the offset of sach method, store it in the temporary buffer;
36: for i =0 to Descriptor.classes_count do

37: for j = 0 to Descriptor.classes[i].methods_count do
38: siore Descriptor classes(i].methods[j].method offset in TempBufferOffsets||:
39: method number + -+

40: // Method Component: [or cach method offscl parse the bylecode (o find called services;
41: for i = 0 to method number do

42: CurrentMethod = Method TempBufferOffsets[i]

43: parse the bytecode of CurrentMethod

44: if the invokeinterface instruction is found then

45: store the operands iuto LocallnterfaceToken und ServiceToken;

46: // Constant Pool Component: check the high bit of the structure is 1, then get the interface token and check the called
service (AID, iuterface token, method token) to be present iu the Calls set;

47: if the high bil of ConstantPool.constant_pool[LocallnterfaceToken] equals Lo 1 then

48: InterfaceToken = ConstantPool.constant pool.cp_info[LocalInterfaceToken|.class_token;

49: PackageToken = ConstantPool. constant pool.cp_info[LocallnterfaceToken].package token;

50: if (PackageToken, InterfaceToken, ServiceToken) does nol exist in TempBufferCalls|] then return False;

51: check that all calls_info were found;

52: // Header Component: get the current package ATD; return {True, Header.package.AID, Contract}

Algorithm Appendix A.1 — The ClaimChecker Algorithm.

Appendix B. The correctness proof.
We first prove an auxiliary Proposition Appendix B.1.

Proposition Appendix B.1. When the instruction invo-
keinterface (AID,idcp,ty,) [ObjRef] is executed, if the cp
[idcp] item is an externally defined interface, then ObjRef refer-
ences an object belonging to another context. If the CP[id.p] item is
an internally defined interface, then ObjRef references an object
belonging to the current CAP file context.

Proof. Three cases are possible: 1) upon execution of invo-
keinterface (nargs,idp,ty) [ObjRef] the CP[idcp] item re-
fers to an externally defined interface; 2) upon execution of
invokeinterface (nargs,idep, ty,) [ObjRef] the CP[idcp] item

fied by the CP[idc;] item, and therefore, since this object was
created by the current package, either the current package has
implemented this interface, or has extended and imple-
mented this interface. This contradicts the assumption that
all the CAP files implement only Shareable interfaces defined
in the same CAP file.

If invokeinterface (nargs,idep, t,) [ObjRef] is executed
and the CP[idcp] item refers to an internally defined inter-
face, but the current objRef on stack refers to the object
belonging to a different CAP file context. Again, the referenced
object has to implement the interface specified by the cp
[idcp] structure, therefore, another package (the owner of the
ObjRef) has to implement this interface, which contradicts
the previously mentioned assumption.

126 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

The JCRE protects the object referenced by objRrRef from
being cast to an incompliant interface upon reception of the
object reference. Namely, the checkcast (idep) [ObjRef] in-
struction, where CP[idcp] item is a reference to an interface
type, requires that the object referenced by objRref imple-
ments the interface type referenced by cP[idc;], otherwise
the ClassCastException is thrown upon execution of the
casting instruction.]

Theorem Appendix B.1. In the presence of the SxC framework all
methods invoked by any deployed application B are authorized by the
platform policy, or are allowed to be invoked by the JCRE.

Proof. The proof goes over all possible cases of method
invocation on the platform. Assume the theorem does not
hold: B is a deployed application and it invokes some method
not authorized in the platform policy (it cannot invoke a
method against the JCRE rules, unless the platform is imple-
mented incorrectly). Since B is a deployed application, it has
been validated by the ClaimChecker and the PolicyChecker,
also all executed application policy updates of B were
validated.

We consider the invocation of one’s own method as obvi-
ously authorized, though the platform policy does not specify
it explicitly. So the remaining case is when B tries to invoke a
method s of some other application A. If A is not deployed or
method s is not provided, B will obviously fail. We need only to
consider the case when A is already deployed and s is actually
provided by A. Applet A has been validated by the claim-
Checker and the PolicyChecker, and all executed policy
updates of A were approved.

We reason inductively over the length of execution of a
platform (number of executed instructions) that the invoca-
tion cannot happen. Let ¢ be a sequence of instructions
executed by the JCVM leading to the context of applet B (the
next instruction to be executed belongs to some method
B.m € %) such that invocation has not occurred so far. The
proof proceeds showing that ¢ cannot be extended with the
unauthorized invocation, considering the taxonomy of the
JCVM instructions we defined in Table 2.

Case L. The next instruction in the execution is one of the
type L. Obviously this instruction cannot invoke a method or
produce a context switch.

Case II. The next instruction is one of the type II. This in-
struction can produce a context switch only to the JCRE
context, upon throwing an exception. The method A.s cannot
be invoked.

Case III. Type III instructions cannot produce a context
switch, because the execution flow only changes within the
same method of B that is currently executed. The method A.s
cannot be invoked.

Case IV. Type IV instructions are return instructions, they
cannot invoke a new method and can only switch context to
A’s context in case A was already in the execution stack.
Method A.s could be invoked in the latter case, but not from B’s
context (otherwise the illegal invocation would have occurred
earlier in o).

Case V. Type V instructions can produce a context switch,
but cannot invoke a method. In this case, the context can only
be switched to the JCRE context.

Case VI. The next instruction is an invocation instruction
(type VI). These instructions (except for the invokestatic
instruction) expect to find an object on the stack and invoke a
corresponding method of this object. The method A.s can be
invoked if B has a reference to the object objrRef of A that
implements A.s. The JCVM does not check correctness of the
object ownership upon execution of the invocation in-
structions, but does this during the casting instructions
execution (instructions checkcast and instanceof).

We now demonstrate that B cannot maliciously cast an
object of A into its own object or an object from a trusted
third party C. The type checking rules for the casting in-
structions require that the received object is cast into a
compatible type [(Classic Edition, 2011), Sec.7.5 of the JCVM
specification] and, specifically, if the object of another applet
A does not implement a Shareable interface, it cannot be
accessed for casting at all [(Classic Edition, 2011), Sec.6.2.8 of
the JCRE specification], because a run-time exception will be
thrown.

Type compatibility is verified by the casting instructions,
and an object of A implementing a Shareable interface SI4 can
be cast only into the same interface SI4 or its superinterface.
Therefore, an attempt of casting into B’s own (or third-party)
interface or class will result in a run-time exception and the
JCRE will halt B’s execution. If B will cast an object of A into the
JCRE’s own type (such as Shareable), the object will be
accessible, but it will not be possible to invoke the method A.s
from this object.

We now reason by the invocation instructions. Further the
instruction operands are written in angular brackets and the
relevant stack contents in square brackets.

Case VI-invokeinterface. The next instruction is invo-
keinterface (nargs,idcp,ty,) [ObjRef], where ides is an
index into the Constant Pool of the currently executed appli-
cation B (the item at this index is a reference to an interface);
and t, is a token identifier of a method of this interface. This
interface can be defined in the application B (then the Con-
stant Pool structure at the index id.; is a pointer to the Class
component of B and the high bit of this structure is 0) or can be
an imported interface (the high bit of the pointed Constant
Pool structure is 1). In the latter case the Constant Pool
structure contains the token identifier t; of the target inter-
face and an index idi.p..c at the Import component of B,
where the structure at this index is the AID AID, of the
package A providing the interface.

ObjRef references the object whose method will be finally
invoked (the token t, identifies it). If id., references an
externally defined interface, then 0bjRef references an object
belonging to a context different from the one of B; if idcs
references an internally defined interface, then ObjRef be-
longs to B’s context (Proposition Appendix B.1).

If ide, references an internally defined interface, the
method invoked upon execution of the invokeinterface
instruction is B’s own method. So we only need to consider the
case when id., references an external interface. The JCRE
firewall will allow to invoke a method across contexts if and
only if the invoked interface method belongs to the JCRE or
to a Shareable interface, as defined in [(Classic Edition,
2011), Sec.6.2.8 of the JCRE specification]. Therefore,
A.s = (AIDa, t;,t) is a service of A; and no other method of A

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129 127

(not from a Shareable interface) can be invoked by the invo-
keinterface opcode.

The pPolicyChecker verifies (Sec. 5.2, line 5.2 of the pol-
icyChecker algorithm) that for all services A.s; such that
A.s; € Callsy and A.s; € Provides, there will be the corre-
sponding service authorization present in sec.rules,: (A.sq,
B) € sec.rules,. Therefore, either (a) A.s & Callsy or (b)
A.s & Provides,.

(a) Assume A.s & Callsg. This means, Contracty is not
faithful: B actually invokes A.s, but this is not described in the
contract.

Upon validation of B the ClaimChecker has retrieved the
offsets to each method of the B’s CAP file (lines 35—39 of Alg.
Appendix A.1), including the offset to the method B.m,
because the CAP file specification requires that each method
present in the CAP file has a valid offset stored in the
Descriptor component.

For each retrieved method the claimChecker parses the
full set of instructions of this method (lines 41—43 of Alg.
Appendix A.1). As invokeinterface € Zpm, thus the Claim-
Checker has found it (line 44) and retrieved the operands idcp
and t, (line 45). For a successful context switch the JCVM
specification requires that the high bit of the structure at the
index idqp within the Constant Pool component of B is equal
to 1 (checked on the line 47), CPs[idcp] = (idlmportA, t;) and the
Imports [idimport’] = AID,.

For the obtained element (idlmponA, ty, t) (lines 48—49 of the
algorithm) the claimChecker matches it with an element of
TempBufferCalls[] (line 50). However, the Ccallsy set is
transformed by the ClaimChecker into the form
(local_pack_id, t;, ty,) (line 33). Thus if (AIDa,t;,ty) & Callss,
then there is no element (local_pack_id,, t;, ty,) in TempBuf-
ferCalls[], where local_pack_id, is an index within the
Import component of B such that Importz[local pack_id,] =
AID,. However, the ClaimChecker has verified that
(idlmponA, t,ty) € TempBufferCalls[] and
[idmpore’] = ATID,. We have come to a contradiction of the
construction of the ClaimChecker with the assumption that
A.s & Callsg.

(b) Assume A.s & Provides,. Since the service is actually
invoked, A.s € shareable,. As A is a deployed application, it
was validated by the cClaimChecker and the PolicyChecker.
Notice, that the set Provides, could not have been updated
through the AppPolicy, update. Therefore, Contract, pre-
sented at the deployment is unfaithful: there is a provided
service in the code which was not declared in the Provides,
set. Thus (AIDa,t;,tn) € shareable,, but (AlIDa,t, ty,)
& Provides,.

All shareable interfaces are declared in the Export file and
the Export component of the CAP file. Therefore, the Claim-
Checker during validation of A parses all interfaces declared
in the CAP file of A (lines 5-6) and checks with the Export
component if the interface is exported. Thus the Claim-
Checker successfully identifies all shareable interfaces (lines
9—12), and for each of these interfaces it goes through the
declared method tokens matching them with the Provides,
set (lines 8—22). By definition of the shareable, and by con-
struction of the ClaimChecker (in compliance with the JCRE
specifications), shareable, & Provides,. Notice that if
A.s & shareable,, then it cannot be actually invoked.

Importg

Thus, if invokeinterface is the next executed instruction
in the context of B and the service (AIDa, t;, t,) of applet A is
invoked, then B was authorized to invoke it in sec.rules,.

Case VI-invokespecial. The next instruction is invokes-
pecial (idcp) [ObjRef]. According to the JCRE specification
the object reference objrRef on the stack cannot belong to
another context when executing this instruction. Therefore
only B’'s own method can be invoked.

Case VI-invokestatic. The next instruction is invoke-
static. Thisinstruction accesses a static method that belongs
to aclass, and not aninstance. Classes do not have contexts, as
objects do; public static fields and methods are accessible from
any context [(Classic Edition, 2011), Sec.6.2 of the JCRE specifi-
cation]. Therefore, if B was able to invoke a static method of A,
the JCRE allows it (no context switch happens, the invoked
method belongs to the current context of package B).

Case VI-invokevirtual. The next instruction is invoke-
virtual (idcp) [ObjRef]. If ObjRef references an object from
another context, the firewall will allow the invocation if and
only if objRef belongs to the JCRE [(Classic Edition, 2011), Sec.
6.2.8 of the JCRE specification]. Thus upon execution of this
instruction B can only invoke its own method or a JCRE
method, but cannot invoke methods of another applications.

So, for all JCVM instructions B cannot illegally invoke a
method of another application A. The last case is if A used to
authorize B to invoke A.s and B was deployed legally, but at
some point AppPolicy, was updated to remove this authori-
zation. This update could have been executed if and only if
A.s & Callsg, as defined in line 16 of Algorithm 5.2. Again, by
construction of the claimChecker, B cannot invoke A.s unless
this is declared in callsg. Therefore, A cannot remove an
authorization until B is removed.

REFERENCES

Akram RN, Markantonikas K, Mayes K. A paradigm shift in the
smart card ownership model. In: Proc. of ICCSA 2010, LNCS
6019. Springer-Verlag; 2010.

Akram RN, Markantonakis K, Mayes K. Application-binding protocol
in the user centric smart card ownership model. In: Proc. of
ACISP-2012, LNCS 6812. Springer-Verlag; 2011. p. 208—25.

Akram RN, Markantonakis K, Mayes K. Coopetitive architecture to
support a dynamic and scalable NFC based mobile services
architecture. In: Proc. of ICICS-2012, LNCS 7618. Springer-
Verlag; 2012. p. 214-27.

Avvenuti M, Bernardeschi C, De Francesco N, Masci P. JCSI: a tool
for checking secure information flow in Java Card
applications. Journal of Systems and Software
2012;85(11):2479-93.

Barbu G, Duc G, Hoogvorst P. Java card operand stack: fault
attacks, combined attacks and countermeasures. In: Proc. of
CARDIS-11, LNCS 7079. Springer-Verlag; 2011. p. 297—-313.

Barbu G, Andouard P, Giraud C. Dynamic fault injection
countermeasure: a new conception of Java Card security. In:
Proc. of CARDIS-2012. Springer-Verlag; 2012a.

Barbu G, Hoogvorst P, Duc G. Application-replay attack on Java
Cards: when the garbage collector gets confused. In: Proc. of
ESS0OS-2012, LNCS 7159. Springer-Verlag; 2012b. p. 1-13.

Barthe G, Burdy L, Charles], Gregoire B, Huisman M, Lanet J-L,
et al. JACKA tool for validation of security and behaviour of
Java applications. In: Proc. of FMCO-2006, LNCS 4709. Springer-
Verlag; 2006. p. 152—74.

128 JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129

Bieber P, Cazin], Wiels V, Zanon G, Girard P, Lanet J-L. Checking
secure interactions of smart card applets: extended version.
In: JCS, vol. 10(4). IOS Press; 2002. p. 369—98.

Bielova N, Dragoni N, Massacci F, Naliuka K, Siahaan I. Matching
in Security-by-Contract for mobile code. In: JLAP, vol. 78(5).
Elsevier; 2009. p. 340-58.

Blasing T, Batyuk L, Schmidt AD, Camtepe SA, Albayrak S. An
Android Application Sandbox system for suspicious software
detection. In: Proc. of MALWARE’10 2010. p. 55—62.

Bouffard G, Lanet J-L. The next smart card nightmare. In:
Cryptography and security: from theory to applications, LNCS
6805. Springer-Verlag; 2012. p. 405—24.

Bouffard G, Iguchi-Cartigny J, Lanet JL. Combined software and
hardware attacks on the Java Card control flow. In: Proc. of
CARDIS-2011, LNCS 7079. Springer-Verlag; 2011a. p. 283—96.

Bouffard G, Lanet J-L, Machemie], Poichotte J, Wary J. Evaluation
of the ability to transform SIM applications into hostile
applications. In: Proc. of CARDIS-11, LNCS 7079. Springer-
Verlag; 2011b. p. 1-17.

Bugiel S, Davi L, Dmitrienko A, Fischer T, Sadeghi A-R, Shastry B.
Towards taming privilege-escalation attacks on Android. In:
Proc. of NDSS’2012 2012.

Chin E, Felt AP, Greenwood K, Wagner D. Analyzing inter-
application communication in Android. In: Proc. of
MobySys’2011. ACM; 2011. p. 239-52.

Desmet L, Joosen W, Massacci F, Philippaerts P, Piessens F,
Siahaan I, et al. Security-by-Contract on the .NET platform. In:
Information security technical report, vol. 13(1). Elsevier; 2008.
p. 25—-32.

Dragoni N, Gadyatskaya O, Massacci F. Supporting software
evolution for open smart cards by Security-by-Contract.
In: Dependability and computer engineering: concepts for
software-intensive systems. IGI Global; 2001. p. 285—305.

Dragoni N, Lostal E, Gadyatskaya O, Massacci F, Paci F. A load
time policy checker for open multi-application smart cards.
In: Proc. of POLICY-11. IEEE; 2011. p. 153—6.

Dubreuil J, Bouffard G, Lanet J-L, Cartigny J. Type classification
against fault enabled mutant in Java based smart card. In:
Proc. of ARES-2012. IEEE; 2012. p. 551—6.

Ekberg J-E, Asokan N, Kostiainen K, Rantala A. Scheduling
execution of credentials in constrained secure environments.
In: Proc. of ACM STC’2008. ACM; 2008. p. 61—-70.

Enck W, Ongtang M, McDaniel P. On lightweight mobile phone
application certification. In: Proc. of ACM CCS 2009. ACM; 2009.
p. 23545,

Enck W, Gilbert P, Chun B, Cox L, Jung J, McDaniel P, et al.
TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In: Proc. OSDI-2010.
USENIX; 2010. p. 1-6.

Enck W, Octeau D, McDaniel P, Chaudhuri S. A study of Android
application security. In: Proc. of the 20th USENIX security.
USENIX; 2011.

Felt AP, Wang HJ, Moshchuk A, Hanna S, Chin E. Permission re-
delegation: attacks and defenses. In: Proc. of the 20th USENIX
security. USENIX; 2011.

Fontaine A, Hym S, Simplot-Ryl L. Verifiable control flow policies
for Java bytecode. In: Proc. of FAST-2011. Springer-Verlag;
2011a. p. 115-30.

Fontaine A, Hym S, Simplot-Ryl I. On-device control flow
verification for Java programs. In: Proc. of ESSOS’2011, LNCS
6542. Springer-Verlag; 2011b. p. 43-57.

Gadyatskaya O, Lostal E, Massacci F. Load time security
verification. In: Proc. of ICISS’2011, LNCS 7093. Springer-
Verlag; 2011. p. 250—64.

Gadyatskaya O, Massacci F, Paci F, Stankevich S. Java card
architecture for autonomous yet secure evolution of smart
cards applications. In: Proc. of NordSec’2010, LNCS 7127.
Springer-Verlag; 2012. p. 187-92.

Ghindici D, Simplot-Ryl I. On practical information flow policies
for Java-enabled multiapplication smart cards. In: Proc. of
CARDIS-2008, LNCS 5189. Springer-Verlag; 2008. p. 32—7.

Girard P. Which security policy for multiapplication smart cards?.
In: Proc. of USENIX WOST-1999. USENIX; 1999.

Girard P, Lanet J-L. New security issues raised by open cards. In:
Information security technical report, vol. 4(2). Elsevier; 1999.
p. 19-27.

GlobalPlatform Inc.. GlobalPlatform card specification V.2.2.1; 2011.

Huisman M, Gurov D, Sprenger C, Chugunov G. Checking absence
of illicit applet interactions: a case study. In: Proc. of FASE’04,
LNCS 2984. Springer-Verlag; 2004. p. 84—98.

Kostiainen K, Ekberg J-E, Asokan N, Rantala A. On-board
credentials with open provisioning. In: Proc. of ASIACCS’2009.
ACM,; 2009. p. 104—15.

Lackner M, Berlach R, Loining J, Weiss R, Steger C. Towards the
hardware accelerated defensive virtual machine — type and
bound protection. In: Proc. of CARDIS-2012. Springer-Verlag;
2012.

Langer], Oyrer A. Secure element development. In: NFC forum
spotlight for developers; 2009.

Leng X. Smart card applications and security. In: Information
security technical report, vol. 14(2). Elsevier; 2009. p. 36—45.
LiP, Zdancewic S. Advanced control flow in Java card programming.

In: SIGPLAN Not., vol. 39(7). ACM; 2004. p. 165—74.

Markantonakis K, Tunstall M, Hancke G, Askoxylakis I, Mayes K.
Attacking smart card systems: theory and practice. In:
Information security technical report, vol. 14(2). Elsevier; 2009.
p. 46—56.

Montgomery M, Krishna K. Secure object sharing in Java Card. In:
Proc. of WOST’99. USENIX; 1999.

Mostowski W, Poll E. Malicious code on Java Card smart cards:
attacks and countermeasures. In: Proc. of CARDIS-2008, LNCS
5189. Springer-Verlag; 2008. p. 1-16.

Mostowski W, Pan J, Akkiraju S, de Vink E, Poll E, den HartogJ. A
comparison of Java Cards: state-of-affairs 2006. In: CS-Report
CSR 07-06, TU Eindhoven 2007.

Narasamdya I, Perin M. Certification of smart-card applications in
common criteria. In: Proc. of SAC’09. ACM; 2009. p. 601—8.
Ongtang M, McLaughlin S, Enck W, McDaniel P. Semantically rich
application-centric security in Android. In: Proc. of

ACSAC’2009 2009. p. 340-9.

ORACLE. Java Card 3 Platform. Virtual machine and run-time
environment specification, Classic Edition. Version 3.0.4.; 2011.

Philippaerts P, Vogels F, Smans J, Jacobs B, Piessens F. The Belgian
electronic identity card: a verification case study. In:
Automated verification of critical systemsElectr. Commu. of
the EASST, vol. 76; 2011.

Roland M, Langer], Scharinger J. Practical attack scenarios on
secure element-enabled mobile devices. In: Proc. of NFC-2012.
IEEE; 2012. p. 19—-24.

Sauveron D. Multiapplication smart card: towards an open smart
card?. In: Information security technical report, vol. 14(2).
Elsevier; 2009. p. 70—8.

Schellhorn G, Reif W, Schairer A, Karger P, Austel V, Toll D.
Verification of a formal security model for multiapplicative
smart cards. In: Proc. of ESORICS’00, LNCS 1895. Springer-
Verlag; 2000.

Souza da Costa U, Martins Moreira A, Musicante MA, Souza
Neto PA. JCML: a specification language for the runtime
verification of Java Card programs. In: Science of computer
programming, vol. 77(4). Elsevier; 2012. p. 533-50.

SUN Microsystems. Runtime environment and virtual machine
specificationsln Java Card" platform, V.2.2.2; 2006.

SUN Microsystems. The Java Card 3 platform; 2008. White paper.

SUN Microsystems. Java Card 3 Platform. Virtual machine, run-
time environment and Java servlet for the Java Card platform
specification, Connected Edition. Version 3.0.1; 2009.

JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 18 (2013) 108—129 129

Xu R, Saidi H, Anderson R. Aurasium: practical policy
enforcement for Android applications. In: Proc. of USENIX
security 2012.

Olga Gadyatskaya received a Ph.D. in Math-
ematics in 2008 at the Novosibirsk State
University. From 2007 to 2008 she worked as a
researcher at the Institute of Computational
Mathematics and Mathematical Geophysics
(Novosibirsk). Since 2009 she joined Depart-
ment of Information Engineering and Com-
puter Science of the University of Trento as a
post-doctoral research fellow. Her research
interests include security policies and load
time verification approaches for smart cards
and mobile devices.

Fabio Massacci is full professor at the Uni-
versity of Trento. He received his M.Eng. in
1993 and Ph.D. in Computer Science and
Engineering at the University of Rome “La
Sapienza” in 1998. He worked in Cambridge
University (UK), the University of Siena and
IRIT Toulouse (FR). His research interests are
in automated reasoning at the crossroads
between requirements engineering, com-
puter security and formal methods.
Currently he is actively working on industry

level security engineering methodologies
and is the coordinator of the EU SEC-
ONOMICS project on Security Economics.

Quang-Huy Nguyen holds a PhD in Com-
puter Science since 2002. He enjoyed several
post-doc stays at INRIA before joining
Gemalto as a research engineer. Since 2011,
he is a senior security consultant in Trusted
Labs. His field of research covers various
aspects of formal methods from both theo-
retical and applicative points of view, in
particular, the use of these methods in
computer security.

Boutheina Chetali received a Ph.D in Com-
puter Science from the University of Henri
Poincare & INRIA-Lorraine in 1996. After 10
years as R&D Manager in Gemalto Technol-
ogy & Innovation, in 2010 she joined Trusted
labs as the head of R&D. She is a member of
the Java Card Forum security group and the
GlobalPlatform security group.

