Load Time Security Verification *

Olga Gadyatskaya, Eduardo Lostal, and Fabio Massacci

DISI, University of Trento, Italy
{surname} @disi.unitn.it

Abstract. Modern multi-application smart cards can be an integrated
environment where applications from different providers are loaded on
the fly and collaborate in order to facilitate lives of the cardholders. This
initiative requires an embedded verification mechanism to ensure that all
applications on the card respect the application interactions policy.
The Security-by-Contract approach for loading time verification consists
of two phases. During the first phase the loaded code is verified to be
compliant with the supplied contract. Then, during the second phase
the contract is matched with the smart card security policy. The paper
focuses on the first phase and describes an algorithm for static analy-
sis of the loaded bytecode on Java Card. The paper also reports about
implementation of this algorithm that can be embedded on a real smart
card.

1 Introduction

Multi-application smart cards are an appealing business scenario for both smart
card vendors and smart card holders. Applications interacting on such cards can
share sensitive data and collaborate, while the access to the data is protected
by the tamper-resistant integrated circuit environment. In order to enable such
cards a security mechanism is needed which can ensure that policies of each
application provider are satisfied on the card. Though a lot of proposals for
access control and information flow policies enforcement for smart cards exist
(2], [9], [10], [12], they fall short when the cards can evolve. The scenario of
a dynamic and unexpected post-issuance evolution of a smart card in the field,
when applications from potentially unknown providers can be loaded or removed,
is novel and not yet treated comprehensively.

For a dynamic scenario, traditionally, run-time monitoring is the preferred
solution. But smart cards do not have enough computational capabilities for
implementing complex run-time checks. Thus the proposal to adapt the Security-
by-Contract approach (initially developed for mobile devices [4]) for smart cards
appeared. In the Security-by-Contract (SxC) approach each application supplies
on the card its contract, which is a formal description of the application behavior.
The contract is verified to be compliant with the application code, and then the
system can ensure that the contract matches the security policy of the card.

* Work partially supported by the EU under grant EU-FP7-FET-IP-Secure Change.

The SxC framework deployed on the card consists of two main components
integrated with the card manager. These two components are the ClaimChecker
and the PolicyChecker. The ClaimChecker performs extraction of the contract and
verifies that it is compliant with the application code. Then the PolicyChecker
ensures that the security policy of the card is compliant with the contract. This
component is also responsible for updating the security policy after each evo-
lution of the card and maintaining it across updates. A proof-of-concept imple-
mentation of the PolicyChecker component is described in [3]. The PolicyChecker
prototype was developed in a form of an application installable and runnable
on a smart card, thus this prototype demonstrated feasibility of the embedded
PolicyChecker implementation.

The loading time verification mechanism for secure application interactions
requires a careful investigation of multi-application smart card platforms. We
have chosen to focus on the Java Card technology as one of the current leaders
for open multi-application smart cards implementation. We present in Section 2
a brief overview of this technology and then we outline the SxC solution for Java
Card (Section 2.2) emphasizing the changes to the platform. The Java Card
internals are discussed more deeply in Section 3. In this section we focus on
the loading process and the run-time environment. We then concentrate on the
application contracts in Section 4, discussing the contract can be created and
the mechanism to deliver it securely on the card.

In this paper we propose an algorithm for the ClaimChecker component of
the SxC framework for the Java Card technology (Section 5). The ClaimChecker
parses the bytecode loaded on the card, extracts the contract and compares it
with the actual code of the application. The ClaimChecker component is an intri-
cate part of the SxC framework, because its implementation requires access to the
loaded application code. We report about implementation of the ClaimChecker
algorithm in C. For on-card prototypes it is important that they have small
memory footprints. We therefore present the memory usage statistics (for EEP-
ROM and RAM) that demonstrates feasibility of the approach (Section 6). The
related work is discussed in Section 7 and we conclude with Section 8.

The main contributions of our current work are:

— The specification of the application contracts;

— The algorithm for the ClaimChecker component of the SxC framework;

— The implementation of the algorithm in C demonstrating that the algorithm
can be embedded onto an actual smart card chip.

2 The SXC Architecture for the Java Card Platform
Evolution

Java Card is a popular middleware for multi-application smart cards that allows
post-issuance installation and deletion of applications. Application providers de-
velop applets (Java Card applications) in a subset of the Java language. This
subset is object-oriented, but misses some traditional Java data types and fea-
tures. Full description of the Java Card language is provided in [11].

\

Applet B

Java Card API ‘

A——

[/

[) (1

— Installer ovm Native API
—r— (Interpreter)

‘ Native OS |

\ ‘ Device hardware ‘/

Fig. 1. The Java Card Architecture and the Loading Process

| instance | | Applet A |

Firewall

.class

JCRE ‘

Converter |-—»| CAPfile

Currently smart cards in the field run on the Java Card version 2.2.2, thus
our proposal supports this version. Also a new specification for Java Card 3.0 is
published, but its developments are currently frozen due to, among all, security
concerns. However, the SxC approach we advocate in the future can be ported
also for the third generation of Java Cards.

2.1 The Java Card Platform Architecture and the Loading Process

Figure 1 presents the architecture of a chip with the Java Card platform installed
and the application loading process. The architecture comprises several layers
which include device hardware, an embedded operating system (native OS),
the Java Card run-time environment (JCRE) and the applications installed on
top of it [11]. Important parts of the JCRE are the Java Card virtual machine
(JCVM) (its Interpreter part) and the Installer, which is an entity responsible
for post-issuance loading and installation of applications.

Applets are supplied on the card in packages. The source code of a pack-
age is converted by the application providers into class files and then (using a
Converter which is actually an off-card part of the JCVM) into a CAP file. The
CAP file is transmitted onto a smart card, where it is processed, linked and
transformed into a platform-specific executable format (defined by the platform
developer). Application providers do not need to consider different on-card ex-
ecutable formats, as they are just required to supply a correct (compliant with
the Java Card specifications) CAP file. Then, upon finalization of the linking
process, an applet instance is installed.

One of the main technical obstacles for the verifier running on Java Card
is unavailability of the application code (in a known format of a CAP file) for
reverification purposes after linking. Thus the application policy cannot be stored
within the application code itself, as the verifier will not have access to it later.

Applications on Java Card are separated by a firewall and the interactions
between applets from different packages are mediated by the JCRE. If two ap-
plets belong to different packages, their contexts are different, and the Java Card
firewall confines applet’s actions to its designated context. Thus, normally, an
applet can reach only objects belonging to its own context. The only applet’s
objects accessible through the firewall are methods of specific shareable inter-
faces, also called services. A shareable interface is an interface that extends
javacard. framework.Shareable.

If an application A implements some services, it is called a server. An ap-
plication B that tries to call any of these services is called a client. A typical
scenario of service usage starts with a client’s request to the JCRE for a ref-
erence to A’s object (that is implementing the necessary shareable interface).
The firewall passes this request to application A, which decides if the reference
can be granted or not. If the decision is positive, the reference is passed through
the firewall and is stored by the client for further usage. The client can now
invoke any method declared in the shareable interface which is implemented by
the referenced object. During invocation of a service a context switch will occur,
thus allowing invocation of a method of the application A from a method of
the application B. A call to any other method, not belonging to the shareable
interface, will be stopped by the Java Card firewall [11].

As all applet interactions inside one package are not controlled by the firewall
and due to the fact that a package is loaded in one pass (thus it is not possible
to load a malicious applet in one package with an honest one), we consider that
one package contains only one applet and there is an one-to-one correspondence
between packages and applications.

2.2 Security-by-Contract for Java Cards

The Security-by-Contract framework for smart cards provides an extension of
the Java Card architecture with two main components: the ClaimChecker and
the PolicyChecker. The loading time verification process is performed by these
components. Another addition to the platform is the Policy applet. The applet
appears due to the fact that only applications can allocate space in EEPROM
(mutable persistent memory), that is the only type of memory suitable to store
the security policy across updates. We have solved the issues of the application
code unavailability after linking by storing the security policy (that incorporates
each installed application policy) in a separate accessible Policy applet.

Figure 2 depicts the proposed architecture, the additions to the JCRE are in
long dashed rectangles. More details about the architecture and its implemen-
tation are given in Section 6.

This paper focuses on the ClaimChecker component, that is responsible for
contract-code matching. Thus only the application loading scenario is relevant
for the ClaimChecker, as during the application removal the code has already
been verified to be compliant with the contract. The workflow of the loading
scenario follows (only the actions relevant to the SXC process are listed):

/ I Policy Applet I \
I Policy Mapping :

1 1 1
I 1 1 :
1 1
-MayCaH -WishUst 1 Applet A 1 1| AppletB
| I | Firewall |
e ——— | | 'l L]
JCRE
— . — — — — — Java Card API
a—— |' S*C |
L (I Claim Policy
—) (] |
—] Checker Checker ICVM _
- Native API
{Interpreter)
Installer
Native OS
K Device hardware /

Fig. 2. The Security-by-Contract Extended Architecture

1. New package B is loaded (CAP file is transmitted to the card, the Installer
receives it and saves into the modifiable memory);
. The Installer retrieves the current security policy from the Policy applet and
invokes the ClaimChecker;
3. The ClaimChecker gets the contract from the CAP file and runs the verifica-
tion algorithm;
4. If the ClaimChecker succeeds, it invokes the PolicyChecker and sends it the
pointer to the contract;
5. The PolicyChecker gets the security policy and runs the contract-policy com-
pliance algorithm;
6. If the PolicyChecker succeeds, it communicates the update to the security
policy;
7. If the ClaimChecker and the PolicyChecker succeeded, B is linked and stored
in the persistent memory, and the card security policy is updated to include
its contract. Otherwise, B is rejected and removed from the memory.

[\

The SxC framework verifies that the following two properties will be satisfied
on the card after any accepted change:

— Service Invocation Security: If an application A calls during its execution a
service s of an application B, then B has authorized A to access s in B’s
security policy;

— Awailable Functionality: If an application A declared that it needs a service
s of an application B in order to be functional, then the service s is indeed
provided by B.

The formal proof of these properties established on the Java Card platform
by the SxC framework relied on the fact of existence of a sound ClaimChecker
algorithm [6]. In fact, the ClaimChecker component is the corner stone of the SxC
framework, and it’s specification and implementation were the key tasks while
building the framework.

2.3 Threats to Validity of the SxC Approach

The SxC approach and the guarantees it provides are ensured with the certain
assumptions made. Obviously, soundness of the framework algorithms relies on
the correct implementation of the JCRE and the JCVM, and we assume they are
in full compliance with the specifications [11]. For the invoked services we rely
on the trustworthiness of the Compiler, that has to be compliant with the Java
type safety requirements. We also assume that the bytecode was not tampered
with after compilation and conversion.

For the provided services, we rely on the trustworthiness of the servers. In-
deed, in the SxC paradigm provision of a service requires a commitment to
implement the necessary shared object and to provide a correct object reference
in response to a request from any client. The server has to rely on the loading
time verification by the SxC framework and it should not use the access control
mechanisms embedded into the code. We also have to assume the correctness of
the server implementation.

The SxC framework enforces access control for direct services usage. We
would like to mention that the current access control enforcement on Java Card
is embedded into the application code. Traditionally, the server will receive an
AID of the client requesting its service from the JCRE and check that this client
is authorized before granting it the reference to the object (that can implement
multiple services). Once the object reference is received, the client can access all
the services within this object and it can also leak the object reference to other
parties. The SxC framework checks the authorizations for each service access,
thus the object reference leaks are no longer a security threat.

3 The Java Card Internals

We now present the Java Card platform details that were used to build the
SxC framework and to guarantee the security it enforces. In order to realize the
application interaction scenario the client has necessarily to import the shareable
interface of the server and to obtain the Ezport file of the server, that lists
shared interfaces and services and contains their tokens. The server’s Export file
is necessary for conversion of the client’s package into a CAP file. In a CAP file
all methods are referred to by their tokens, thus during conversion from class
files into a CAP file the client needs to know correct tokens for services it invokes
from other applications. As shareable interfaces and Export files do not contain
any implementation, it is safe to distribute them.

Tokens are used by the JCRE for linking on the card similarly as Unicode
strings are used for linking in standard Java class files. A service s can be iden-
tified as a tuple (A, I,t), where A is a unique application identifier (AID) of the
package that provides the service s, I is a token for a shareable interface where
the service is defined and ¢ is a token for the method in the interface I. Further
we will sometimes omit an AID and will refer to a service as a tuple (I,).

We discuss now the CAP files and service invocation details used further in
the ClaimChecker algorithm. The JCRE imposes some restrictions on method
invocations in the application code [11]. Only the opcode invokeinterface
in the code allows to perform the desired context switch. Thus, in order to collect
all potential service invocations we need to analyze the bytecode and infer from
the invokeinterface instructions possible services to be called.

Opcode “invokeinterface nargs I t” has 3 (explicit) operands, as de-
fined in the JCVM specification [11, Sec. 7.5.54]. Operand nargs defines a num-
ber of invoked method arguments (plus 1), operand I provides an index in the
Constant Pool component where the structure at this index should correspond
to a reference to an interface class and operand ¢ is an interface method token for
the method to be invoked. Meanwhile, the stack before execution of the opcode
invokeinterface nargs I t should contain on its top an object reference
R, followed on the operand stack by nargs—1 words of arguments.

Intuitively, while analyzing the code, we could try to track the object refer-
ences on the stack, thus inferring all possible objects of the server that could be
referenced by the applet during invokeinterface opcode execution. But un-
fortunately, it is only the server’s code that defines which objects it will provide
and to whom. It is even possible the server is not yet on the card when the client
is loaded (and it could never arrive). Thus our analysis can be only as precise as
the tokens provided in the client’s code.

4 Application Contract

Let A.s be a service s declared in a package A. The contract consists of two parts:
a claim and a policy. AppClaim specifies provided (Provides set) and invoked
(Calls set) services. We say that the service A.s is provided if applet A is loaded
and service s exists in its code. Service B.m is invoked by A if A may try to
invoke B.m during its execution. The AppClaim will be verified for compliance
with the bytecode (the CAP file) by the ClaimChecker.

The application policy AppPolicy contains authorizations for services access
(sec.rules set) and functionally necessary services (func.rules set). We say a service
is necessary if a client will not be functional without this service on board.
The AppPolicy lists applet’s requirements for the smart card platform and other
applications loaded on it.

Thus the application contract has the following structure: Contract = (AppClaim,
AppPolicy), where AppClaim = (Provides, Calls) and AppPolicy = (sec.rules, func.rules).

A functionally necessary service for applet A is the one which absence on the
platform will crash A or make it useless. For example, a transport application

normally requires some payment functionality to be available. If a customer will
not be able to purchase the tickets, she would prefer not to install the ticketing
application from the very beginning. It is required that for every application A
func.rulesp C Callsa.

An authorization for a service access includes the package AID of the au-
thorized client (the format of an authorization will be discussed further). The
access rules have to be specified separately for each service and each client that
the server wants to grant access.

4.1 The Contract Delivered on the Card

Contracts can be delivered on the card within Custom components of the CAP
files. CAP files carrying Custom components can be recognized by any Java Card
Installer, as the Java Card specification requires.

Custom components require to have a tag and an AID. We have defined
the tag to be 0xC3 and the AID 0x010203040506C3 (but these can be easily
modified). These details of the Custom component and its length are listed in
the Descriptor component of the CAP file.

contract {
u2 provides_count
provides_info provides|provides_count]
u2 calls_count)
calls_infocalls[calls_count]
u2 secrules_count
secrules_info secrules[secrules_count] }
Table 1. Structure of the Custom component Containing Contract

The scheme of the contract is illustrated in Table 1. The order of the contract
attributes is expected to be: Provides, Calls, sec.rules. Thus we just add the num-
ber of corresponding elements before each attribute. Elements of each attribute
have specifically defined structures (we use structures and naming that are sim-
ilar to the ones defined for CAP files [11], there u2 corresponds to 2 bytes). The
contract is just a byte array, but specifying structures corresponding to each
entry allows us to perform the contract extraction efficiently. More information
on the structures is available in the companion technical report [7].

Functionally necessary services are a subset of called services, thus we just
tag necessary services among the called ones. The value of specific funcrules_tag
is set to 0x01 if the service should be listed in func.rules. Otherwise the tag value
should be 0x00.

4.2 Contract Population

Now we discuss how to populate the contract and embed it into the CAP file.
Following are the rules for contract population.

— Provided Services. A service is required to be listed in the Provides set if it is
a method of an interface extending Shareable. A service is listed in Provides
array as a pair (l,t), where | is the Export file token for shareable interface
and t is the Export file token for the method (1 byte each).

— Called and Functionally Necessary Services. An application provider should
list a service (belonging to another package) in the Calls set, if an invocation
of this service is present in the code of the applet. A service from a package
with ATD X X X is listed in the contract as (X X X, |, t, funcrules_tag), where
funcrules_tag tags if this service is also functionally necessary or not. For
optimization purposes, the Calls set is then restructured to separate services
provided by different servers. The AIDs are space-consuming objects (can
take up to 16 bytes) and avoiding their repetitions where possible can bring
significant space savings.

— Authorization Rules. An authorization rule is listed in the sec.rules set as a
pair containing the service details (defined as a provided service) and the
authorized client package AID. Thus the structure is the same as for a called
service, with a difference that no tag for functionality is needed: (AID, |, t).
Then the same optimization strategy as for called services is applied.

The CAP file is in fact a JAR archive with a known structure. In order to
embed the contract created by these rules and in compliance with the structure
from Table 1, our CAP modifier takes the CAP file generated with the stan-
dard Java Card tools and appends the Contract Custom component within it,
modifying the Descriptor component accordingly (as the specification requires).

5 The Claim Checker Algorithm

The ClaimChecker component is responsible for verification of the contract and
the bytecode compliance. Thus it has to establish that the services from Providesp
exist in package A and the services from Callsp are indeed the only services that A
can try to invoke in its bytecode. The details of the service invocation instructions
were already discussed in Section 3. The goal of the ClaimChecker algorithm is
to collect for each invokeinterface opcode the method index ¢ and the
Constant Pool index I. Then we can compare the collected set with the set
Calls of the contract. We emphasize that operands of the invokeinterface
opcode are known at the time of conversion into a CAP file and thus are available
directly in the bytecode. All methods of the application are provided in the
Method Component of the application’s CAP file, an entry for each method
contains an array of its bytecodes. Exported shareable interfaces are listed in
the Export component of the CAP file and flagged in the Class component. The
strategy for the ClaimChecker is to ensure that each service listed in the Provides
set is meaningful and no other provided services exist.

5.1 The Algorithm

The ClaimChecker Algorithm 5.1 processes the CAP file components in order of
appearance with a standard Installer, the comments on the steps of the algorithm

10

are inlined. The presented algorithm is a script for an actual implementation of
the ClaimChecker. The received CAP file is a byte array, but it is structured
accordingly to the CAP file specification [11]. Thus the algorithm refers directly
to items (fields) of the structures defined in the CAP file specification, such
as CONSTANT _Classref _info structure or Interface_info structure. The algorithm
also uses variable-length arrays and arrays of tuples, that do not exist on a smart
card. The actual implementation explores just constant-length byte arrays. The
function offset(b) is used in the algorithm, that serves as a pointer and returns
a structure S which is provided at the given offset b.

Soundness of the algorithm for the service invocation security (in assumption
of a correct JCRE implementation) follows from the fact that only invokeinterface
opcode allows the JCRE to switch the context, thus any application can only
use this opcode to invoke services. Thus the ClaimChecker will accept only the
applications that have declared the invoked services set Calls honestly. We discuss
the soundness proof in more details in the companion technical report [7].

6 Implementation of the Claim Checker

We have implemented full SXC prototype in C, as it is a standard language for
smart card platform components implementation. In this section we will give
an overview of the prototype architecture and implementation details, and then
we will focus on the ClaimChecker component implementation and present the
memory usage statistics.

The main C components of the SxC prototype are:

SxClInstaller This component is an interface with the Installer. SxClInstaller
calls the ClaimChecker that in a positive case (contract and bytecode are
compliant) will return the address of the contract in the Contract Custom
Component of the CAP file being loaded. The SxClnstaller also comprises
(for memory saving reasons) the PolicyChecker component. Any negative re-
sult either in the ClaimChecker or PolicyChecker algorithms or errors during
parsing of the CAP file are propagated as false to the SxClnstaller, that
returns a boolean to the Installer.

ClaimChecker This component is called by SxClInstaller. It carries out the
check for the compliance between the contract and the CAP file. The check
is carried out after parsing the CAP file. By means of the functions of the
CAPlibrary library for CAP file parsing on-card (discussed further), this com-
ponent gets the initial address of the components it needs from which it can
eventually parse the rest of the components. If the result is positive, the
ClaimChecker will return the address of the contract of the application in the
Contract Custom component. Any error during parsing or a negative result
from the ClaimChecker leads to return of null.

We now discuss the implementation of the proposed algorithm 5.1 in C. In
order to reduce the amount of RAM memory the prototype uses, instead of

11

copying parts of the CAP file (for example, the delivered contract) we operated
with the pointers to the corresponding parts of the CAP file. We have used a set
of functions to access the parts of CAP file components, calling it the CAPlibrary
library, assuming that for each component we can retrieve its location in the
card memory and its size. These functions belong to a standard functionality
of the Installer. As we did not have access to an actual smart card platform
implementation, we have implemented these functions in C for testing purposes,
but we do not include this implementation in the following memory statistics of
the prototype.

6.1 The Policy Checker and the Policy Applet Implementation

Due to the lack of space we do not report the details of the PolicyChecker imple-
mentation. However, we present the security policy data structures just to give
a flavor of this part of the system.

The security policy stored on the card consists of contracts of the currently
loaded applications. A contract in the form supplied on the card is a space-
consuming structure. Each AID can occupy up to 16 bytes. Therefore, a set of
sec.rules with authorizations given for, for instance, 8 applets can occupy up
to 144 bytes. We would like to save the space necessary for storing the secu-
rity policy while making the operations with the contracts (performed by the
PolicyChecker for contract-policy compliance check) faster. To do so we have
resolved to store the security policy on the card in a bit vectors format. The
current data structure for security policy assumes there can be up to 4 loaded
applets, each containing up to 8 provided services. Thus the security policy is a
known data structure with a fixed format, the bits are taking 0 or 1 depending
if the applet is loaded or the service is called/provided. This structure is called
Policy in Figure 2 (see the Policy applet structures). The amount of the loaded
applets can potentially be modified dynamically (if the 5th applet arrives).

The chosen security policy data structure requires the table on the card that
maintains correspondence between the number the applet gets in the on-card
security policy structure and the actual AID of the package, and between the
provided service token and the number of this service in the policy data structure.
We store this correspondence in the Mapping object. The other two objects that
are part of the on-card security policy are MayCall list and WishList list. The
MayCall list contains the potential future authorizations, necessary for a case
when a loaded application carries a security rule for some application not yet on
the card. These authorizations have to be stored on the card in the form they
were supplied (with the client’s AID), thus they are space-consuming objects.
The WishList object is a set of services that are called by applications but are
not yet on the card, because the server is not yet loaded, or because the current
version of the server does not provide this service. The WishList set maintains
the AIDs of the service providers and the services as tuples (I,t). Again, the
WishList entries are space-consuming, as they contain AIDs of desired packages.

The Policy applet has to communicate the security policy of the card to the
PolicyChecker component that will run the contract-policy compliance check.

12

This communication is currently implemented through the APDU buffer, that
is a common object for communication for all entities on the card. We have as-
sumed the size of the APDU buffer to be 255 bytes, as it is one of the standard
implementations. Thus the full security policy (the Policy, Mapping, WishList
and MayCall objects) has to fit within 255 bytes. That is why we have developed
such a small security policy object, which is enough to fit only 4 loaded applets,
and we have set restrictions on the number of authorizations in the MayCall
object and desired services in the WishList object. We are currently investigat-
ing if there are better means for communication (in both directions) of the C
components and the applets on the card that will allow us to implement a bigger
and dynamically scalable policy model.

6.2 Details of the Claim Checker Implementation Memory statistics

We now present an overview of the memory consumption by the ClaimChecker
prototype. The most important characteristics for an on-card component are
RAM and EEPROM consumption. EEPROM space is required to store the
prototype and the necessary data between the card sessions. RAM memory,
on the other hand, is used to store the temporary data while the verification is
performed. We can consider as an example of a modern smart card chip P5CT072
device from Philips Semiconductors [13]. The chip has 72 KB of EEPROM, 160
KB of ROM and 4608 bytes of RAM. Therefore, we can assume that the verifier
embedded on the card should occupy at most 20-30 KB of EEPROM.

As we cannot install the prototype on a card and measure its footprint in
the linked state, we explored two metrics for the EEPROM usage: the size of
the object files in C and the number of lines of code (LOCs). The ClaimChecker
prototype requires 6522 bytes (6.36 KB) to store the object files. The .c file of
the ClaimChecker contains 155 LOCs, and the .h file contains 7 LOCs.

RAM usage is also very important, as over-consumption of RAM by the
prototype can lead to the denial of service. The higher is the RAM consumption,
the less is the level of interoperability of the prototype, because some cards
cannot provide a significant amount of RAM for the verifier which has to run in
the same time with the Installer. We have used a temporary array of 255 bytes
to store the necessary computation data. 255 bytes is a small temporary memory
buffer which ensures the highest level of interoperability for the prototype.

7 Related Work

A plethora of works exist for verification of application interactions security on
Java Card. Ghindici et al [8] proposed an approach for the information flow
verification on small embedded systems. Each application gets a certificate with
the information flow signature of each method, and on device these signatures
are checked using the proof-carrying-code techniques. The expressive information
flow security properties captured the interactions of applications on the platform.

13

This approach is extremely powerful, but has not yet been demonstrated to be
implementable on Java Card.

A lot of papers were dedicated to the static scenarios, when all the appli-
cations are known a priori and can be verified using off-card facilities [10], [9],
[2], [12]. Dynamic scenarios were considered in [1] and [5]. Avvenuti et al [1]
developed the tool JBIFV that was similar to a bytecode verifier and could ver-
ify absence of illicit information flows between Java applications. The drawback
of this tool in a dynamic scenario is that the applications have to be analyzed
locally prior being loaded on the card. Thus the card is not empowered with the
ability to make decisions itself.

In the work of Fontaine et al [5] the authors consider the same dynamic
scenario as we did and propose an on-card loading time verification approach
for transitive control flow policies that can control application collusuons. Their
algorithm performs verification while parsing the received CAP file. With respect
to [5] our work enforces less stronger policies. However, the SxC approach offers
greater flexibility than the transitive control flow policies proposed by Fontaine
et al. Indeed, as we have mentioned before, the application code after linking is
not available for reverification. Thus the approach by Fontaine et al, that makes
the policy compliance verification simultaneously while parsing the bytecode,
requires to store a significant amount of additional data related to the invoked
methods, what can be a prohibitive requirement for an on-card prototype.

8 Conclusions and Future Work

In the paper we have presented the ClaimChecker component of the SxC frame-
work for the Java Card-based smart cards. This component’s duty is to ensure
compliance of the applet’s contract with its code. The contracts are delivered
within the Custom component of the CAP file, and they list provided and called
services of the applets and the application providers’ policies. We have proposed
the structure of the contracts expected by the ClaimChecker in the notation
similar to the CAP file contents specification [11].

Once the CAP file is received the ClaimChecker invoked by the Installer com-
ponent on the card, extracts it and analyzes whether the contract is compliant
with the bytecode. Our focus is on the invoked services and we have presented
the sound algorithm that can capture the comprehensive list of the called ser-
vices and match it with the claimed list. The implementation of the algorithm
is straight-forward provided that one has access to a smart card platform imple-
mentation and knows the necessary APIs to access the CAP file contents.

For the future work we plan to validate the SxC framework implementation
within the Secure Change project with the help of Gemalto (an industrial partner
in the project). We have implemented the algorithm in C and the memory statis-
tics we have provided ensures that a proof-of-concept embedded implementation
is possible. Another interesting direction of the future work is richer contracts.
We believe that the perfect trade-off between verification time, richness of the
contracts and flexibility of the approach for evolution is yet to be found.

14

References

1.

2.

10.

11.

12.

13.

M. Avvenuti, C. Bernardeschi, and N. De Francesco. Java bytecode verification
for secure information flow. SIGPLAN Not., 38:20-27, December 2003.

P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J-L. Lanet. Checking
secure interactions of smart card applets: Extended version. J. of Comp. Sec.,
10(4):369-398, 2002.

. N. Dragoni, E. Lostal, O. Gadyatskaya, F. Massacci, and F. Paci. A load time

Policy Checker for open multi-application smart cards. In Proceedings of the 2011
IEEFE International Symposium on Policies for Distributed Systems and Networks.

. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: towards

a semantics for digital signatures on mobile code. In Proc. of EuroPKI-07, volume
4582 of LNCS, pages 297 — 312. Springer-Verlag, 2007.

. A. Fontaine, S. Hym, and I. Simplot-Ryl. On-device control flow verification for

java programs. In Engineering Secure Software and Systems, volume 6542 of Lecture
Notes in Computer Science, pages 43-57. Springer Berlin / Heidelberg, 2011.

. A. Fontaine, S. Hym, I. Simplot-Ryl, O. Gadyatskaya, F. Massacci, F. Paci,

J. Jurgens, and M. Ochoa. D6.3 Compositional technique to verify adaptive se-
curity at loading time on device. SecureChange EU project public deliverable,
www. securechange.eu, 2010.

. O. Gadyatskaya, E. Lostal, and F. Massacci. Load time security verifica-

tion. The Claim Checker. Technical Report DISI-11-471. On the web at
http://eprints.biblio.unitn.it.

. D. Ghindici and I. Simplot-Ryl. On practical information flow policies for java-

enabled multiapplication smart cards. In Proceedings of CARDIS 2008, volume
5189 of LNCS, pages 32-47. Springer-Verlag, 2008.

. P. Girard. Which security policy for multiplication smart cards? In USENIX

Workshop on Smartcard Technology. USENIX Association, 1999.

M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov. Checking absence of illicit
applet interactions: a case study. In FASE’0/, volume 2984 of LNCS, pages 84-98.
Springer-Verlag, 2004.

Sun Microsystems. Virtual Machine and Runtime Environment. Java Card™™
platform. Specification 2.2.2, Sun Microsystems, 2006.

G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll. Verification
of a formal security model for multiapplicative smart cards. In ESORICS’00,
volume 1895 of LNCS. Springer-Verlag, 2000.

Philips Semiconductors. P5CT072 Secure Dual Interface PKI Smart Card Con-
troller. On the web at http://www.usmartcards.com/images/pdfs/pdf-199.pdf.

15

Require: A CAP file.
Ensure: True/False, Contract.

=W =

13:
14:
15:

16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:
30:

31:
32:

33:
34:
35:
36:
37:
38:
39:
40:

41:
42:
43:
44:

: //Header Component: get the current package AID
: byte CurrentPID[16] gets current package AID;
: // Import Component: get package AIDs of imported packages

add (imported package 1D, internal imported package token (index in the current
array)) to ImportedPackages;
// Constant Pool Component: get imported interfaces
for all elements of the Constant Pool array of the type class_ref do
if the high bit equals to 1 then
add (imported package token, external class or interface token, internal class
or interface token (index in the current array)) to I'mportedInter faces;

: // Method Component: parse bytecode of the methods to identify called services
10:
11:
12:

for each method of the methods[] array do
if invokeinterface X Y Z opcode is in the method then
add (internal token of the interface, external token of the method) to
InvokedServices;
// Export Component: get tokens of shareable interfaces
for ¢ = 0 to class_count do
add (offset into the Class component, external interface token) to
ExportedInter faces;
// Descriptor Component: get external tokens of provided services
for i =0 to classes_count do
if classes[i] has a flag ACCIINTERFACE = 0x40 AND exists (int_of fset,I) €
ExportedInter faces such that int_offset = classes[i].this_class_ref then
// This interface is shareable and its external token was collected
for all methods of this interface do
add (external interface token, method token) to ListedServices;
// Custom Component: get Contract
for j = 0 to provides_count do
add (external interface token, external method token) to ContractProvides;
for j = 0 to calls_count do
add (external interface token, external method token, AID) to ContractCalls;
if funcrules_tag = 0x01 then
add (external interface token, external method token, AID) to
ContractFuncrules;
for j = 0 to secrules_count do
add (external interface token, external method token, AID) to
ContractSecrules;
// The Final Check: return true iff the collected sets match with the Contract
Check of called services: construct the same structure as in the contract and check
for mutual inclusion
for each (I,t, AID) € ContractCalls do
add (I,t, P) to CALLS such that (P, AID) € ImportedPackages;
for each (P, I, cpt) € ImportedInter faces and (cpt,t) € InvokedServices do
add (P, I,t) to CALLST;
if CALLS1 # CALLS then
return False;
else
// Check for provided services: all services in ContractProvides set have valid
interface and method tokens
if ContractProvides # ListedServices then
return False
else
return {True, CurrentPID, Contract}

Algorithm 5.1: The Claim Checker Algorithm

