Extended Abstract: Embeddable
Security-by-Contract Verifier for Java Card*

Olga Gadyatskaya, Eduardo Lostal, and Fabio Massacci

DISI, University of Trento,
via Sommarive, 14, Povo 0, Trento, Italy, 38123
{surname} @disi.unitn.it

Abstract. Modern multi-application smart cards based on the Java
Card technology can become an integrated environment where appli-
cations from different providers are loaded on the fly and collaborate
in order to facilitate lives of the cardholders. This initiative requires an
embedded verification mechanism to ensure that all applications on the
card respect the application interactions policy.

The Security-by-Contract (SxC) approach for loading time verification
consists of two phases. During the first phase the loaded bytecode is
verified to be compliant with the supplied contract. Then, during the
second phase the contract is matched with the smart card security policy.
In the paper we report about implementation of a SxC prototype, present
the memory statistics that justifies the potential of this prototype to be
embedded on an actual device and discuss the Developer SxC prototype
that can be run on a PC.

1 Introduction

Multi-application smart cards are an appealing business scenario for both smart
card vendors and smart card holders. Applications interacting on such cards can
share sensitive data and collaborate, while the access to the data is protected
by the tamper-resistant integrated circuit environment. In order to enable such
cards a security mechanism is needed which can ensure that policies of each
application provider are satisfied on the card. Though a lot of proposals for
access control and information flow policies enforcement for smart cards exist
[1,6,9], they fall short when the cards can evolve after issuance. The scenario of
a dynamic and unexpected post-issuance evolution of a card, when applications
from potentially unknown providers can be loaded or removed, is very novel.
For a dynamic scenario, traditionally, run-time monitoring is the preferred
solution. But smart cards do not have enough computational capabilities for
implementing complex run-time checks. Thus the proposal to adapt the Security-
by-Contract approach (initially developed for mobile devices [2]) for smart cards
appeared. In the Security-by-Contract (SxC) approach each application supplies

* This paper is a short version of [4]. It provides the high-level engineering aspects of
the research results.

on the card its contract, which is a formal description of the application behavior.
The contract is verified to be compliant with the application code, and then the
system can ensure that the contract matches the security policy of the card.

The SxC framework deployed on the card ensures that all the loaded ap-
plications interact in compliance with the security policy of each application
provider. In comparison with the existing works aiming at enforcing application
interaction policies in a dynamic setting [3, 5], we improve the state of the art in
the following (1) the SxC prototype was implemented to be integrated with an
actual device, taking into account the memory usage restrictions, (2) we have
developed the full eco-system of the SxC verifier based on the standard Java
Card tools and specifications available, (3) we have implemented also a version
for developers that can be run on a Windows-based PC.

The rest of the paper is structured is follows. Section 2 contains a brief
overview of the Java Card technology and then we outline the SxC solution for
Java Card (Section 3) emphasizing the changes to the platform. The design and
implementation details are outlined in Section 4 For on-card prototypes small
memory footprint is a must, we therefore present the memory usage statistics (for
non-volatile memory and RAM) that demonstrates feasibility of the embedded
implementation (Section 5). We conclude with Section 6.

2 The Java Card Platform

Java Card is a popular middleware for multi-application smart cards that allows
post-issuance installation and deletion of applications. Application providers de-
velop applets (Java Card applications) in a subset of Java. Full description of the
Java Card language is provided in the official specifications [8]. Figure 1 presents
the architecture of an integrated circuit with the Java Card platform installed
and the application loading process. The architecture comprises several layers
including device hardware, an embedded operating system (native OS), the Java
Card run-time environment (JCRE) and the applications installed on top of it.
Important parts of the JCRE are the Java Card virtual machine (JCVM) (its
Interpreter part), the Installer, which is an entity responsible for post-issuance
installation and removal of applications and the Loader, that comprises a set of
APT to access the loaded bytecode.

Applications are supplied on the card in packages. The source code of a pack-
age is converted by the application providers into class files and then into a CAP
file. The CAP file is, essentially, an optimized Java Card bytecode, it consists of
several efficiently organized components each carrying specific information. The
CAP file is transmitted onto a smart card, where it is processed and linked.

The interactions between applets from different packages are mediated by
the JCRE firewall. If two applets belong to different packages, their conterts are
different, and the Java Card firewall confines applet’s actions to its designated
context. Thus, normally, an applet can reach only objects belonging to its own
context. The only applet’s objects accessible through the firewall are methods

instance | Applet A |

-

JCRE

[———
| Installer [Policy Store -” Java Card API ‘
-

JCVM
(Interpreter)

]

1

11 Applet 8
Firewal\: pp’e

Native API

Loader

CAP file ‘
“y CAP file

o =¥ with | Device hardware |
CAP Modifier contract

Fig. 1. The Java Card architecture and the loading process. The white components and
data structures belong to the standard Java Card platform. The grey components and
data structures are additions introduced by the SXC scheme. The dashed lines denote
the changes to the loading process.

) ‘ Native OS

of specific shareable interfaces, also called services. A shareable interface is an
interface that extends javacard. framework.Shareable.

An application A implementing some services is called a server. An applica-
tion B that tries to call any of these services is called a client. A typical scenario
of service usage starts with a client’s request to the JCRE for a reference to
A’s object (that is implementing the necessary shareable interface). The firewall
passes this request to application A, which decides if the reference can be granted
or not. If the decision is positive, the reference is passed through the firewall and
is stored by the client for further usage. The client can now invoke any method
declared in the shareable interface which is implemented by the referenced ob-
ject. During invocation of a service a context switch will occur, thus allowing
invocation of a method of the application A from a method of the application
B. A call to any other method, not belonging to a shareable interface, will be
stopped by the Java Card firewall.

As all applet interactions inside one package are not controlled by the firewall
and due to the fact that a package is loaded in one pass, we consider that one
package contains only one applet and there is an one-to-one correspondence
between packages and applications. Another important assumption for us is that
packages do not implement shareable interfaces declared in other packages, this
assumption can in fact be guaranteed by the SxC framework.

Currently the services access control enforcement on Java Card is embedded
into the application code. Traditionally, the server will receive an AID (unique
application identifier) of the client requesting its service from the JCRE and
check that this client is authorized before granting it the reference to the object
(that can implement multiple services). Once the object reference is received,
the client can access all the services within this object and it can also leak the

object reference to other parties. The SxC framework checks the authorizations
for each service access, thus the object reference leaks are no longer a security
threat. In Java Card the controls for checking the invocation context can also
be embedded directly in the code of each service. We argue that this approach
is not satisfactory, as the access control list of authorized clients can be updated
only through complete removal and reinstallation of the server applet. When
the server package is imported by other (client) packages on the card the server
removal is not possible. The embedded SxC verifier can enforce the same service
access control policies in a flexible fashion when each server can update its policy
without reinstallation.

In a CAP file all object types and methods are referred to by their tokens
which are used by the JCRE for on-card linking. A service s is identified as a
tuple (A, I,t), where A is the AID of the package providing the service s, I is a
token for a shareable interface where the service is defined and t is a token for
the method in the interface I. The correct service tokens can be obtained from
the Export file of a package (produced by the Converter) or from the CAP file.

The JCRE imposes some restrictions on method invocations in the applica-
tion bytecode. Only the opcode invokeinterface allows to perform the con-
text switch between two different packages. Thus, in order to collect all potential
service invocations we analyze the bytecode and infer from the invokeinterface
instructions possible services to be called. More details are available for the in-
terested reader in [4].

3 Security-by-Contract for Java Cards

In the Security-by-Contract scheme every application carries its contract em-
bedded into the CAP file. Let A.s be a service s declared in a package A. The
contract consists of two parts: AppClaim and AppPolicy. AppClaim specifies pro-
vided and invoked services (Provides and Calls sets correspondingly). We say that
the service A.s is provided if applet A is loaded and service s exists in its code.
Service B.m is invoked by A if A may try to invoke B.m during its execution.
The AppClaim will be verified for compliance with the bytecode (the CAP file).

The application policy AppPolicy contains authorizations for services access
(sec.rules set) and functionally necessary services (func.rules set). We say a ser-
vice is necessary if a client will not be functional without this service on board.
The AppPolicy lists applet’s requirements for the smart card platform and other
applications loaded on it. A functionally necessary service for applet A is the
one which absence on the platform will crash A or make it useless. For exam-
ple, a transport application normally requires some payment functionality to be
available. If a customer will not be able to purchase the tickets, she would prefer
not to install the ticketing application from the very beginning. It is required
that for every application A func.rulesp C Callsa. An authorization for a service
access contains the package AID of the authorized client and the service tokens.
The access rules have to be specified separately for each service and each client
that the server wants to grant access.

ﬂlicy Store \

Contract Contract
Appl AppN
Retrieve Policy Update
i_ _________________ Policy
CAP Claim Checker Policy Checker

Bytecode | > Linking and

| | Contract Contract Installation
Contract Loading | matches Yes matches Yes |

| Bytecode? Policy? |

|

|

|

|
No No Integrated l
| with theJCREI
Stop
Reject loading
Free the memory

Fig. 2. The Security-by-Contract workflow for loading.

Contracts are delivered on the card within Custom components of the CAP
files. CAP files carrying Custom components can be recognized by any Java Card
Installer, as the Java Card specs require. More details on the structure of the
Contract Custom component that we proposed are available in [4]. To ease the
contract creation we have developed the CAP Modifier tool with a user-friendly
graphical interface allowing to edit any section of the contract, save already
created contracts as files for future usage and embed the created contracts into
CAP files. The tool takes the CAP file generated with the standard Java Card
tools and appends the Contract Custom component within it, modifying the
Directory component of the CAP file accordingly (as the specification requires).

The SxC framework deployed on the card consists of two main compo-
nents integrated with the platform: the ClaimChecker and the PolicyChecker. The
ClaimChecker performs extraction of the contract and verifies that it is compli-
ant with the application code. Then the PolicyChecker ensures that the security
policy of the card, composed by all the contracts of currently loaded applica-
tions, is compliant with the contract. Another addition to the platform is the
PolicyStore component. The PolicyStore appears due to the fact that only com-
ponents implemented in Java Card (applets and the Installer) can allocate space
in EEPROM (mutable persistent memory), that is the only type of memory
suitable to store the security policy across the card sessions. The PolicyStore is
a class in the Installer. Figure 1 depicts the SxC prototype embedded into the
Java Card platform. Figure 2 summarizes the SxC workflow for loading, as the
most interesting case, emphasizing the role of each component.

4 Implementation of the SXC Prototype

We have implemented the SxC prototype in C, as it is a standard language for
smart card platform components implementation and the Loader API we had
knowledge of was written in C. The main components of the SxC prototype are:

SxClInstaller. This component is an interface with the Installer. SxClnstaller
calls the ClaimChecker that in a positive case (contract and bytecode are compli-
ant) will return the address of the contract in the Contract Custom Component
of the CAP file being loaded. The SxClnstaller also comprises (for memory saving
reasons) the PolicyChecker component.

ClaimChecker. This component is called by SxClnstaller. It carries out the
check for the compliance between the contract and the CAP file. The check is
carried out after parsing the CAP file. We used a part of the standard Loader
API, called in the current paper CAPlibrary, that contains functions to access
the beginning and the length of each CAP file component. Using the functions
of the CAPlibrary library for CAP file parsing on-card, this component gets the
initial address of the components it needs from which it can eventually parse the
rest of the components. If the result is positive, the ClaimChecker will return the
address of the contract of the application in the Contract Custom component.

The ClaimChecker component has to establish that the services from Providesa
exist in package A and the services from Callsa are indeed the only services that
A can try to invoke in its bytecode. The goal of the ClaimChecker algorithm is to
collect each invokeinterface opcode with its parameters (the method ¢ and
the Constant Pool index I'). Then the collected set is compared with the set Calls
of the contract. We emphasize that operands of theinvokeinterface opcode
are known at the time of conversion into a CAP file and thus are available
directly in the bytecode. All methods of the application are provided in the
Method Component of the application’s CAP file, an entry for each method
contains an array of its bytecodes. Exported shareable interfaces are listed in
the Export component of the CAP file and flagged in the Class component.
The strategy for the ClaimChecker is to ensure that each service listed in the
Provides set is meaningful and no other provided services exist. More details of
the ClaimChecker algorithm can be found in [4].

Due to the lack of space we only present the security policy data structures
just to give a flavor of this part of the system. The security policy stored on the
card consists of the contracts of the currently loaded applications. A contract
in the form supplied on the card is a space-consuming structure (each AID can
occupy up to 16 bytes). Therefore we have resolved to store the security policy
on the card in a bit vectors format. The current data structure for security policy
assumes there can be up to 10 loaded applets, each containing up to 8 provided
services. Thus the security policy is a known data structure called Policy with
a fixed format, the bits are taking 0 or 1 depending if the applet is loaded or
the service is called/provided. The Mapping object maintains correspondence
between the number the applet gets in the on-card security policy structure
and the actual AID of the package, and between the provided service token and
the number of this service in the policy data structure. The other two objects
that are part of the on-card security policy are the MayCall list and WishList
list, containing the potential future authorizations, necessary for a case when
a loaded application carries a security rule for some application not yet on the
card and the services that are called by applications but are not yet on the

card, because the server is not yet loaded, or because the current version of
the server does not provide this service correspondingly. The PolicyStore, being
written in Java Card, has to communicate the security policy to the PolicyChecker
component (the SxClnstaller) that will run the contract-policy compliance check.
This communication is implemented through usage of a native API.

The Developer SxC Prototype. The SxC prototype for experimenting on
a PC comprises the same components: the SxClnstaller, the ClaimChecker and the
PolicyStore, which in the Developer version is packaged as an applet. The com-
munication between the SxClnstaller and the PolicyStore applet is emulated by
using files. The SxCDeveloper prototype emulates deployment of the PolicyStore
applet on a card using the Java Card development kit from Oracle. For the pur-
poses of independent functionality testing we have implemented the CAPlibrary
library and the necessary Installer functionality following the JCRE specifica-
tions. The Developer prototype accepts as input CAP files with the contract
embedded into the Custom component by the CAP Modifier tool, runs the ver-
ification algorithms and outputs the results, notifying also which of the checks
failed during verification (if any, otherwise it reports successful loading of an
applet and updates the current security policy). Thus developers can create and
embed different contracts and try the verification process.

5 Evaluation

In this section we report the memory measurements of the prototype carried out
in the University of Trento. The details of the industrial evaluation performed
by Trusted Labs (commissioned by Gemalto) can be found in [7]. The most
important characteristics for an on-card component are RAM and non-volatile
memory (NVM) consumption. NVM space is required to store the prototype and
the necessary data (the security policy) across the card sessions. RAM memory
is used to store the temporary data while the verification is performed.

We have explored two metrics for the NVM usage estimations off-device: the
size of the object files in C compiled on a PC and the number of lines of code
(LOCs). The ClaimChecker component object file compiled with the MinGW
compiler tools occupies 6.5 KB, the ClaimChecker has 170 LOCs (.h + .c). The
SxClnstaller object file occupies 7.3 KB, this component includes 178 LOCs. The
PolicyStore applet CAP file (exact on-device measure) occupies 6KB.

RAM usage is also very important, as over-consumption of RAM by the
prototype can lead to the denial of service. The higher is the RAM consumption,
the lower is the level of interoperability of the prototype; because some cards
cannot provide a significant amount of RAM for the verifier which has to run in
the same time with the Installer. We have used a temporary array of 255 bytes
to store the necessary computation data. 255 bytes is a small temporary memory
buffer which ensures the highest level of interoperability for the prototype.

6 Conclusions

In the paper we have presented the SxC prototype for the Java Card-based smart
cards. The prototype can be used to perform load time verification of Java Card
applets and enforce service access control policies in a flexible way. The proto-
type is integrated on the card with the Loader API which provides direct access
to the received bytecode. The prototype is able while parsing the bytecode to
extract the application contract and to compare it with the actual code of the
application. Then the received contract is transformed into the memory-efficient
on-card format and compared with the security policy of the device. The mem-
ory statistics demonstrates feasibility of embedding the proposed prototype on
an actual device. We have also developed the Developer SxC prototype that can
be demonstrated on a usual PC without actual device, all the on-card functions
necessary to process CAP files were implemented using the Java Card specifica-
tions.

Acknowledgements. We thank Quang-Huy Nguyen and Boutheina Chetali
for insights on Java Card. This work was partially supported by the EU under
grants EU-FP7-FET-IP-SecureChange and FP7-IST-NoE-NESSOS.

References

1. P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J-L. Lanet. Checking secure
interactions of smart card applets: Extended version. J. of Comp. Sec., 10(4):369—
398, 2002.

2. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: towards
a semantics for digital signatures on mobile code. In Proc. of EuroPKI-07, volume
4582 of LNCS, pages 297 — 312. Springer-Verlag, 2007.

3. A. Fontaine, S. Hym, and I. Simplot-Ryl. On-device control flow verification for
java programs. In ESS0OS’2011, volume 6542 of LNCS, pages 43-57. Springer.

4. O. Gadyatskaya, E. Lostal, and F. Massacci. Load time security verification. In
ICISS’2011, volume 7093 of LNCS, pages 250-264. Springer.

5. D. Ghindici and I. Simplot-Ryl. On practical information flow policies for java-
enabled multiapplication smart cards. In Proceedings of CARDIS 2008, volume
5189 of LNCS, pages 32-47. Springer-Verlag, 2008.

6. M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov. Checking absence of illicit
applet interactions: a case study. In FASE’0/, volume 2984 of LNCS, pages 84-98.
Springer-Verlag, 2004.

7. P. Capelastegui B. Chetali O. Delande M. Felici F. Innerhofer-Oberperfler V. Meduri
F. Paci S. Paul B. Solhaug A. Tedeschi M. Angeli, G. Bergmann. D1.3: Report on
the industrial validation of SecureChange solutions. SecureChange EU project public
deliverable, www.securechange.eu, 2012.

8. Sun Microsystems. Virtual Machine and Runtime Environment. Java Car
form. Specification 2.2.2, Sun Microsystems, 2006.

9. G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll. Verification
of a formal security model for multiapplicative smart cards. In ESORICS’00, volume
1895 of LNCS. Springer-Verlag, 2000.

dTM plat-

