

Formal Model of a JC Platform

Platform Θ =

 $<\Delta_A, \Delta_S, \mathcal{A}, \text{ shareable(), invoke(), sec.rules(), func.rules()>}$

- $-\Delta_A$ = domain of applications, Δ_S = domain of services
- $-\mathcal{A} \subseteq \Delta_{\Delta}$
 - applets deployed (installed) on the platform
- shareable(), invoke(): $\Delta_A \rightarrow p(\Delta_S)$
 - Services offered by applet (resp. invoked by applet)
- sec.rules(): $\Delta_{\Delta} \times \Delta_{S} \rightarrow p(\Delta_{\Delta})$
 - For any applet and its services which applets can call it
- func.rules(): $\Delta_{\Lambda} \rightarrow p(\Delta_{S})$
 - Services that must be present in order for the applet to function

Massacci Gadyaskaya - HPI + NOKIA

Security Theorem

- IF Platform was secure before the update
- AND shareable interfaces are only means for inter-app communication
 - JC Firewall guarantees it
- AND both Claim Checker and Policy Checker accepted update at loading time
 - load new applet or update applet's code or policy
- THEN evolved platform will be secure.
 - Proof by contrad. if security or functionality is broken on new platform, then either ClaimChecker or Policy Checker is bugged

Massacci Gadyaskaya - HPI + NOKIA

25

Secure Platform

- A platform O remains secure during evolution
 - For every applet the traces of real executions respects its security and functional rules
 - Whenever somebody calls you it is authorized
 - Whenever you need to call an essential service it is still there (provided it was there before)
- Security and functionality in terms of Contracts
 - Contracts do not violate Global Policy
 - Claims are consistent with bytecode
 - Otherwise update is rejected
- Need to show the two coincide.

Massacci Gadyaskaya - HPI + NOKIA

24

The talk plan

- Motivation & design targets
- The Security-by-Contract Idea
- A (thin) hint of theory
- A (larger) taster of engineering
- Evaluation and challenges

Massacci Gadyaskaya - HPI + NOKIA

26

It really works on a card

- Developer's Version (run on PC simulator)
 - ClaimChecker → 10KB
 - PolicyChecker+Installer → 10KB
 - Policy Applet → 6KB (in EEPROM)
- JavaCard's version (on Gemalto's emulator)
 - ClaimChecker → 1KB
 - PolicyChecker → 0.9KB
- To put numbers in perspective
 - JC Loader → 6KB
 - JCRE (Loader+Linker+Installer) → 20KB

Massacci Gadyaskaya - HPI + NOKIA

⇒ 39

The real challenges ahead

- Solve conflicts among contracts
 - So far we just reject latest update
 - Maybe different priority among applets?
- Include Policies on Usage of Libraries
 - Libraries are services but a lot (compared to applets)
- Lift it to SAP's Java OSGI Marketplace
 - Cloud Based Services + Mobile
- Convince Oracle that this is a good idea
 - We need access to internals of JCRE to do removal

Massacci Gadyaskaya - HPI + NOKIA

42

