
Java Card Architecture for Autonomous yet
Secure Evolution of Smart Cards Applications ?

Olga Gadyatskaya, Fabio Massacci, Federica Paci, and Sergey Stankevich

DISI, University of Trento, Italy
{surname} @disi.unitn.it

Abstract. Open multi-application smart cards that allow post-issuance
evolution (i.e. loading of new applets) are very attractive for both smart
card developers and card users. Since these applications contain sensi-
tive data and can exchange information, a major concern is the assurance
that these applications will not exchange data unless permitted by their
respective policies. We suggest an approach for load time application
certification on the card, that will enable the card to make autonomous
decisions on application and policy updates while ensuring the compli-
ance of every change of the platform with the security policy of each
application’s owner.

1 Introduction

Open multi-application environments such as PCs and mobile phones are widespread.
The main characteristics of such environments are co-existence of several appli-
cations on one single platform and the possibility of these platforms to evolve
by adding new applications or updating of existing ones in a fully distributed
and autonomous way. Such applications can exchange data locally or remotely
or access local APIs and in order to protect our security we regulate their ac-
cesses by more or less stringent mechanisms of access control locally enforced by
the platform. The problem of this approach is that we may end up downloading
something that turns out to be unusable. An alternative solution could be to
shift the security checks at loading time. This approach requires applications
to come with a manifest of their security-relevant actions and check whether
their behavior is acceptable before installing the code. The idea was explored by
Sekar et al. when the notion of model-carrying code was introduced [13], has been
demonstrated in the Security-by-Contract (S×C) approach [3], and was adopted
by W. Enck et al. for Android security [4].

Modern smart cards could be another example of an open multi-application
environment. But even examples of potentially multi-stakeholders applications
are de facto single one: a loyalty Miles& More Lufthansa credit card [9], could
include a Lufthansa application for collecting miles and a Bank application; in
fact it is just a credit card and mileage is calculated by the back-end system.

? Work partially supported by the EU under grant EU-FP7-FET-IP-SecureChange.
We thank B. Chetali, Q. Nguyen, and I. Symplot-Ryl for useful discussions.



2

(a) Smart Card Architecture (b) Security by Contract Architecture

Fig. 1. Architecture Evolution for Self-Certification

In order to support autonomous evolution on multi-application smart cards, we
need a way for the platform to verify that applications arriving on the platform
comply with the policy which is dynamically created by combining the poli-
cies of already installed applications. The task can be more complicated when
applications can also be removed and we want to avoid loss of functionalities.

In this paper we propose an addition to the Java Card security architec-
ture based on the Security-by-Contract approach that preserves security of the
smart card when the content of the card changes, so that the smart card itself
can ensure security after an update, when new applications arrive, old ones are
updated or removed, or their security policies are changed.

2 Security-by-Contract Smart Card Architecture

Java Card architecture [10] consists of several layers as illustrated in Fig. 1(a):

– a device hardware,
– an embedded operating system (OS),
– a Java Card Runtime Environment (JCRE) on top of the embedded OS,
– the applications that are installed on the smart card, that are called applets.

Applets before being loaded on a smart card are converted into a CAP file,
that is a binary executable representation of the Java classes that compose the
applet. The JCRE is responsible for managing and executing applets. It is com-
posed by a Java Virtual Machine (JVM), native API, framework APIs, and an
application installer. The installer downloads and installs the applications on
the card. To load an application, the installer interacts with an off-card instal-
lation program which transmits the CAP file. Once received the CAP file, the
installer, first, checks the signature of the file to ensure integrity and to prove
the identity of the application provider. Then, the installer saves the content of



3

the file into the card’s persistent memory, resolves the links with other applets
already present on the card, creates an instance of the applet and registers it
to the JCRE. Then JVM, which consists of a bytecode interpreter, executes the
code contained in the CAP file.

The applets installed on the smart card are isolated by the Java firewall.
The firewall allows only applets that belong to the same context to access the
respective methods. If an applet (server) wants to share data with another applet
(client) from a different context, it has to implement a shareable interface which
defines a set of methods that are available to other applets. These methods
(they are also called services) are the only methods of the server applet that
are accessible through the firewall. The JCRE will pass the call to the shareable
interface method from the client applet to the server applet. In the current Java
Card security model the server has an access control list of the applets that are
allowed to use this method, embedded into the server code. If the client is in the
list, the access is granted, otherwise the client gets null. If the client has been
updated, the server will still grant it an access, though now the server cannot
really be sure of the trustworthiness of the client.

We have identified the requirements for an extension of the security mech-
anisms on Java Card in the presence of evolution from the requirements of the
GlobalPlatform (GP) specification [8]. GP is a middleware, that can run on top
of Java Card and provide more security mechanisms for applets management
(for inter-application communications GP relies on the JCRE). GP specifica-
tion provides explicit requirements for maintaining security (in terms of services
access control enforcement) and functionality of the applications on the card
during evolution.

The basic idea of our proposal is to add a contractual component to each
applet detailing its security policy and its claims on the usage of other resources
(services) on the platform (the latter can be also extracted from the CAP file).
The architecture we propose is provided on Fig. 1(b). It is based on the addition
of two components to the JCRE, the ClaimChecker and the PolicyChecker.

When a new applet has to be loaded on the card, the terminal sends the
CAP file of the applet to the installer. The CAP file contains the binary code of
the applet and its Contract. When the installer receives the CAP file of the new
applet the ClaimChecker verifies that the claims are compliant with the applet’s
code. If this is the case, the PolicyChecker checks the applet’s contract against
the platform policy P. If the PolicyChecker has returned True then the installer
finalizes the loading and creates an instance of the applet. Otherwise, the applet
is rejected. On the S×C-enhanced platform, when a method of the applet is
called by another applet, the Java Card firewall simply checks that the method
belongs to the shareable interface of the applet (this check is also a firewall’s
responsibility on the standard Java Card) and does not perform the run-time
checks of the applet’s privileges for an access to the services, since it was done
at the loading time.

The security model behind the concepts in the architecture assumes that the
card can be represented as a tuple 〈∆A, ∆S ,A, shareable(), invoke(), sec.rules(),



4

func.rules()〉, where ∆A is a domain of applications; ∆S is a domain of services;
A ⊆ ∆A is a set of applications installed (deployed) on the platform. The func-
tion shareableA defines the actual shareable interfaces of applet A available on
the platform and the function invokeA the set of services called by A.

The functions sec.rules() and func.rules, define respectively the security pol-
icy and the functionality policy of each application. For every applet A ∈ A
sec.rulesA(s) defines for each service of applet A which other applets on the plat-
form are authorized to call it. The functional rules func.rulesA specify the set of
services on the platform that A needs in order to be functional (e.g. a transport
applet normally needs a payment applet in order to be useful).

The contract ContractA of an applicationA includes the following sets: ProvidesA
(a set of services that applet A has), CallsA (a set of services of other applets
that A calls), sec.rulesA (authorizations for A’s services access) and func.rulesA
(set of functionally necessary services for A).

The ClaimChecker for an application B with a contract ContractB will return
true if shareableB=ProvidesB and invokeB=CallsB. A PolicyChecker algorithm for
platform Θ and changed application B will allow the update if for all applications
A ∈ A and services s ∈ S

– Security on contract level: if service s of applet B is in CallsA then A is
authorized by B to call s ((s,A) ∈ sec.rulesB).

– Functionality on contract level: if service s of applet B is in func.rulesA
then s ∈ ProvidesB.

The main idea behind the security model is that if the ClaimChecker and the
PolicyChecker are sound and they returned true for ∀A ∈ A then the platform Θ
is secure.

3 Policy Checker Implementation

We have implemented the PolicyChecker for installation of a new application, as
the most interesting and representative case, using Sun’s Java Card simulator
for Java Card 2.2.2 specification [10]. Contracts are implemented as instances
of Contract Java class that are included in the CAP file of the applet. The
PolicyChecker has been implemented as Card Java Card applet. The Card class
has a field Card.Pool that stores the platform policy. Card.Pool is an instance
of Map Java class that associates with each applet on the platform its contract.
The applet is identified by a String that contains the AID while the contract is
an instance of the Contract class. The method validateContract(Contract) of
the class Card has as input parameter the Contract of a new applet and returns
the result of the evaluation of Contract against the platform policy stored in
field Card.Pool. If Contract is compliant with the platform policy, the new
applet is installed, otherwise it is rejected.

We have tested the feasibility of installing the PolicyChecker on the card
as an additional applet. In particular, we have evaluated the communication
overhead associated with the installation of the PolicyChecker in terms of number



5

of APDU commands exchanged between the terminal and the card to load the
CAP file. In fact, when the Java classes are converted into the CAP file, the
terminal converts them into data sequences (APDUs), which then are used to
upload the code and make it selectable. This is a good indication of the cross-
platform memory footprint of the applet as default APDUs are up to 255 bytes.
The CAP file generated for the PolicyChecker applet contains 18 Java classes
and generates 118 APDUs commands to load the applet on the card. Thus,
installing the PolicyChecker on the card does not require more APDUs than the
installation of a normal applet. We have also evaluated the overhead of installing
an applet along with its contract. We generated a Contract class for a sample
Transport applet (T for short). The ContractT contains 3 services in ProvidesT,
3 in CallsT, 4 authorized applets in sec.rulesT and 2 services in func.rulesT. The
ContractT is rather complicated comparing with a contract an average smart
card application can produce (usually applets have up to 2 services). The Java
Card representation of the ContractT is only 7 APDUs.

We do not show here how to construct a ClaimChecker. An example can be
found in Ghindici et al. [5]. The ClaimChecker they have built is working on more
complex information flow models and it can be restricted to our Contract model.

4 Related Works and Conclusions

Ghindici et al. [5] propose a domain specific language for security policies cap-
turing the information flow within small embedded systems. In the framework
they propose each application is certified at loading time, having a information
flow signature assigned to each method, describing the flow relations between
method variables. Huisman et al. [7] present a formal framework and a tool set
for compositional verification of application interactions on a multi-application
smart card. Their method is based on construction of maximal applets, w.r.t
structural safety properties, simulating all the applets respecting these proper-
ties. Model checking techniques can be then used to check whether a composition
of two applets A and B respects some behavioral safety property.

Girard in [6] suggests to associate security levels (clearances) to applica-
tion attributes and methods, using traditional Bell/La Padula model. Bieber et
al. adopt this approach in [2] and propose a technique based on model check-
ing for verification of actual information flows. The same approach is used by
Schellhorn et al. in [12] for their formal security model for operating systems
of multi-application smart cards. Avvenuti et al. in [1] propose a tool for off-
card verification of Java bytecode files, that could be later installed on the card,
their method explores the multi-level policy model and the theory of abstract
interpretation.

Outside of the smart cards domain, the techniques for policy enforcement
in multi-application environment are investigated also for mobile platforms and
operation systems. Ongtang et al. in [11] have proposed the Saint framework
for Android mobile platform applications to impose requirements on the usage
of their services on other applications during installation time and run-time.



6

Applications on a Saint-enabled Android platform can define permissions and
demand fulfillment of certain requirements by both their callers and callees. The
Kirin framework mentioned above was developed for Android by Enck et al.
[4], it can check permissions application requests at installation time in order to
capture possibly dangerous combinations of permissions and warn the user.

In this paper we have proposed an extension of the Java Card security mecha-
nisms for open multi-application smart cards that makes it possible to do verify
updates on the card. This extension adds two components to the JCRE, the
ClaimChecker and the PolicyChecker. In a nutshell, all applications are arriving
with specifications of their behavior and their requirements on other applications
on the platform. These requirements merged together create platform security
policy. The card can check autonomously whether they are acceptable and then
either reject or accept the change.

References

1. M. Avvenuti, C. Bernardeschi, N. De Francesco, and P. Masci. A tool for checking
secure interaction in Java Cards. In Proc. of EWDC2009, 2009.

2. P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J-L. Lanet. Checking
secure interactions of smart card applets: Extended version. J. of Comp. Sec.,
10(4):369–398, 2002.

3. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: towards
a semantics for digital signatures on mobile code. In Proc. of EuroPKI-07, volume
4582 of LNCS, pages 297 – 312. Springer-Verlag, 2007.

4. W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone application
certification. In Proceedings of CCS 2009, pages 235–245. ACM, 2009.

5. D. Ghindici and I. Simplot-Ryl. On practical information flow policies for java-
enabled multiapplication smart cards. In Proceedings of CARDIS 2008, volume
5189 of LNCS, pages 32–47. Springer-Verlag, 2008.

6. P. Girard. Which security policy for multiplication smart cards? In USENIX
Workshop on Smartcard Technology. USENIX Association, 1999.

7. M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov. Checking absence of illicit
applet interactions: a case study. In FASE’04, volume 2984 of LNCS, pages 84–98.
Springer-Verlag, 2004.

8. GlobalPlatform Inc. GlobalPlatform Card Specification. Specification 2.2, 2006.
9. Lufthansa. Miles&More credit cards. On the web at http://www.miles-and-

more.com.
10. Sun Microsystems. Runtime environment specification. Java CardTM platform,

version 2.2.2. Specification 2.2.2., Sun Microsystems, 2006.
11. M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich

application-centric security in Android. In Proceedings of ACSAC 2009, pages
340–349, 2009.

12. G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll. Verification
of a formal security model for multiapplicative smart cards. In ESORICS’00,
volume 1895 of LNCS. Springer-Verlag, 2000.

13. R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-
carrying code: a practical approach for safe execution of untrusted applications. In
Proc. of the 19th ACM Symp. on Operating Syst. Princ., pages 15–28, 2003.


