
Can We Support Applications’ Evolution in
Multi-Application Smart Cards by

Security-by-Contract?

Nicola Dragoni1 and Olga Gadyatskaya2 and Fabio Massacci2

1 DTU Informatics, Technical University of Denmark, Denmark
ndra@imm.dtu.dk

2 DISI, University of Trento, Italy
{gadyatskaya,massacci}@disi.unitn.it

Abstract. Java card technology have progressed at the point of running
web servers and web clients on a smart card. Yet concrete deployment
of multi-applications smart cards have remained extremely rare because
the business model of the asynchronous download and update of appli-
cations by different parties requires the control of interactions among
possible applications after the card has been fielded. Yet the current se-
curity models and techniques do not support this type of evolution. We
propose in this paper to apply the notion of security-by-contract (S×C),
that is a specification of the security behavior of an application that
must be compliant with the security policy of the hosting platform. This
compliance can be checked at load time and in this way avoid the need
for costly run-time monitoring. We show how the S×C approach can be
used to prevent illegal information exchange among several applications
on a single smart card platform, and to deal with dynamic changes in
both contracts and platform policy.

Key words: Security-by-Contract, multi-application smart card, illegal
information exchange, security policy enforcement

1 Introduction

Multi-application smart cards aim at making it possible to run several applica-
tions from different providers on the same smart card and to dynamically load
and remove applications during the active life of the card. With the advent of
new web enabled cards the industry potential is huge. However, despite of the
large number of research papers on the topics there are few to none real-life
deployments.

One reason is the lack of solutions to an old problem [14]: the control of
interactions among applications. While many techniques can be used to check
information flow (e.g. [2, 12, 8]) if we know and install all applications at once
before distributing the card to the public, the natural business model is the
asynchronous loading and updating of applications by different parties. Hence
we need a method to check interactions at load- or run-time.



2

Applications run in dedicated security domains [10]. The name is evocative
of a separate space (such as in a virtual machine) but in reality a domain just
supports security services such as key handling, encryption, decryption, digital
signature generation and verification for their providers’ (Card Issuer, Applica-
tion Provider or Controlling Authority) applications, and a number of functions
to download and make an application executable.

The control of the communications between the applications and the applica-
tions and the platform rests on the Java Run-time Environment (JRE) [11]. The
basic model of the GP security is the same behind the confinement of standard
Java applets [7]: to deal with the untrusted code we can exploit the mechanism
of permissions to control execution of potentially dangerous or costly function-
ality, such as starting various types of connections. However permissions do not
solve the issue of interactions. On the card we can also have a firewall security
mechanism that isolates each applet from the other applets within of its own
space (a “context” in the Java Card jargon). The result is that the internal op-
erations of an applet have no effect on other applets embedded on the card. Still,
applications can interact in this environment by explicitly implementing sharing
methods callable via an API, application service in Java Card 3.0 specification
[11] or Global Services in the GP specs.

In the GP registry every application has an entry, which includes its ID (AID)
and Global Services recorded for this application (if any). But GP does not
solve the problems of illegal information exchange even for the applications from
different security domains and all inter-application interactions are pushed to
lower level – JRE, or even hardware. If application A knows shareable interface of
application B, then it may use it for its own purposes, and there is no means for B
or B security domain owner to prevent it, unless special controls are hacked into
the Java firewall. However this prevents completely the asynchronous download
or update of different applications. Moreover, there is no uniform policy language
to express security policies for GP and it is even difficult to show that the security
policies of two versions of a smart card by the same vendor are inter-operable.
There are business solutions for multi-application smart cards on top of GP and
Java Card from Venyon Oy, Gemalto and companies alike developed for banking,
transport and mobile operators. But typical solution from such companies is
only responsible for handling loading of card customer applications, security
domain key handling and management and removal of applications [1], thus such
a solution is only an improvement of GP, but it is not dealing with certification
of new applications on the card, checks of compliance of new applications with
the initial card security policy and checks if the removal of some application is
even possible and will not break the work of others remaining on the card.

What remains out of reach is a secure way to deploy new applications on
the multi-application smart card once it is in the field. A costly manual review
is necessary. Owners of different trust domains would like to make sure their
applications cannot be accessed by new applications added after theirs. Actu-
ally, currently smart card developers have to prove that all the changes that are
possible to apply to the card are security-free, so that their formal proof of com-



3

pliance with Common Criteria is still valid after that changes and they do not
need to obtain a new certificate. Otherwise no smart card customers (banks, gov-
ernments, airline companies, etc) will accept to issue such cards for their needs.
The natural consequence is that there are essentially no open multi-application
smart cards, though both the GP and Java Card specifications support them.

In the next section we present the S×C framework for open multi-application
smart card security and show how it can solve the problem of Common Criteria
compliance certification, introducing also the hierarchy of application models,
and discuss the lowest level with its limitations (§3). Finally we summarize re-
lated works and conclude (§4).

2 Security-by-Contract for Smart Cards

In current setting, formal proof of card Common Criteria compliance includes
a proof that all applications on the card satisfy the security policy of the card,
provided together by all security domain owners and controlling authorities.
So, if A1, . . . , An are the applications on the smart card and the smart card

policy Policy=
n⋃

i=1

SpecAi , where SpecAi is a policy provided by the owner of

application Ai, then the compliance of applications to the policy can be written

as
n⋃

i=1

Ai satisfies Policy. Accordingly, after new application B arrives on the

platform the smart card vendor has to prove that
n⋃

i=1

Ai ∪B satisfies Policy ∪ SpecB

.
For this Common Criteria compliance problem, we want to show that Security-

by-Contract methodology (S×C) for smart cards we propose in this paper can
help smart card vendors with this issue. In the S×C setting each application has
a contract, which describes its security-relevant behavior. Thus application B
will arrive on the platform with its contract ContractB . Then the S×C frame-
work will prove (check) the compliance of the application B and its contract,

and then check that
n⋃

i=1

ContractAi
∪ContractB satisfies Policy∪SpecB . Since

the contract is a formal model it is easier to show its compliance with another
formal model of the same type (Policy), rather then try to show the compliance
of applications and the policy. This is why we claim that new smart cards need
the notion of Security-by-Contract.

In this paper we focus on contracts and policies describing the interactions
among the different applications running on a single smart card platform. Intu-
itively, we say that an application A interacts with an application B if there is
some information exchange between these applications. In this dynamic setting,
we are primary interested in addressing two specific security challenges, namely
preventing illegal information exchange among applications and dealing with dy-
namic evolution of smart card platform. In this paper due to limitations of space



4

we will consider only arrival of new application on the platform as a dynamic
change. This type of change is the most important, since it allows openness of
the platform. The other types of evolution, namely update or removal of an ex-
isting application and update of platform security policy will be considered in
the future works. Thus the problem we want to solve:

– Problem P1: new application should not interact with forbidden applica-
tions already on the smart card.

Sekar et al. [16] have proposed the notion of Model Carrying Code (MCC),
that requires the code producer to establish a model regarding the safety of
mobile code which captures its security-relevant behavior. The code consumers
check their policies against the model associated with untrusted code to deter-
mine if this code will violate their policy. The major limitation was that MCC
had not fully developed the whole lifecycle and had limited itself to finite state
automata which are too simple to describe realistic policies. Even a simple, basic
policy such as “Only access url starting with http” could not be addressed. The
Security-by-Contract (S×C) framework that we have developed for mobile code
[4, 3] builds upon the MCC to cope with more practical scenarios.

At load time, the target platform checks that the evidence is correct. Such
evidence can be a trusted signature as in standard mobile applications [18],
but now the digital signature does not just certify the origin of the code, but
also bind together the code with a contract with the main goal to provide a
semantics for digital signatures. An alternative evidence can be a proof that the
code satisfies the contract (and then one can use PCC techniques to check it
[13] or the techniques used by Ghindici et al on smart-cards [5]). Once we have
evidence that the contract is trustworthy, the platform checks that the contract
is compliant with the policy that our platform wants to enforce. If it is, then
the application can be run without further ado. At run-time the JRE firewall
can simply check that only the declared API in the contract can be called. The
matching steps guarantee that the resulting interactions would be correct.

Security-by-Contract methodology proposed in [3, 4] was created for mobile
applications and did not take into account interactions among applications and
illegal information flow problems. For the mobile platform there is no expectation
that the platform owner will certify the absence of illegal information exchange
between different applications. But multi-application smart card has different
stakeholders, namely the owner of the platform, the owners of the applications
and the user of the card. Now we enhance the S×C approach with information
flow to deal with problems of sensitive data exchange of smart card applications.
Another improvement of the S×C approach we suggest in this paper is enriching
the contracts with “wishes”. Contract can contain not only exact behavior of
the application, but also what behaviors application owner consider as possible.
There might be a desire to interact with some application X not yet present on
a platform or a wish to disallow some application Y to receive sensitive data
through indirect interactions with some application Z.

Another challenge we have to address is to find an appropriate language
for specifying contracts (policies) describing possible (allowed) information ex-



5

change among applications. To deal with computational limitations we propose
a hierarchy of contracts/policies models for GP-based smart cards. The rationale
is that each level of the hierarchy can be used to specify contracts and policies,
but with different computational efforts and expressivity limitations.

– L0: Application as Services. This level models applications as lists of
required and available services. Essentially it is the current set-up of the GP.

– L1: Allowed Control Flow. This level provides a call graph G1(A) of
the application, where vertices are the states of the application and edges
represent invocations of different services. Then we can do a bit of history-
based access control and more fine grained information exchange control.

– L2: Allowed and Desired Control Flow. This level adds to the previous
one the notions of correct and error states. It can be necessary if we want
to test that removal of an application (or a change in the policy) does not
break other applications.

– L3: Full Information Flow. This level extends the previous one consider-
ing also the information flow among variables.

3 Contract and Policy as List of Services

At this level of abstraction we represent both contracts and policies by means of
the services that application provides (to other applications) and of the services
that application requires (from other applications). The list of available services
can be comprised from the services with inherited Shareable Interface, the avail-
able services are called global services in the GP jargon. The list of required
services can be made from the list of the OPEN getService calls [10].

Definition 1 (A rule). A security policy rule Rule is represented by the fol-
lowing four fields:

Application Name and security domain (company or package) of the applica-
tion, in the form name@domain.

Shares(A) Set of applications with which the application A may interact. We
use the notation A@D to denote a specific application A in the
domain D, ∗@D to denote all the applications in the domain D,
and ∗ to denote that A shares with any application of any domain.

Provides(A) List of services provided by the application A. For the sake of
simplicity this list contains only the names of the services, that is
a service s.A@D is simply denoted with s.

Requires(A) List of services required by the application A.

Given an application A belonging to a security domain D (company or pack-
age) we denote a service s of A with s.A@D.

Definition 2 (Contract). A contract of an application is a policy rule.



6

Definition 3 (Security Policy). A security policy Policy of a smart card is a
non-ordered set of different policy rules:

Policy = {Rule1, . . . ,Rulen}, where Rulei 6= Rulej, i 6= j.

A contract of an application A matches a platform policy if there is no illegal
information exchange between the application A and applications already on the
card. We need therefore to define what is an illegal information exchange at this
level of abstraction. We start introducing the notion of direct communication
between applications. The idea is that A is able to directly communicate with B
if B provides some services that A intends to use.

Definition 4 (Direct Communication). Application A directly communi-
cates with an application B, A → B, if Requires(A) ∩ Provides(B) 6= ∅.

The notion of illegal information exchange is built on top of the notion of di-
rect communication. The intuition is that there is a potential illegal information
exchange if an application A directly communicates with another application B
that may directly communicate to some other applications forbidden for A, i.e.,
with some applications that A is not allowed to directly communicate. We need
therefore to capture the notions of allowed and forbidden information sharing
between two communicating applications.

Definition 5 (Allowed Information Sharing). Let A be an application di-
rectly communicating with B. We say that there is an allowed information sharing
between A and B, denoted A

−→
ok B, if Shares(A) = Shares(B).

Definition 6 (Forbidden Information Sharing). Let A be an application
directly communicating with B. We say that there is a forbidden information
sharing between A and B, denoted A −→no B, if Shares(A) 6= Shares(B).

Definition 7 (Illegal Information Exchange). Given a contract ContractA
of an application A and a platform policy Policy there is an illegal information
exchange, denoted ContractA # Policy, if there exist an application B described
in Policy such that at least one of the following conditions is true:

– (A → B) ∧ (A −→no B)
– (B → A) ∧ (B −→no A)

The notion of illegal information exchange is sufficient to address the problem
P1, the intuition is that when new application is loaded, its contract is checked
against the platform policy in order to detect possible illegal information ex-
changes. We have an algorithm to perform this check, which is not presented in
this paper due to lack of space.



7

4 Related Works and Conclusions

In [5] Ghindici et al. proposed a domain specific language for security poli-
cies describing the allowed information flow inside the card. Each application is
certified at loading time, having a information flow signature assigned to each
method. Information flow in this framework is represented as relations between
two method variables with annotations about the type of flow, for example,
from secret to secret through a direct assignment. However these policies are too
simple to capture the full scope of interesting policies.

In [9, 17] Huisman et al. presented a formal framework and a tool set for com-
positional verification of application interactions on a multi-application smart
card. Their method is based on construction of maximal applets, w.r.t struc-
tural safety properties. To check that composition of two applets respects the
behavioral safety property existing model checking techniques are used.

In [6] Girard suggested to associate security levels to application attributes
and methods using traditional Bell/La Padula model and the security policies
in this model define authorized flows between levels. This approach was further
investigated in [2] by Bieber et al. and the technique based on model checking for
verification of actual information flows was presented there. The same approach
was also used by Schellhorn et al. in [15] for their formal security model for
operating systems of multi-application smart cards.

In this paper we have proposed the security-by-contract (S×C) framework as
a possible security model for multi-application smart cards. The S×C approach
improves the current literature by addressing problems related to the dynamic
evolution of both applications and policies. Moreover, it is based on a hierarchy
of models that allow to have benefits in terms of computational complexity
or language expressivity. In particular, the first level of the hierarchy requires
algorithms not more complicated than the usual smart card applications, while
the mentioned approaches are usually based on complicated logic and model
checking, all needing off-card activities. We have shown how the S×C approach
can be used to check the absence of illegal information flow during loading of
new application at the first level of a proposed hierarchy.

The key limitation of level L0 is that it does not capture the actual in-
formation exchange among the applications, but only the possible information
exchange. In other words, we are not able to specify the concurrent behavior of
an application, distinguishing for instance between the services that an applica-
tion might need from the services that an application strongly requires. Another
limitation of this level is the possibility of indirect communication between ap-
plications in current framework.

Future work will be focused on two main issues: (1) developing all the levels
of abstraction (starting from the limitations of Level 0) and (2) extending the
security relevant actions of both contracts and policies in order to consider also
rules restricting the use of resource APIs (connection to the Internet, EEPROM
memory, ...). Further development of level L0 includes capturing indirect com-
munications in the contracts and enhancing contracts with the notion of “wish”.
Thus application providers will be able to declare in the contracts explicitly



8

the exact behavior of the application extracted from the code and the desirable
behavior of other applications on the platform concerning direct and indirect
communications with their own application.

References

1. Venyon banking services. http://www.venyon.com/banking.
2. P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J-L. Lanet. Checking

secure interactions of smart card applets: Extended version. J. of Comp. Sec.,
10(4):369–398, 2002.

3. L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan, and
D. Vanoverberghe. Security-by-Contract on the .NET platform. Information Se-
curity Tech. Rep., 13(1):25 – 32, 2008.

4. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: towards
a semantics for digital signatures on mobile code. In Proc. of the 4th European
PKI Workshop Theory and Practice (EUROPKI’07). Springer-Verlag, 2007.

5. D. Ghindici and I. Simplot-Ryl. On practical information flow policies for java-
enabled multiapplication smart cards. In CARDIS 2008, volume 5189 of LNCS,
pages 32–47. Springer-Verlag, 2008.

6. P. Girard. Which security policy for multiplication smart cards? In USENIX
Workshop on Smartcard Technology. USENIX Association, 1999.

7. L. Gong, G. Ellison, and M. Dageforde. Inside Java 2 platform security: architec-
ture, API design, and implementation. Addison-Wesley, 2003.

8. E. Hubbers, M. Oostdijk, and E. Poll. From finite state machines to provably
correct java card applets. In SEC’03, 2003.

9. M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov. Checking absence of illicit
applet interactions: a case study. In FASE’04, volume 2984 of LNCS, pages 84–98.
Springer-Verlag, 2004.

10. GlobalPlatform Inc. GlobalPlatform Card Specification, Version 2.2. Specification
2.2, GlobalPlatform Inc., 2006.

11. Sun Microsystems. Runtime Environment Specification. Java CardTM Platform,
Version 3.0, Connected edition. Specification 3.0, Sun Microsystems, 2008.

12. W. Mostowski and E. Poll. Malicious code on java card smart cards: attacks and
countermeasures. In CARDIS 2008, volume 5189 of LNCS, pages 1–16. Springer-
Verlag, 2008.

13. G.C. Necula. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-SIGACT
Symp. on Princ. of Prog. Lang., pages 106–119. ACM Press, 1997.

14. A. Sabelfeld and A. C. Myers. Language-based information flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

15. G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll. Verification
of a formal security model for multiapplicative smart cards. In ESORICS’00,
volume 1895 of LNCS. Springer-Verlag, 2000.

16. R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-
carrying code: a practical approach for safe execution of untrusted applications. In
Proc. of the 19th ACM Symp. on Operating Syst. Princ., pages 15–28. ACM Press,
2003.

17. C. Sprenger, D. Gurov, and M. Huisman. Simulation logic, applets and composi-
tional verification. Technical Report RR-4890, INRIA, 07 2003.

18. B.S. Yee. A sanctuary for mobile agents. In J. Vitek and C.D. Jensen, editors,
Secure Internet Programming, pages 261–273. Springer-Verlag, 1999.


