
A Load Time Policy Checker for Open
Multi-Application Smart Cards

Nicola Dragoni, Eduardo Lostal
DTU Informatics, Technical University of Denmark

Email: ndra@dtu.dk, edlo@imm.dtu.dk

Olga Gadyatskaya, Fabio Massacci, Federica Paci
DISI, University of Trento

Email: surname@disi.unitn.it

Abstract—Applications on multi-application smart cards con-
tain sensitive data and can exchange information. Thus a major
concern is that these applications should not exchange data unless
permitted by their respective policy. As modern smart cards allow
post-issuance installation and removal of applications, traditional
approaches for information flow analysis are not suitable.

We suggest the Security-by-Contract approach for loading
time application certification on the card, that will enable the
stakeholders with the means to ensure the compliance of every
update of the card with their security policy. We describe
an extension of the card security architecture to deal with
verification for different types of updates and present a Java
Card prototype implementation of the Policy Checker with
performance measurements.

Index Terms—Smart cards security, application certification,
policy models, information exchange.

I. INTRODUCTION

Though smart card technology is mature enough to sup-
port multiple applications from different providers, multi-
application smart cards are not widely adopted. One of the
main reasons for such rare adoption is that the mechanism to
install or update applications on smart cards and the security
mechanism that controls the interactions between applications
are not flexible.

The most popular solution for smart cards now is Glob-
alPlatform (GP) [8] on top of Java Card [10]. Before smart
cards are released to users, vendors have to get a certificate
which guarantees that their proprietary implementation of GP
is compliant with Common Criteria [11].

When an application is installed or updated on the card,
it is important to make sure that the application is compliant
with the platform policies. Thus, vendors have to recall the
smart card from the users and obtain a new certificate. The
security mechanism is also not flexible: since the security
policy governing the interactions of an application with other
applications on the card is embedded in the application code,
an update of the policy requires to change the application code
and to re-install it on the card. Thus, vendors have to obtain
a new certificate also when security policies only change.

We propose a framework to verify at the loading time
that newly installed applications on the card comply with the
platform policies, thus smart cards do not need to be certified
again. The framework is based on the Security-by-Contract
(S×C) approach illustrated in Figure 1. Each application comes
with its contract that specifies the functionalities provided by

Fig. 1. Security-by-Contract for Load Time Evolution

the application and the functionalities of other applications
the application can try to invoke. The contract also specifies
which applications are authorized to invoke the application’s
functionalities and which functionalities provided by other
applications, the application needs to call. A PolicyChecker
evaluates the contract against the platform policy that is the
union of all the contracts of the applications installed on the
card. We present a proof-of-concept implementation of the
PolicyChecker component of the S×C framework and give the
performance evaluation results. The experimental results show
that the PolicyChecker implementation does not consume a lot
of memory and thus is suitable for memory limited devices
such as smart cards.

The paper is organized as follows. The Java card architec-
ture with the S×C components is introduced in Section II. We
define the application contract and the policy in Section III.
The prototype implementation of the PolicyChecker compo-
nent is presented in Section IV. We discuss related work and
conclude the paper in Section V.

II. MULTI-APPLICATION SMART CARD ARCHITECTURE

The Java Card architecture consists of several layers as
illustrated in Fig. 2: device hardware, an embedded operating
system (OS), a Java Card Runtime Environment (JCRE) on top
of the embedded OS, and the applications (also called applets)
installed on the smart card, that are written in (a subset of)



Fig. 2. Java Card with Security-by-Contract Architecture

the Java language [10].
The JCRE is responsible for managing and executing ap-

plets. It is composed of a Java Virtual Machine (JVM),
native API, framework APIs, and an application installer. The
installer downloads and installs the applications on the card.
Before being loaded on the smart card, applets are converted
into a CAP file, that is a binary executable representation of
the Java classes which compose the applet. Having received
the CAP file, the installer saves the content of the file into the
card’s persistent memory, resolves the links with other applets
already present on the card, creates an instance of the applet
and registers it with the JCRE. Then the JVM can execute the
code contained in the CAP file.

The Java Card applets installed on a smart card are isolated
by the Java firewall. If an applet (server) wants to share
data with another applet (client) from a different package, it
has to implement a shareable interface defining the methods
available though the firewall. These methods (or services) are
the only methods of the server applet accessible through the
firewall.

The firewall will pass the call for the shareable interface
from the client to the server. In the current security model
the server code includes an access control list of the applets
that are allowed to call it. If the client is in the list, the
access is granted and the server passes through the firewall
a reference to an object implementing the necessary interface.
If the client is not in the list, it only gets null. After
the reference is received the client can use services of the
server by invoking the corresponding methods of the obtained
object. As we already mention, this security mechanism is not
flexible, as any change in the security policy (for example,
revocation of an access right) requires a change in the code
of the applet. In order to address the shortcomings of the
Java Card security architecture, we extend the JCRE based on
the Security-by-Contract approach with two additional compo-
nents: the ClaimChecker and the PolicyChecker(see Figure 2).
This addition allows to preserve the security of the smart card
when a new applet is installed, an old one is being updated
or removed, or applet policies change. The basic idea of our

proposal is that the ClaimChecker component checks that the
code of the new applet is compliant with its contract, while
the PolicyChecker verifies that the contract is compliant with
the security policy on the card.

III. SECURITY-BY-CONTRACT FOR SMART CARDS

The contract in the S×C approach is a specification of
an application that will help honest application providers to
describe what their application is going to do and the platform
to check that this application is well-behaved [2].

The ContractA of an applet A consists of two parts:
• The ClaimA = 〈ProvidesA,CallsA〉 describes the actual

behavior of A in terms of provided and called services.
ProvidesA is a set of services that applet A provides as a
server. CallsA is a set of services of other applets that A
can try to invoke. It is possible to compare ClaimA with
the actual code of A received by the card.

• The AppPolicyA = 〈AllowsA,NeedsA〉 is declared by the
application provider and it details the desirable behavior
of other applications on the card with respect to the applet
A. AllowsA contains service access rules as pairs (s,B),
where s is a service of A and B is some applet. NeedsA
is a set of functionally necessary services. Namely, it
contains services of other applets that A needs in order
to be functional.

Applications may define usage rules in Allows even for ap-
plications not yet present on the card. But if some application
A declares that it needs a service of another application B, and
B is not yet present on the card, we decline A the access to
the card, since A will not be functional. An example of a card
where functionality can be an issue is a public transportation
card. A ticketing applet needs an access to some payment
services, otherwise a customer is not able to buy new tickets
and the ticketing applet becomes useless. We use notation A.s
for a service s of an applet A. In actual contracts applications
are referred to by their AID (unique application identifiers)
and services are referred to by their CAP file tokens [10].

We consider the following properties:
• Stable Security After an update of the card if an applet A

can invoke a service s of an applet B, then A is authorized
to do it : if B.s ∈ CallsA then (s,A) ∈ AllowsB.

• Stable Functionality After an update every applet is
functional: if B.s ∈ NeedsA then s ∈ ProvidesB.

On multi-application smart cards the security policy is a
collection of policies of each stakeholder on the card. When
a new applet A arrives on the platform, first it is necessary to
test whether ClaimA meets the policy of the other stakeholders.
Second, A will provide its own policy on the card, which, after
ensuring its compliance with behaviors of other applets, will
be incorporated into the platform policy. Thus security policy
on the card Policy = {ContractA1 , . . . ,ContractAn}, where
A1, . . . , An are applications installed on the card.

A. Multi-application Card Example

We assume several stakeholders on the card: Bank, Trans-
port, Sky and SASTravel. We use a notation A@Provider



TABLE I
CONTRACTS CASE STUDY

Application Claim AppPolicy
Provides Calls Needs Allows

EMV@BANK transaction - - (transaction, ePurse@BANK)
fill purse (fill purse, ePurse@BANK)

ePurse@BANK payment fill purse fill purse (payment, jTicket@Transport)
account balance transaction (account balance, jTicket@Transport)

jTickect@Transport buy ticket payment payment -
Weather@Sky weather info - - (weather info, eTicket@SASTravel)

weather RSS (weather RSS, eTicket@SASTravel)
eTicket@SASTravel - weather info weather info -

weather RSS

to denote an application A belonging to a provider
Provider. The following applications try to be in-
stalled: EMV@BANK, ePurse@BANK, jTicket@Transport,
Weather@Sky, eTicket@SASTravel.

The details of the contracts are shown in Table I. It is easy to
see that the applets EMV, ePurse, jTicket, Weather and eTicket
provide compliant contracts and can be installed on the card.

IV. PolicyChecker PROTOTYPE IMPLEMENTATION

The PolicyChecker component accesses the received con-
tract and maintains the policy (collected from installed ap-
plets). We developed a proof-of-concept prototype of the
PolicyChecker implemented as an applet. Informally, the
PolicyChecker has to check that the stable security and stable
functionality properties will be maintained by the card after
an update. If this will not be the case, the update is rejected.
Otherwise it is accepted, and the policy is updated correspond-
ingly (in case of installation a new contract is added to the
policy and in case of removal the old contract is deleted).
The specification of the PolicyChecker component, including
algorithms, can be found in [4].

We have implemented a prototype of the PolicyChecker
based on Java Card Technology (JC) 3.0.2 (Connected Edition)
[10]. To implement the PolicyChecker prototype, we have
used the card emulator provided by C-JCRE, a reference
implementation of the JCRE [14]. The emulation environment
allows the simulation of the persistent memory of the card
(EEPROM), saving contents and restoring them in the subse-
quent session. The interaction with the simulator is done by
means of scripts containing the Application Protocol Data Unit
(APDU) commands to be sent to the card.

The implementation consists of three main classes: Data
Structures, Algorithms, and APDU Communication. The two
key classes within Data Structures class are Contract and
Policy representing a contract and a policy respectively. The
Contract class has three attributes: a String for the application
ID, a Claim and an AppPolicy data structures. A Claim
structure contains two vectors of Strings, one for Calls and one
for Provides. AppPolicy contains a String for the application
ID, a vector of Allows and a vector of Strings for Needs.
AppPolicy contains the application ID because it is possible
to update only this field. The class Allows has two String
attributes to identify the service ID and the application ID.

Fig. 3. Memory Usage After the Addition of Each Application’s Contract

The Policy class has two attributes: a Vector of Dependents
(PolNeeds) and a Vector of PolAllows. Dependents contains
a String for the application ID and a vector of Strings for
the applications that need some services that application ID
provides (we reorganize the security policy for convenience
of implementation). Finally, PolAllows class has as attributes
a String for the application ID and a Vector of Allows.

The Algorithms class contains the implementation of all
the contract-policy compliance verification algorithms. In a
nutshell, the implementation directly follows the specifications
provided in [4], so algorithms are basically implemented as a
set of nested loops operating on the Vector data structure. To
optimize time and memory consumption, we have used native
functions (in particular related to Vector operations).

The APDU Communication class supports the communi-
cation with the off-card entity by means of the exchange of
APDU messages. It receives the APDU commands from an
off-card entity and processes them, deciding the operation to
be carried out according to the instruction byte (INS) [9].
Appropriate algorithms from the Algorithms class are called
then to manage the addition, update and removal operations.

We have evaluated the overall S×C approach with respect
to memory usage that is an important parameter to show
the feasibility of the approach on limited-resource constrained
device such as smart cards. We focus only on the EEPROM
memory because the applications and data are dynamically
loaded there.

The prototype requires 11 kB of free memory on the card
to run. Since current smart cards use between 64 and 128 kB
memories (and this is expected to increase), the prototype only
occupies a small amount of the smart card memory space.

Since in the S×C framework both contracts and policy
are stored on the card, another key measure is the extra
memory space required to store them. We evaluate the pro-
totype by assuming that the applets introduced in the sec-
tion III-A EMV@BANK, ePurse@BANK, jTicket@Transport,
Weather@Sky, eTicket@SASTravel are installed one by one.

Figure 3 shows the memory usage after the addition of
each contract. The extra memory space consumed by the S×C
framework (contracts and policy) is 2.2 kB. Table II shows



TABLE II
DETAILS OF THE MEMORY USAGE FOR THE CASE STUDY

Claim AppPolicy Contract PolAllows PolNeeds System
EMV@BANK 104 144 272 96 96
ePurse@BANK 112 144 280 96 112

jTicket@Transport 104 122 240 56 56
weather@Sky 104 144 272 96 56

eTicket@SASTravel 96 112 232 56 56
Total 1352 860 2220

the memory space (in bytes) required to store different parts
of the application contracts. In the Table, constant variables are
taken into account and this explains why the additions are not
exact. This means, for instance, that Contract for EMV@BANK
application is the addition of the Claim and the AppPolicy parts
plus some constant variables added in the source code.

In summary, the prototype needs around 11 kB to store
the code on the card, while the extra space required to store
the case study applications is 2.2 kB. This means a small
extra load taking into account the security benefits. For these
reasons, we can conclude that the S×C framework can be
implemented on smart cards.

As for the ClaimChecker implementation, it is hindered by
the fact that this component needs to have direct access to the
bytecode of the received applet in order to capture provided
and received services. Thus it has to be integrated with the
installer, which is a proprietary component developed usually
in C, its implementation details are not available.

V. RELATED WORK AND CONCLUSIONS

Ghindici et al. [5] propose a domain specific language
for security policies capturing the allowed information flow
inside Java-based small embedded devices. Each application is
certified at loading time, having an information flow signature
assigned to each method, describing the relations between
method variables annotated with type of the flow. These
policies also capture the interactions between applications in
the system and are able to detect sensitive data leaks.

Huisman et al. present a formal framework and a tool
for compositional verification of application interactions on
a multi-application smart card [7]. The approach is based on
maximal applets construction w.r.t structural safety properties,
simulating all the applets respecting these properties. Model
checking techniques are then used to check if a composition
of two applets respects some behavioral safety property.

Girard in [6] suggests to associate security levels to ap-
plication attributes and methods, using the traditional Bell/La
Padula model. Bieber et al. adopt this approach in [1] and
propose a technique based on model checking for verification
of actual information flows. The same approach is used by
Schellhorn et al. in [13] for a formal security model for
operating systems on multi-application smart cards.

Outside of the smart cards domain, the techniques for load-
ing time policy enforcement in multi-application environments
were investigated also for mobile platforms. Ongtang et al.
propose the Saint framework for the Android platform to
impose requirements on services usage on other applications

during installation time and run-time [12]. Applications on
Saint-enabled Android platforms can define their own per-
missions and demand the fulfillment of certain requirements
by both their callers and callees. The Kirin framework is
developed for Android by Enck et al. [3], it checks the
permissions application requests at installation time in order to
capture possibly dangerous combinations of permissions and
suggest a user not to install a dangerous software.

In this work we have presented the Security-by-Contract
framework as a security solution for open multi-application
smart cards, which can be used in a dynamic environment
when applications come and go and the security policy can be
changed. The framework has been specified in terms of ser-
vices used and provided by applications on the card. The main
benefit of the approach is the loading time verification which
ensures that at the runtime the policy of each applet will be
satisfied. We reported about prototype implementation of the
PolicyChecker component of the framework that demonstrated
feasibility of the approach. The prototype is implemented as
an applet on the Java Card 3.0.2 emulator. We have tested
it on several applets: the tests have shown that the prototype
requires only a small percentage of smart card memory to run.

ACKNOWLEDGEMENT

This work is partially supported by the EU under grant EU-
FP7-FET-IP-SecureChange.

REFERENCES

[1] P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J-L. Lanet.
Checking secure interactions of smart card applets: Extended version.
J. of Comp. Sec., 10(4):369–398, 2002.

[2] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Sia-
haan, and D. Vanoverberghe. Security-by-Contract on the .NET plat-
form. Information Security Tech. Rep., 13(1):25 – 32, 2008.

[3] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of CCS 2009, pages 235–245.

[4] O. Gadyatskaya, F. Massacci, and A. Philippov. Implementation re-
quirements and specification of the Policy Checker component. Report
DISI-11-455, University of Trento, 2011.

[5] D. Ghindici and I. Simplot-Ryl. On practical information flow policies
for Java-enabled multiapplication smart cards. In Proceedings of
CARDIS 2008, volume 5189 of LNCS, pages 32–47. Springer-Verlag.

[6] P. Girard. Which security policy for multiplication smart cards? In
USENIX Workshop on Smartcard Technology, 1999.

[7] M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov. Checking
absence of illicit applet interactions: a case study. In FASE’04, volume
2984 of LNCS, pages 84–98. Springer-Verlag, 2004.

[8] GlobalPlatform Inc. GlobalPlatform Card Specification, Version 2.2.
Specification 2.2, 2006.

[9] International Organization for Standardization (ISO) and the Interna-
tional Electrotechnical Commission (IEC). ISO 7816: Smart Card
Standard, 1995. Part 4: Interindustry Commands for Interchange.

[10] Sun Microsystems. Runtime environment specification. Java Card
TM

platform, Connected edition. Specification 3.0, 2008.
[11] I. Narasamdya and M. Périn. Certification of smart-card applications in

Common Criteria. In SAC ’09, pages 601–608. ACM, 2009.
[12] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically

rich application-centric security in Android. In Proceedings of ACSAC
2009, pages 340–349, 2009.

[13] G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll.
Verification of a formal security model for multiapplicative smart cards.
In ESORICS’00, volume 1895 of LNCS. Springer-Verlag, 2000.

[14] Sun Microsystems, Inc. Development Kit User’s Guide, Java Card
Platform, Version 3.0.2 Connected Edition, December 2009.


