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ABSTRACT

Recently, researches have shown to employ implicit behav-
ioral biometrics via built-in sensors (e.g., gyroscope) for user
identification on smartphones. The majority of prior studies
are based on unimodal systems, which suffer from low accu-
racy and spoofing. In this paper, we present an unconstrained
and implicit multimodal biometric system for smartphones
using touchstroke, phone-movement and face patterns. The
proposed framework authenticates the user by taking silently
into account micro-movements of the phone1, movements of
the user’s finger during typing on the touchscreen, and user’s
face features. We also collected a mobile multimodal dataset
of touchstroke and phone-movement patterns in the wild from
95 subjects. Preliminary experimental analysis on accuracy
and usability show promising results.

Index Terms— Mobile Biometrics, Authentication, Mul-
timodal Biometrics, Touch Dynamics, Behavioral biometrics.

1. INTRODUCTION

Nowadays, smartphones have become pervasive personal
computing platform [1]. In fact, they have become per-
sonal assistants, which are widely being used not only for
basic communications but also as a tool to store e-mail,
personal photos, Internet banking and payments, and social
networking. Thus, one of the biggest concerns is security
and privacy leakage. Explicit authentication methods, e.g.,
PIN, password, graphical pattern, are the most common se-
curity strategy available on commercial smartphones [2].
They are susceptible to guessing or smudge attacks, besides
being user-unfriendly and time-consuming [3]. Biometric-
based user authentication on smartphones have been recently
adopted. For instance, iPhone 6s, Android KitKat mobile
OS, and Fujitsu’s Arrows NX F-04G employ fingerprint, face
and iris to recognize individuals, respectively. Nevertheless,
they still face unresolved security2 and usability issues [4, 5].
The average smartphone user checks their device 150 times

1They are low-frequency and low-amplitude unnoticeable hand move-
ments caused by touchstroke actions.

2Just two days after the iPhone5s hit the market, it was fooled by a fin-
gerprint spoof [13].

per day3. If explicit passcode/biometric-based authentication
takes 2 seconds, the typical user spends 5 minutes unlocking
their device/app every day. In fact, recent studies have shown
that about 34%, 47% and 40% users did not use passcode,
fingerprint or any kind of authentication mechanisms, respec-
tively, on their mobile devices citing low usability [4, 6].
Moreover, fingerprint scanner in smartphones most likely
fails when it encounters dry fingers [7].

Researchers have lately proposed behavioral biometrics-
based solutions for smartphone user authentication using
built-in sensors such as accelerometer, gyroscope, and micro-
phones. Some advantages of these techniques are: minimal
user interaction, unobtrusive data collection, and no addi-
tional hardware required [8]. The authors in [9] proposed a
mobile framework Sensec based on sequence of actions that
collects accelerometer, orientation sensor, touch screen, and
magnetometer data for user authentication. While, Buriro et
al. [10] employed a sensor enhanced touchstroke mechanism
for smartphone biometric system, which analyzes how a per-
son holds her phone and how one types her 4-digit free-text
PIN. A specific five-finger touch gestures based user recogni-
tion system for Apple iPad was presented in [11]. However,
this method is not feasible for small touchscreens of typical
smartphones. Blanco-Gonzalo et al. [12] studied handwritten
signature recognition on mobile device. A systematic analy-
sis of prior methods show that they principally either require
high user cooperation, work under constrained environment
and protocol, use single modality that can be easily spoofed
and mimicked (e.g., signature) [13] or do not yet exhibit
low enough error rates. Moreover, no multimodal database
using built-in three-dimensional sensors (e.g., accelerome-
ter, gravity sensor, and magnetometer) is publicly available.
Similarly, despite several advantages the state-of-the-art in
unconstrained and unobtrusive multimodal smartphone bio-
metric authentication is relatively new.

This paper presents an unconstrained and implicit multi-
modal biometric system for smartphones user identification
based on face, user’s hand micro-movements and touchstroke
patterns. Specifically, the system captures silently the micro-

3http://abcnews.go.com/blogs/technology/2013/05/cellphone-users-
check-phones-150xday-and-other-internet-fun-facts/



movement of phone, user’s face, and timing of touch-typing4

while she is entering a text-independent PIN/password to ver-
ify the user’s identity. To the best of our knowledge, this
is the first work that explores combination of face, phone-
movement and touchstroke for smartphone user recognition.
The presented system does not require user to remember any
password, graphical pattern or gesture, since in each attempt
user can enter novel text-independent PIN of fixed length.
Moreover, typing a PIN is easier than writing something on
touchscreen (e.g., signature/pattern). Even if impostor knows
what is being entered as a PIN, access will still be denied be-
cause the system employs keystroke dynamics features (that
is specific to each individual) and not the PIN itself, plus im-
postor cannot mimic the phone micro-movement of genuine
user. Additionally, acquiring a person’s face unobtrusively
using phone’s frontal camera is reasonably easier than ac-
quiring other biometric traits, e.g., fingerprint, palmprint and
iris. Also, use of multi modality makes the proposed system
more secure than uni-modal ones, as spoofing only one or two
modalities would not suffice to grant access to the phone [14].

To demonstrate the efficacy of the proposed system,
we also collected a multimodal dataset of touchstroke and
phone-movement patterns from 95 subjects with multiple
smartphones under uncontrolled fashion where user could
sit, stand or walk. Experimental analysis shows promising
results with more practical accuracy and usability. Namely,
this study shows that multimodal biometrics can be integrated
with smartphones in a user-friendly manner with significant
improved usability and security.

The paper is organized as follows. Section 2 describes the
proposed multimodal smartphone user authentication. Exper-
imental protocol, dataset, results and analysis are discussed in
Section 3. Conclusions are drawn in Section 4.

2. PROPOSED MULTIMODAL AUTHENTICATION
SYSTEM

Smartphones are now being used intensively for accessing
and storing sensitive personal data, thereby making user au-
thentication an issue of paramount importance. The balance
between security and usability however is a challenging task.
For instance, according to the survey result reported in [15],
the iris and voice biometric traits were ranked highest in terms
of perceived security protection, but lowest in terms of us-
ability mainly due to high requirement of user cooperation.
Recently, it has been shown [8, 9, 16] that each user holds, in-
teracts and moves her phone in a unique way, which can also
be utilized for implicit user authentication. In this work, we
propose an unconstrained and implicit multimodal biomet-
ric user authentication system based on user’s hand micro-
movements, touchstroke, and face patterns.

4Touch-typing is the act of typing input on the touchscreen of a smart-
phone.
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Fig. 1. Proposed smartphone user authentication framework.

The proposed framework, as illustrated also in Fig. 1,
profiles silently the user’s hand micro-movements caused by
touch and face captured from frontal camera of the smart-
phone5 simultaneously with touchstrokes while user is en-
tering 8-digit text-independent passcode to access either the
phone or any app. The hand micro-movements pattern an-
alyzed is of a very short period of time, i.e., time taken by
the user to enter 8 digits. The rationale behind choosing this
time duration is because it was empirically determined that
this time is sufficient enough for pattern discrimination and
this duration is too short for an adversary to debug the device
[17]. The 8-digit passcode was adopted owing to the fact that
most apps, document storing/sharing and social networking
services use minimum 8-digit password.

In particular, the captured three mobile biometric traits
(i.e., face, hand micro-movement and touchstroke) are sepa-
rately processed to extract respective salient features. These
three independent features are combined using a feature level
fusion scheme (here, feature concatenation). The resultant
feature vector is then fed to a classifier to obtain final binary
decision: genuine or impostor. If the user is classified as a
genuine user, the system does not interrupt the owner’s inter-
actions with the smartphone. Otherwise, the system alerts
the owner of the phone (e.g., sending an email), and may
stealthily isolate the impostor from accessing sensitive func-
tionality [18], or ask for explicit authentication [20, 21]. Since
the proposed method does not use components of a specific
mobile platform, thus it can be implemented for any mobile
operating system.

In the proposed system, face processing sub-system is
composed of two steps: face localization and face feature ex-
traction. Face localization is achieved by the classification
and regression tree analysis (CART) based on Haar features
[22]. The detected face is first normalized, and then Binarized
Statistical Image Features (BSIF) technique is applied to ob-
tain the face features. BSIF is a local image descriptor that
represents each pixel as a binary code obtained by computing
its response to a set of filters, which are learned from natu-
ral images using an ICA (Independent Component Analysis)
based unsupervised scheme. Finally, the histogram of the pix-

5Since the system captures user’s face unobtrusively, it thus assumes that
during authentication process face of the user is in the range of angle of view.



els’ binary string values allows one to characterize the texture
properties within the face sub-regions.

For phone movements and touchstroke dynamics, the
method leverages three built-in three-dimensional sensors:
the accelerometer, the gravity sensor, and the magnetometer.
By applying the Low-Pass and the High-Pass filters6 with the
parameter α = 0.5 to the accelerometer data, two additional
sensory readings are also obtained; we call them LPF and
HPF values. The Raw, LPF, and HPF accelerometer readings
produce gravity, apparent transient forces acting on the phone
caused by the user activity, and exact acceleration applied
by the user on the phone values, respectively. While, gravity
sensor and magnetometer provide the magnitude and direc-
tion of the gravity force applied on the phone, and strength
and/or direction of the magnetic field in three dimensions,
respectively. All these sensors generate a continuous stream
in x, y and z dimensions. We also added a fourth dimension
to all sensors, and named it magnitude that is represented as:

SM =
√
(a2x + a2y + a2z) (1)

where SM is the resultant dimension, and ax, ay and az are
the accelerations along theX , Y andZ directions. The touch-
stroke features are extracted using typing n-graph, namely
dwell time and flight time from each typing pattern.

For final classification whether the user is genuine or
impostor, Multilayer Perceptron (MLP) and Random Forest
(RF) classifiers were used because of their simplicity, fast
computation and resistance against over-fitting.

3. EXPERIMENTS

Here, we provide an experimental evaluation of the proposed
multimodal smartphone user authentication framework.

3.1. Dataset

MOBIO Face database [23]. This public dataset consists
of face samples collected from 150 subjects using a NOKIA
N93i mobile phone under realistic and uncontrolled environ-
ment. It was captured in phase I and II, which respectively
include 21 and 11 videos per user with 6 sessions. Fig. 2
shows examples from the MOBIO database.
Movement and Touchstroke database. We developed a
customized Android application for the purpose of this data
collection. The app collects data from multiple sensors (i.e.,
accelerometer, gravity, orientation, magnetometer and gyro-
scope sensors) and LPF and HPF values [19]. While Android
supports data collection in four fixed delays (often termed
as Sensor Delay Modes): SENSOR DELAY NORMAL, SEN-
SOR DELAY GAME, SENSOR DELAY UI and SENSOR -
DELAY FASTEST with fixed delay of 0.2, 0.02, 0.06 and 0s,
respectively. We observed SENSOR DELAY NORMAL to be

6http://developer.android.com/guide/topics/sensors/sensors motion.html

Fig. 2. Examples from MOBIO face database.

too slow to sense the movements, and SENSOR DELAY UI
and SENSOR DELAY FASTEST very likely to include the
noise during data collection. Thus, we used SENSOR DE-
LAY GAME in this paper. The data was collected from 95
users under uncontrolled environment using a crowd sourcing
platform. The users were required to install the app and enter
8-digit touch-types in different activities, i.e., sitting, stand-
ing, and walking. The dataset was collected in three phases
(days); 30 samples in each activity per phase from each user.
This database is made publicly available by the authors.

3.2. Experimental Protocol

Since no multi-modal data sets including face, phone micro-
movements and touckstroke are publicly available, we cre-
ated a chimerical multi-modal data sets by associating the
three modalities of pairs of clients of the available MOBIO
and Movement and Touchstroke data sets without regard to
age and/or gender. Note that building chimerical data sets is a
widely used approach in experimental investigations on mul-
timodal biometrics [24]. Following steps were performed on
the detected face: conversion to grayscale, histogram equal-
ization, normalization to 175×175, and feature extraction us-
ing BSIF filter of size 11× 11 with a length of 12 bits. From
every 3-dimensional sensor, 4 data streams were collected to
extract 4 statistical features (mean, standard deviation, skew-
ness, and kurtosis) in each data stream. Data from every
sensor were then transformed into a 4 × 4 features matrix.
In total 16 features from all four dimensions of each sensor
were obtained. Likewise, 14 features were extracted based on
touch-typing timing from the text-independent 8-digit pass-
code entered by the user. The two adopted classifiers (i.e.,
MLP and RF) were used from the WEKA workbench [25]
for user authentication. The performance was evaluated using
TAR (True Acceptance Rate) and EER (Equal Error Rate),
which respectively are the fraction of legitimate user attempts
classified correctly and where false rejection and false accep-
tance become equal. To mitigate the class imbalance problem,
we used randomly selected n (= 5 or 10) and all samples of
a genuine user and an impostor, respectively, as training set,
whereas remaining samples of the genuine user and all sam-
ples of an impostor (that was not used in training) were used
as testing set; the testing phase was repeated 94 times using
different impostor in each run. Furthermore, all the above
procedure was repeated 94 times for the given user using a
different impostor in training in each run. Reported results
are average values over the 94× 94× 95 runs.



Activity Classifiers Movements Touch Face Movements+Touch Movements+Face Touch+Face Movements+Touch+Face
TAR EER TAR EER TAR EER TAR EER TAR EER TAR EER TAR EER

Sitting
MLP 0.98 0.02 0.78 0.22 0.57 0.43 0.97 0.03 0.93 0.07 0.70 0.30 0.92 0.08
RF 0.97 0.03 0.82 0.18 0.52 0.48 0.97 0.03 0.94 0.06 0.60 0.40 0.95 0.05

Standing
MLP 0.98 0.02 0.80 0.20 0.54 0.46 0.98 0.02 0.94 0.06 0.72 0.28 0.94 0.06
RF 0.98 0.02 0.84 0.16 0.49 0.51 0.98 0.02 0.97 0.03 0.73 0.27 0.97 0.03

Walking
MLP 0.98 0.02 0.81 0.19 0.58 0.42 0.98 0.02 0.94 0.06 0.76 0.24 0.94 0.06
RF 0.97 0.03 0.84 0.16 0.52 0.58 0.98 0.02 0.96 0.04 0.78 0.22 0.97 0.03

Table 1. Performance of both classifiers (averaged over all 95 users) under sitting, standing, and walking activities for unimodal,
bimodal and trimodal scenarios based on 5 training samples.

Activity Classifiers Movements Touch Face Movements+Touch Movements+Face Touch+Face Movements+Touch+Face
TAR EER TAR EER TAR EER TAR EER TAR EER TAR EER TAR EER

Sitting
MLP 0.99 0.1 0.79 0.21 0.70 0.30 0.99 0.01 0.97 0.03 0.79 0.21 0.96 0.04
RF 0.99 0.1 0.86 0.14 0.54 0.46 0.99 0.01 0.97 0.03 0.70 0.30 0.97 0.03

Standing
MLP 0.99 0.01 0.82 0.18 0.61 0.39 0.99 0.01 0.99 0.01 0.82 0.18 0.99 0.01
RF 0.99 0.01 0.87 0.13 0.50 0.50 0.99 0.01 0.99 0.01 0.80 0.20 0.99 0.01

Walking
MLP 0.99 0.01 0.84 0.16 0.66 0.34 0.99 0.01 0.98 0.02 0.82 0.18 0.98 0.02
RF 0.99 0.01 0.91 0.09 0.54 0.56 0.99 0.01 0.98 0.02 0.80 0.20 0.99 0.01

Table 2. Performance of both classifiers (averaged over all 95 users) under sitting, standing, and walking activities for unimodal,
bimodal and trimodal scenarios based on 10 training samples.

3.3. Experimental Results

The experimental results of smartphone user authentication
are presented in Tables 1 and 2 with 5 and 10 training sam-
ples, respectively, under three conditions: sitting, standing
and walking. Several observations may be extracted from Ta-
bles 1–2: i) the proposed framework presents a high potential
as a simple, unconstrained, implicit and novel method for
multimodal smartphone user authentication, which reaches
a great recognition accuracy for diverse practical in-the-
wild conditions (e.g., sitting, standing, and walking) with-
out requiring user’s co-operation or one to remember any
PIN/pattern; ii) RF classifier and phone micro-movement
modality, by and large, outperform other considered clas-
sifier and modalities, respectively, owing to RF’s ability of
reducing the variances, averaging out the biases and most
unlikeliness of overfitting, and micro-movement modality’s
very low intra- and high inter-class variation; iii) increasing
the number of training samples increases identification ac-
curacy, it however reduces the usability as in practice most
users likely train their systems with fewer samples, e.g., dur-
ing our data collection 49.5% users said they would prefer to
use less than or maximum 5 samples for training the system;
iv) among adopted modalities face comparatively achieved
high error rates mainly because samples in-the-wild gener-
ally exhibit low texture clarity (see Fig. 2), plus BSIF hugely
depends on ICA that works better for non-Gaussian data,
while we observed that face dataset samples in this study tend
strongly to be Gaussian; v) phone micro-movement is the
most accurate modality among three, however unimodal sys-
tems are vulnerable to spoofing. In fact, it has been shown in
[14] that spoofing the best individual modality creates serious
security breaches, i.e., attacker has higher chances to evade
the system when one spoofs most accurate modality and vice

versa; vi) integration of two/three modalities is not consis-
tently beneficial. Generally, benefits of fusion are exploited
when modalities show complementary nature [7]. However,
since in this case face modality is significantly worse than
others, the performance of multimodal system is thus below
the best performing modality. Nonetheless, the performance
drop in trimodal system is not very much. Moreover, it is
worth noticing that the proposed multimodal system (Phone
movement+Touchstroke+Face) still procures higher accuracy
using only 5 or 10 training samples than multimodal meth-
ods in [26] and [5] using 25 and 30 samples, respectively.
All in all, fusion improves security against spoofing, since
an attacker has lower chances to evade multimodal systems
(even if he spoofs all fused traits) than to evade each single
unimodal system [14]. Namely, spoofing three modalities
simultaneously is much harder than single modality.

4. CONCLUSION

This paper presents an unconstrained and implicit smartphone
multimodal biometric system using touchstroke, phone-
movement and face patterns. The proposed architecture
identifies the user by taking silently into account micro-
movements of phone, movements of user’s finger during typ-
ing on touchscreen, and user’s face features. This study also
collected and shares publicly a mobile multimodal dataset of
touchstroke and phone-movement patterns in the wild from
95 subjects. Experimental results show high accuracy with
increased security and usability. Since proposed method is
generic it can be implement on any smartphone to unlock the
device and/or a separate authentication service for various
applications, e.g., mobile banking. Future work will focus
on analyzing vulnerability of the proposed system against
spoofing and thereby developing anti-spoofing techniques.
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