
The Embeddable Security-by-Contract
Verifier for Java Card

Olga Gadyatskaya
Joint work with F. Massacci, E. Lostal

University of Trento (Italy)

BYTECODE 2012, Tallinn, Estonia

31.03.2012

Multi-App Cards Story

First papers on multi-application smart cards
appeared in 1999-2000

And research continued actively until 2003-2004

BUT

Nobody has seen these cards..

25/03/2013 Gadyatskaya et al. - BYTECODE 2012 2

New NFC World I

And then NFC appeared

Now we have NFC-
payments, NFC-ticketing,
NFC-discounts

Gadyatskaya et al. - BYTECODE 2012 3 25/03/2013

New NFC World II

Sensitive apps need a secure
element

IDEA
Use the smart card as the secure
element!

Already deployed infrastructure

BUT
Application interactions need to
be controlled

Gadyatskaya et al. - BYTECODE 2012 4 25/03/2013

The Platform

Gadyatskaya et al. - BYTECODE 2012

Integrated Circuit

Native OS

Installer &
Loader

JCRE

JCVM
(Interpreter)

Native API

Java Card API

CAP file

Applet C Applet B Firewall

.java

.class

Compiler

Converter

Instance

Export
file

5

Export
file Export

file Export
file C

25/03/2013

How does JC really work?

Access control is embedded into functional code

• Technical Consequence 1  If A checks who calls it, the access control policy
cannot be updated unless the code is updated

– sometimes code updates are not even possible

• Technical Consequence 2  If A does not check, then everybody can use it

Gadyatskaya et al. - BYTECODE 2012 6 25/03/2013

Applet B Applet A

Firewall

Run-time

Shareable
Interface

 service 1

service 2

Design Targets

• Same security of interacting smart cards with
access control embedded in the code
– Apps can arbitrarily restrict who calls their services

• Enabling security policy updates
– without code update

• On a challenging hardware platform
– RAM footprint <1KB, NVM footprint <20KB

– Small time overhead

• No changes to external loading protocols

Gadyatskaya et al. - BYTECODE 2012 7 25/03/2013

Loading time verification with
the Security-by-Contract scheme

Gadyatskaya et al. - BYTECODE 2012 8

Contract

CAP

Bytecode Contract
matches
Bytecode?

Loading

Claim Checker

Yes

Policy Checker

Contract
matches
Policy?

Yes

No No

Linking and
Installation

Stop
Free the memory

Retrieve
Policy

Policy Store

Contract
App1

Contract
AppN

…

Update
Policy

Integrated
with the JCRE

25/03/2013

Contract I

• Apps come equipped with a contract
– Claims

• I may provide these shareable interfaces with these services

• I may call those methods from those interfaces

– Security Rules
• This service can only be called by this application

– Functional Rules
• I need these services from those applications

• When new app arrives platform will check
– contract complies with bytecode

– contract acceptable to other applets

Gadyatskaya et al. - BYTECODE 2012 9 25/03/2013

Contract II

Gadyatskaya et al. - BYTECODE 2012

Contract of an applet

AppClaim AppPolicy

Provided services

Called services

Security rules

Functional rules

<Interface token, method token>

<Provider application AID,

Interface token, method token>

<Interface token, method token,

 Authorized application AID>

<Provider application AID,

Interface token, method token>

10 25/03/2013

How do we get the tokens?

25/03/2013 Gadyatskaya et al. - BYTECODE 2012 11

Source code of an applet
public interface CoopPointsInterface

extends Shareable {

 byte sharePoints (byte points);}

public class CoopPointsClass

implements CoopPointsInterface {

 public byte sharePoints(byte

points) {

 return (byte) (points + 2);}}

private void askForCharge() {

 final AID Purse_AID =

JCSystem.lookupAID(PurseAID,(short)0,

(byte)PurseAID.length);

 CreditObject = (CreditInterface)

(JCSystem.getAppletShareableInterface

Object(Purse_AID, CreditDetails));

points = CreditObject.charge(points);
}

CAP file of the same applet

...

getstatic_b 4

invokeinterface 2, 18, 0

putstatic_b 4

return

constant_pool[18] { ...

 External PackageToken: 2,

 ClassToken: 0

 ...}

Method
component

package_info[2] { …

 AID_length 6

 AID (1,2,3,4,5,0) }

Import
component

//Called method token

//Called interface token
//Bytecodes of askForCharge()

Export file of the same applet

export_classes {

 class_info {

 token 0

 name_index 3 //coop/CoopPointsInterface

 export_methods_count 1

 methods {

 method_info {

 token 0

 name_index 0 // sharePoints

//Shareable interface token

//shared method token

Constant
Pool
component

// Actual service invocation

Security Policy on the card

Gadyatskaya et al. - BYTECODE 2012

Policy (fixed size)

All loaded contracts in an
internal bit-arrays format

Policy on the card

Mapping

Maintains correspondence
between on-card IDs and
AIDs

WishList

MayCall

Possible future authorizations
for applets not yet on the
card

Called services from applets
not yet on the card

We can have arbitrary number of applets mentioned in the policy

Small size and
(frequent)
efficient

operations

Big size and
(rare) slow
operations

Big size and
(rare) slow
operations

12 25/03/2013

SxC Architecture

25/03/2013 Gadyatskaya et al. - BYTECODE 2012 13

Device hardware

Native OS

JCRE

JCVM
(Interpreter)

Native API

Java Card API

Applet B Applet A
Firewall

Claim
Checker

SxCInstaller

Loader

Policy Store Installer

Policy
Checker

CAP file

.java

.class

Compiler

Converter

CAP Modifier

Export
file

Export
file Export

file Export
file

CAP file
with

contract

instance

The SxC deployment process does not
modify the standard Java Card tools

Java Card
Interface

Native (C)
Interface

It really works on a card

• Developer’s Version (run on PC
Win32 simulator)
– ClaimChecker 10KB

– PolicyChecker+SxCInstaller 10KB

– PolicyStore  6KB

• JavaCard’s version (on Gemalto’s
card)
– ClaimChecker  1KB

– PolicyChecker +SxCInstaller 0.9KB

– Total SxC components  8KB of NVM

• To put numbers in perspective
– Installer  6KB

– JCRE (Loader+Linker+Installer)  20KB

Gadyatskaya et al. - BYTECODE 2012 14 25/03/2013

0

5

10

15

20

25

On-card components

Works on real applets

Quick overview of the real applets used for testing:
• Electronic purse application from Gemalto: 4.7KB CAP file, 16 methods

• Ticketing app from Gemalto : 3KB CAP file, 7methods

• Belgian electronic identity app: 11.2 KB CAP file, 81 method

• Another electronic purse app from Gemalto: 4.5 KB CAP file, 18 methods

25/03/2013 Gadyatskaya et al. - BYTECODE 2012 15

DEMO?
Just ask me at the coffee break!

Conclusions

• The SxC embedded verifier performs the loading time
application certification
– Ensuring that an applet is accepted only if it respects

policies of the applets already on the card

• The security code is separated from the functional
code

• The policy management is centralized
– Important for the platform owner

• It really works on a smart card with real industrial
applets
– The framework is a non-invasive addition to the standard

Java Card deployment process

25/03/2013 Gadyatskaya et al. - BYTECODE 2012 17

Questions?

olga.gadyatskaya@unitn.it

more info at
www.disi.unitn.it/~gadyatskaya/sxc.html

mailto:olga.gadyatskaya@unitn.it

