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Multi-App Cards Story 

First papers on multi-application smart cards 
appeared in 1999-2000 

And research continued actively until 2003-2004 

BUT 

Nobody has seen these cards.. 

25/03/2013 Gadyatskaya et al. - BYTECODE 2012 2 



New NFC World I 

And then NFC appeared 

 

Now we have NFC-
payments, NFC-ticketing, 
NFC-discounts 
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New NFC World II 

Sensitive apps need a secure 
element 
 
IDEA 
Use the smart card as the secure 
element! 

Already deployed infrastructure 
 

BUT 
Application interactions need to 
be controlled 
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The Platform 
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How does JC really work? 

Access control is embedded into functional code 

• Technical Consequence 1  If A checks who calls it, the access control policy 
cannot be updated unless the code is updated 

– sometimes code updates are not even possible 

• Technical Consequence 2  If A does not check, then everybody can use it 
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Design Targets 

• Same security of interacting smart cards with 
access control embedded in the code 
– Apps can arbitrarily restrict who calls their services 

• Enabling security policy updates  
– without code update 

• On a challenging  hardware platform 
– RAM footprint <1KB, NVM footprint <20KB 

– Small time overhead 

• No changes to external loading protocols 
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Loading time verification with  
the Security-by-Contract scheme 
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Contract I 

• Apps come equipped with a contract 
– Claims 

• I may provide these shareable interfaces with these services 

• I may call those methods from those interfaces 

– Security Rules  
• This service can only be called by this application 

– Functional Rules 
• I need these services from those applications 

• When new app arrives platform will check 
– contract complies with bytecode 

– contract acceptable to other applets 
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Contract II 
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Contract of an applet 

AppClaim AppPolicy 

Provided services 

Called services 

Security rules 

Functional rules 

<Interface token, method token>  

<Provider application AID,  

Interface token, method token>  

<Interface token, method token, 

 Authorized application AID>  

<Provider application AID,  

Interface token, method token>  
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How do we get the tokens? 
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Source code of an applet 
public interface CoopPointsInterface 

extends Shareable { 

    byte sharePoints (byte points);} 

 

public class CoopPointsClass 

implements CoopPointsInterface { 

  public byte sharePoints(byte 

points) { 

    return (byte) (points + 2);}} 

 

private void askForCharge() { 

    final AID Purse_AID = 

JCSystem.lookupAID(PurseAID,(short)0, 

(byte)PurseAID.length); 

 

    CreditObject = (CreditInterface) 

(JCSystem.getAppletShareableInterface

Object(Purse_AID, CreditDetails)); 

 

points = CreditObject.charge(points); 
} 

CAP file of the same applet 

... 

getstatic_b 4 

invokeinterface 2, 18, 0   

putstatic_b 4 

return 

constant_pool[18] { ... 

     External PackageToken: 2, 

     ClassToken: 0 

     ...}  

Method 
component 

package_info[2] { … 

   AID_length   6 

   AID (1,2,3,4,5,0)  }   

Import 
component 

//Called method token 

//Called interface token 
//Bytecodes of askForCharge() 

Export file of the same applet 

export_classes { 

  class_info {   

    token 0 

    name_index 3 //coop/CoopPointsInterface 

    export_methods_count  1 

    methods { 

      method_info { 

  token   0 

  name_index  0 // sharePoints 

//Shareable interface token 

//shared method token 

Constant  
Pool  
component 

// Actual service invocation 



Security Policy on the card 
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SxC Architecture 
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It really works on a card 

• Developer’s Version (run on PC 
Win32 simulator) 
– ClaimChecker 10KB 

– PolicyChecker+SxCInstaller 10KB 

– PolicyStore   6KB  

• JavaCard’s version (on Gemalto’s 
card) 
– ClaimChecker  1KB 

– PolicyChecker +SxCInstaller 0.9KB 

– Total SxC components  8KB of NVM 

• To put numbers in perspective 
– Installer  6KB 

– JCRE (Loader+Linker+Installer)  20KB 
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Works on real applets 

Quick overview of the real applets used for testing: 
• Electronic purse application from Gemalto: 4.7KB CAP file, 16 methods 

• Ticketing app from Gemalto : 3KB CAP file, 7methods 

• Belgian electronic identity app: 11.2 KB CAP file, 81 method 

• Another electronic purse app from Gemalto: 4.5 KB CAP file, 18 methods 
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DEMO? 
Just ask me at the coffee break! 



Conclusions 

• The SxC embedded verifier performs the loading time 
application certification 
– Ensuring that an applet is accepted only if it respects 

policies of the applets already on the card 

• The security code is separated from the functional 
code 

• The policy management is centralized 
– Important for the platform owner 

• It really works on a smart card with real industrial 
applets 
– The framework is a non-invasive addition to the standard 

Java Card deployment process 

25/03/2013 Gadyatskaya et al. - BYTECODE 2012 17 



Questions? 

olga.gadyatskaya@unitn.it 

 

more info at 
www.disi.unitn.it/~gadyatskaya/sxc.html 
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