
Load-Time Security Certification for Real 

Smart-Cards 

Olga Gadyatskaya 
joint work with F.Massacci, E.Lostal  

(University of Trento, Italy) 
 

Evaluation by B. Chetali, Q-H. Nguyen 
TrustedLabs/Gemalto (FR) 



This talk 

• How to design lightweight yet flexible and 

effective access control framework in a very 

restricted environment (Java Card) 

• How to integrate the framework on a real card 

• Bonus: demo of the prototype 

 

O.Gadyatskaya, F.Massacci  FMCO-HATS 2 04/10/2012 



Agenda 

 

• Motivations and the Security-by-Contract idea 

• The Java Card Background 

• Contracts 

• A (thin) hint of theory 

• A (larger) taster of engineering 

• Demo 

• Conclusions 

O.Gadyatskaya, F.Massacci  FMCO-HATS 3 04/10/2012 



Agenda 

 

• Motivations and the Security-by-Contract idea 

• The Java Card Background 

• Contracts 

• A (thin) hint of theory 

• A (larger) taster of engineering 

• Demo 

• Conclusions 

O.Gadyatskaya, F.Massacci  FMCO-HATS 4 04/10/2012 



Mobile payments 

• NFC technology as 

enabler 

• Secure element for 

storing secrets 

Image courtesy of the NFC forum 
O.Gadyatskaya, F.Massacci  FMCO-HATS 5 04/10/2012 



Pros of each secure element 

technology 

• ARM TrustZone 

• Mobile Trusted Module 

• Intel Trusted eXecution Technology 

 

• Java Card (+ GlobalPlatform) SIM card 

• Cheaper 

• SIM card is already managed by the 
telco 

• Standardized development and 
deployment 

• It is there in ALL smartphones 

Dedicated 
chip/phone 
memory 

O.Gadyatskaya, F.Massacci  FMCO-HATS 6 04/10/2012 



SIM as secure element 

• Not only credentials/PINs.  

    These are apps! 
– and some of them may 

even interact 

– this is Java 

• New apps may be added/ 
old ones removed over 
time 

• Sensitive apps require 
strict control (on the 
secure element) over who 
talks to whom 

Image courtesy of the NFC forum 
O.Gadyatskaya, F.Massacci  FMCO-HATS 7 04/10/2012 



Design goals 

• We need an on-card system that: 

– Allows to add or remove applets 

– Enables applets to declaratively control access to 

their shared resources (services) 

– The access control policy can mention arbitrary 

applet identifiers (AIDs) 

– The applet bytecode is validated by the card itself 

to respect the policies of other applets on card 

O.Gadyatskaya, F.Massacci  FMCO-HATS 8 04/10/2012 



Design constraints 

• No modifications to the standard loading 
protocol, run-time environment or the virtual 
machine 

– Too expensive 

• Most part of the trusted computing base is in 
ROM 

– Cannot be modified after the card is in the field 

• Applet providers can set up their policies 
independently 

– Telco does not want to be bothered 

O.Gadyatskaya, F.Massacci  FMCO-HATS 9 04/10/2012 



It was not achieved before 

Existing solutions for Java Card: 

– Can verify full information flow, but for 

predefined set of applets and off-card 

 

– Can verify transitive control flow on card, but only 

for predefined and limited set of domains (applet 

owners) 

 

– [Java Card protection] The policies are embedded 

into the applet code. 
O.Gadyatskaya, F.Massacci  FMCO-HATS 10 04/10/2012 



The threat model 

• We assume an attacker that can: 
– Load or remove her applets on the card 

– Update access control policy of her own applets 

• The attacker cannot: 
– Force loading or removal of someone else’s applets or 

change their policies 

– Spoof  someone else’s applets pretending to be their 
legitimate owner 

• The attacker’s goal 
– Enable her applets to access illegally sensitive 

services of other applets 

O.Gadyatskaya, F.Massacci  FMCO-HATS 11 04/10/2012 



The Security-by-Contract idea 

• SxC – particular instance of Load Time 
Verification 

– Derived from Proof carrying code and Model 
carrying code ideas 

• Well-tested for mobile platforms  

– Java & .NET implementation (2008) 

– Android (Manifest) implementation (Enck et al, 
2010) 

• But a smartphone isn't a card… 

O.Gadyatskaya, F.Massacci  FMCO-HATS 12 04/10/2012 



SxC workflow on mobile 

O.Gadyatskaya, F.Massacci  FMCO-HATS 13 04/10/2012 



SxC workflow on smart  

cards 

CLAIM CHECKER Policy Checker 

Reject 

POLICY CHECKER UPDATE POLICY 

O.Gadyatskaya, F.Massacci  FMCO-HATS 14 04/10/2012 



Agenda 

 

• Motivations and the Security-by-Contract idea 

• The Java Card Background 

• Contracts 

• A (thin) hint of theory 

• A (larger) taster of engineering 

• Demo 

• Conclusions 

O.Gadyatskaya, F.Massacci  FMCO-HATS 15 04/10/2012 



The Java Card platform 

Device hardware 

Native OS 

JCRE 

JCVM 
(Interpreter) 

Native 
API 

Java Card API 

Applet B Applet A Firewall 

Loader 

Installer 

CAP file 

.java 

.class 

Compiler 

Converter 

Export 
file 

Export file 
Export file 

Export file 

instance 

Native 
Interface 

Java Card 
Interface 

Optimized bytecode format 

No 
implementation 

here 

O.Gadyatskaya, F.Massacci  FMCO-HATS 16 04/10/2012 



How does JC really work? 

Access control is embedded into functional code 

• Technical Consequence 1  If A checks who calls it, the access 

control policy cannot be updated unless the code is updated 

– sometimes code updates are not even possible 

• Technical Consequence 2  If A does not check, then everybody 

can use it 

Applet B Applet A 

Firewall 

Run-time: Shareable 
Interface 

 service 1 

service 2 

O.Gadyatskaya, F.Massacci  FMCO-HATS 17 04/10/2012 



Example 

Server applet Client applet 

Electronic purse applet Transport ticketing applet 

Payment 
service 

Shareable Interface 

FIREWALL 

O.Gadyatskaya, F.Massacci  FMCO-HATS 18 04/10/2012 



ePurse applet: the ACL in the 

code 

01 byte ClientsNumber = 1; 

02 byte [] TransportAIDset =  

{0x01,0x02,0x03,0x04,0x05,0x0C,0x0A}; 

03 final AID TransportAID = JCSystem.lookupAID 

(TransportAIDset,(short)0,(byte)TransportAIDset.length); 
04 

05 //the access control list 

06 AID [] clientAIDs = {TransportAID};  

07 //ACL check implementation 

08 public short authorizedClient(AID clientAID){ 

09    for (short i=0; i<ClientsNumber; i++) 

10       if (clientAIDs[i].equals(clientAID))  

11          return i; //clientAIDs is in the ACL 

12    return -1; 

13 } 

 

O.Gadyatskaya, F.Massacci  FMCO-HATS 19 04/10/2012 



ePurse applet: Shareable 

interface 

14 //SI definition 

15 public interface PaymentInterface extends Shareable { 

16    //definition of the payment service 

17   byte payment(short account_number);  

18 } 

19 public class PaymentClass implements PaymentInterface { 

20   byte payment_code = 0x08; 

21   public byte payment(short account_number){ 

22      //implementation of  the service 

23      AID clientAID = JCSystem.getPreviousContextAID();  

24      if (authorizedClient(clientAID) == -1) //ACL check 

25          return (byte) 0x00; //no service is provisioned 

26      else return payment_code; //provision of the service 

27   } 

28 } 

29 public PaymentClass PaymentObject; 

 

service 

O.Gadyatskaya, F.Massacci  FMCO-HATS 20 04/10/2012 



Agenda 

 

• Motivations and the Security-by-Contract idea 

• The Java Card Background 

• Contracts 

• A (thin) hint of theory 

• A (larger) taster of engineering 

• Demo 

• Conclusions 

O.Gadyatskaya, F.Massacci  FMCO-HATS 21 04/10/2012 



Contract I 

• Applets come equipped with a contract 

– Claims 

• I may provide these shareable interfaces with these services 

• I may call those methods from those interfaces 

– Security Rules  

• This service can only be called by this application 

– Functional Rules 

• I need these services from those applications 

• When new applet arrives platform will check 

– contract complies with bytecode 

– contract is acceptable to other applets 

O.Gadyatskaya, F.Massacci  FMCO-HATS 22 04/10/2012 



Contract II 

Contract of an applet 

AppClaim AppPolicy 

Provided services 

Called services 

Security rules 

Functional rules 

<Interface token, method token>  

<Provider application AID,  

Interface token, method token>  

<Interface token, method token, 

 Authorized application AID>  

<Provider application AID,  

Interface token, method token>  

O.Gadyatskaya, F.Massacci  FMCO-HATS 23 04/10/2012 



How do we get the tokens? 

- from Export files 

Export file (snippet) of the Purse applet: 
export_classes { 

  class_info {  // packagePurse/PaymentInterface 

    token    0  // Shareable interface token 

    … 

    export_methods_count  1 

    methods { 

      method_info { 

        token  0   // shared method token 

        … 

        name_index  0  // payment 

Service PaymentInterface.payment  gets token <0,0> 

O.Gadyatskaya, F.Massacci  FMCO-HATS 24 04/10/2012 



Invoked service tokens 

01 private void connectServer(){ 

02   final AID appletAID = JCSystem.lookupAID 

(serverAppletAID,(short)0,(byte)serverAppletAID

.length); 

03  if (appletAID == null) 

04     

ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_

SATISFIED); 

05  PaymentObject = (PaymentInterface) 

(JCSystem.getAppletShareableInterfaceObject(app

letAID, InterfaceDetails)); 

06 } 

07 private void newBalance() { 

     // Actual service invocation 

08   payment_code = 

PaymentObject.payment(account_number); 

09   return; 

10 } 

package_info[1]{… 

AID_length 6 

AID {1.2.3.4.5.b} } 

… 

getstatic_a 17;  

getfield_b_this 2; 

invokeinterface 2 16 0;  

putfield_b 3;  

return; 

constantPool[16]{… 

external package_token 1 

class_token 0 

Import 
component 

Constant 
Pool 
component 

Method  
component 

// bytecode of newBalance() 

Source code of Transport CAP file of Transport 

Called service <0,0> from        
AID 0x01020304050B 

O.Gadyatskaya, F.Massacci  FMCO-HATS 25 04/10/2012 



The Claim Checker 

Matches the Contract 

with the bytecode 

For provided services: 
  Checks the Shareable interfaces in CAP Export component 

For called services: 
  Finds all invokeinterface instructions (Method component 

and friends) and checks the invocation was declared 

O.Gadyatskaya, F.Massacci  FMCO-HATS 26 04/10/2012 



Agenda 

 

• Motivations and the Security-by-Contract idea 

• The Java Card Background 

• Contracts 

• A (thin) hint of theory 

• A (larger) taster of engineering 

• Demo 

• Conclusions 

O.Gadyatskaya, F.Massacci  FMCO-HATS 27 04/10/2012 



Formally 

• A deployed applet is a tuple <AID, Bytecode, 

ConstPool> 

• A platform Θ is a set of currently deployed 

applets 

• Security policy of the platform is a set of 

contracts {{Contract1}, …, {ContractN}} of 

currently deployed applets 

O.Gadyatskaya, F.Massacci  FMCO-HATS 28 04/10/2012 



Taxonomy of the JCVM 

instructions 

O.Gadyatskaya, F.Massacci  FMCO-HATS 29 04/10/2012 

Type Instructions 

I Arithmetic instructions; instructions that do not affect control flow. Cannot 
produce exceptions, execution proceeds to the next instruction: iadd 

II Can throw run-time exceptions, but not security exceptions: irem 

III Modify execution flow: goto, ifnull 

IV Return instructions: return 

V Can throw security exceptions: checkcast, iastore. The JCRE checks the object 
access rights here 

VI Invoke methods: invokeinterface, invokespecial, invokestatic, invokevirtual 



The security theorem 

• IF the JCRE is correct wrt specs: 
– [Firewall] applets only interact through Shareable interfaces 

– The Converter was correct and the CAP file was not tampered 
with 

– invokeinterface  is the only invocation instruction that can 
be used for invoking services 

• AND the SxC framework is correct wrt the specs 

 

• THEN all methods invoked by any deployed applet B 
are authorized in the platform policy 

 

Proof goes by cases of method invocation on the platform and 
inductively over the length of platform execution.  

O.Gadyatskaya, F.Massacci  FMCO-HATS 30 04/10/2012 



Agenda 

 

• Motivations and the Security-by-Contract idea 

• The Java Card Background 

• Contracts 

• A (thin) hint of theory 

• A (larger) taster of engineering 

• Demo 

• Conclusions 

O.Gadyatskaya, F.Massacci  FMCO-HATS 31 04/10/2012 



Our first architecture: “as-on-

mobile” 

Hardware 

Operating System 

Java API 

Native API JVM 
Loader 

JCRE 
 
 
 
 

Applet N Applet 1 

Policy 
Checker 

Claim 
Checker 

Firewall 

Just ask results 

Outside protocols 

O.Gadyatskaya, F.Massacci  FMCO-HATS 32 04/10/2012 



First engineering problem 

• We implemented Policy Checker as an applet 

– Footprint of checker 11KB and contracts 2KB 

• BUT requires changing existing protocols! 

– Loading protocol standard plus check results of 1+2 

– New protocol with policy checker 

– New protocol with claim checker 

• Loader can trust Policy Checker, but Claim 
Checker? 

– Needs signatures and certification 

– Too small improvement to justify new protocols 

 
O.Gadyatskaya, F.Massacci  FMCO-HATS 33 04/10/2012 



Our second architecture 

Loader 
 
 
 
 

JCRE 
 
 
 
 
 
 
 
 

Hardware 

Operating System 

Java API 

Native API JVM 

Applet N Applet 1 
Firewall 

Do everything 

Claim 
checker 

Policy 
checker 

O.Gadyatskaya, F.Massacci  FMCO-HATS 34 04/10/2012 



Second Engineering Problem 

• More Effective and Efficient 

– Checkers no longer trust external checks of code  

– Eliminate check of signature! 

– Both checkers can be implemented in C 

• But where do we put the policy? 

– We need to retrieve it and store it somewhere… 

– But the Loader is “printed” 

• We could have a “static int policy[]’’   but 

that’s not going to work in the ROM 

O.Gadyatskaya, F.Massacci  FMCO-HATS 35 04/10/2012 



Loader 
 
 
 
 

Our third architecture 

 
JCRE 
 
 
 
 
 
 
 
 

Hardware 

Operating System 

Java API 

Native API JVM 

Applet N Policy 
Store 

Firewall 

Claim 
checker 

Policy 
checker 

Applet 1 

O.Gadyatskaya, F.Massacci  FMCO-HATS 36 04/10/2012 



Third Engineering Problem 

•  How to deliver the Contract to the Checkers? 

– Can’t change the loading protocol 

• Both Checkers need applet AID…  

– AIDs are “big”  don’t want to use them in the 
algorithms 

– AIDs only known at loading time  can’t “print” 
them in Loader 

• A bit of help from the platform 

– AID are mapped into Package ID (much shorter) 

– But still you have rules for AIDs not yet on board 

O.Gadyatskaya, F.Massacci  FMCO-HATS 37 04/10/2012 



Third Engineering Idea 

• Each applet includes contract in CAP file Custom 
component 

– No need to send it separately 

– Arrives and leaves with applet 

– Updates identical to old code updates 

– Enables backward compatibility for cards and applets 

• Checkers do not need trust anyone 

– Contract update would anyhow require code check 

• PolicyStore references applet contract with PID 

– Mapping table from PID to AID  

– Checkers only get short matrix with loaded PIDs 

O.Gadyatskaya, F.Massacci  FMCO-HATS 38 04/10/2012 



Security policy on the card 

Policy (fixed size) 

All loaded contracts in an 
internal bit-arrays format 

Policy on the card 

Mapping 

Maintains correspondence 
between on-card IDs and 
AIDs 

WishList 

MayCall 

Possible future authorizations 
for applets not yet on the 
card 

Called services from applets 
not yet on the card 

Small size and 
(frequent) 
efficient 

operations 

Big size and 
(rare) slow 
operations  

Big size and 
(rare) slow 
operations  

Arbitrary AIDs in the Mapping 

O.Gadyatskaya, F.Massacci  FMCO-HATS 39 04/10/2012 



The final architecture 

Device hardware 

Native OS 

JCRE 

JCVM 
(Interpreter) 

Native API 

Java Card API 

Applet B Applet A 
Firewall 

Claim 
Checker 

SxCInstaller 
 
 

Loader 

Policy Store Installer 

Policy 
Checker 

CAP file 

.java 

.class 

Compiler 

Converter 

CAP 
Modifier 

Export 
file 

Export 
file Export 

file Export 
file 

CAP file 
with 

contract 

instance 

The SxC deployment process does not 
modify the standard Java Card tools 

Java Card 
Interface 

Native (C) 
Interface 

O.Gadyatskaya, F.Massacci  FMCO-HATS 40 04/10/2012 



New applet policy update 

protocol 

Device hardware 

Native OS 

JCRE 

JCVM 
(Interpreter) 

Native API 

Java Card API 

Applet B Applet A 
Firewall 

Claim 
Checker 

SxCInstaller 
 
 

Loader 

Policy Store Installer 

Policy 
Checker 

Java Card 
Interface 

Native (C) 
Interface 

Applet A 
Provider  

“I want to allow 
access to service s 
for applet C” 

O.Gadyatskaya, F.Massacci  FMCO-HATS 41 04/10/2012 



It is small enough 

0

10

20

30

40

50

60

70

SxCInstaller ClaimChecker Total (native SxC) Loader Linker

KB 

Native components 
compiled on PC 

O.Gadyatskaya, F.Massacci  FMCO-HATS 42 04/10/2012 



It really works on the card 

0

5

10

15

20

25

KB 

On-card 
components 

O.Gadyatskaya, F.Massacci  FMCO-HATS 43 04/10/2012 



Works on real applets 

O.Gadyatskaya, F.Massacci  FMCO-HATS 44 04/10/2012 



DEMO 

 

O.Gadyatskaya, F.Massacci  FMCO-HATS 45 04/10/2012 



Demo scenario 

PurseApplet 

AID 0x010203040500 

Provided services 
DebitInterface.transaction()  token <1,1> 

DebitInterface.payment() token <1,0> 

CreditInterface.charge() token <0,0> 

Sec.rules 
CoopLoyaltyApplet for <0,0> 
PoliLoyaltyApplet for <1,0> and <1,1> 
TransportApplet for <0,0> and <1,0> 

Calls 

PoliLoyaltyApplet 

AID 0x0102030405060700 

Provided services 
PoliPointsInterface.sharePoints()    
token <0,0> 

Sec.rules 

Calls 

TransportApplet 

AID 0x01020304050600 

Provided services 

Sec.rules 

Calls 

CoopLoyaltyApplet 

AID 0x010203040506070800 

Provided services 
CoopPointsInterface.sharePoints()  
token <0,0> 

Sec.rules 
PoliLoyaltyApplet for <0,0> 

Calls 

N
ee

d
s 

Needs 

Needs 

O.Gadyatskaya, F.Massacci  FMCO-HATS 46 04/10/2012 



Agenda 

 

• Motivations and the Security-by-Contract idea 

• The Java Card Background 

• Contracts 

• A (thin) hint of theory 

• A (larger) taster of engineering 

• Demo 

• Conclusions 

O.Gadyatskaya, F.Massacci  FMCO-HATS 47 04/10/2012 



Industrial conclusions 

 

 

• VISA is sceptical 

• But 

– less sensitive applets require cheaper validation 

techniques 

O.Gadyatskaya, F.Massacci  FMCO-HATS 48 04/10/2012 



You can find more details in 

• [POLICY’2011] N. Dragoni, E. Lostal, O. Gadyatskaya, 

F. Massacci, F. Paci: A Load Time Policy Checker for Open 

Multi-application Smart Cards 

• [ICISS’2011] O. Gadyatskaya, E. Lostal, F. Massacci: 

Load Time Security Verification 

• [BYTECODE’2012] O. Gadyatskaya, E. Lostal, F. 

Massacci: Extended Abstract: Embeddable Security-by-

Contract Verifier for Java Card 

• Some technical reports on my web page 

www.unitn.it/~gadyatskaya 

O.Gadyatskaya, F.Massacci  FMCO-HATS 49 04/10/2012 



Conclusions 

• SxC framework performs loading time 
application certification 

– an applet is accepted only if it respects policies of 
other deployed applets 

• Security code separated from the functional 
code 

• It really works on a smart card  

– non-invasive addition to the standard Java Card 
deployment process 

O.Gadyatskaya, F.Massacci  FMCO-HATS 50 04/10/2012 



Send us your applets … 

Olga.Gadyatskaya@unitn.it 

Fabio.Massacci@unitn.it 

mailto:Fabio.Massacci@unitn.it
mailto:Fabio.Massacci@unitn.it
mailto:Fabio.Massacci@unitn.it

