
Preliminary Findings on FOSS Dependencies and Security
AQualitative Study on Developers’ Attitudes and Experience

Ivan Pashchenko
ivan.pashchenko@unitn.it
University of Trento, IT

Duc-Ly Vu
ducly.vu@unitn.it

University of Trento, IT

Fabio Massacci
fabio.massacci@unitn.it
University of Trento, IT

ABSTRACT
Developers are known to keep third-party dependencies of their
projects outdated even if some of them are affected by known vul-
nerabilities. In this study we aim to understand why they do so.
For this, we conducted 25 semi-structured interviews with devel-
opers of both large and small-medium enterprises located in nine
countries. All interviews were transcribed, coded, and analyzed
according to applied thematic analysis. The results of the study
reveal important aspects of developers’ practices that should be
considered by security researchers and dependency tool developers
to improve the security of the dependency management process.

KEYWORDS
Dependency management, security, vulnerable dependencies, qual-
itative study, interviews

ACM Reference Format:
Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. 2020. Preliminary Find-
ings on FOSS Dependencies and Security: A Qualitative Study on Develop-
ers’ Attitudes and Experience. In 42nd International Conference on Software
Engineering Companion (ICSE ’20 Companion), October 5–11, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3377812.3390903

1 RESEARCH PROBLEM AND MOTIVATION
Components with known vulnerabilities (#9 from OWASP Top
10 list of Web Application Security Risks1) are the most frequent
cause of severe security breaches: according to the Snyk report2,
known vulnerable components were the root cause of 24% of severe
security breaches, like the Equifax breach3 due to an outdated
Apache Struts library, the Panama Papers data leak4 due to an old
unpatched version of Drupal, and the Ubuntu forum breach5 due
to an outdated Forumrunner add-on. Still, developers often keep
third-party components used in their projects outdated.

There is a strong temptation to fingerpoint FOSS developers
for lack of care. However, a more careful analysis reveals more

1https://owasp.org/www-project-top-ten/
2https://snyk.io/blog/owasp-top-10-breaches/
3https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
4https://www.icij.org/investigations/panama-papers/
5https://ubuntu.com/blog/notice-of-security-breach-on-ubuntu-forums

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390903

nuances in these broad findings. For example, a study of the an-
droid ecosystem [3] argued that many libraries were vulnerable
and could be easily updated. A later study by the same group [5]
showed that the original claim was too optimistic: the ‘easy’ update
would instead create breaking changes in around 50% dependent
projects. Similarly, an initial study on the Maven ecosystem [7]
argued that many libraries included vulnerable dependencies. A
later study [9] showed that several of those vulnerabilities were in
test/development libraries and thus not shipped with the product
and, therefore, irrelevant. Developers may, therefore, not be entirely
irrational in not always updating their libraries.

Hence, understanding the developers’ decision-making strate-
gies while selecting and/or updating dependencies of their projects
is important for both security researchers and dependency tool
developers, so they can design appropriate methodologies and tools
to improve the security of the dependency management process.

2 BACKGROUND
Quantitative empirical studies of software dependencies (e.g., [7, 9])
mainly focus on the techniques, and therefore, facilitate the ways
how developers perform dependency management. However, they
provide limited insights on the developers’ motivations while man-
aging software dependencies, such as why developers adopt new
dependencies or update/not update the already used ones. Instead,
we are interested in understanding the developers’ reasoning while
selecting and updating dependencies.

On the other hand, qualitative dependency studies (e.g., [1, 2])
suggest that dependency issues might affect developers’ decisions.
However, the studies focus mainly on functionality issues and do
not investigate the influence of security concerns.

The qualitative studies of technologies and tools for automating
the software engineering process (e.g., [6, 11]) provide interesting
insights into the software developers’ experience, but do not con-
sider dependency analysis tools, and therefore, do not study how
developers can use them to discover and mitigate security issues
introduced by software dependencies.

The studies on information needs (e.g., [8, 10]) provide useful
insights on developers’ decision-making strategies, however, the
currently available studies do not show how the developers’ actions
and decisions change due to security concerns and the presence of
the issues introduced by software dependencies.

3 APPROACH
To find the incentives of developers’ motivations for (not) updat-
ing dependencies of their projects, we interviewed developers of
25 different companies located in 9 countries and analyzed their
strategies for (i) selecting new dependencies, (ii) updating currently
used dependencies, (iii) using automatic dependency management

https://doi.org/10.1145/3377812.3390903
https://doi.org/10.1145/3377812.3390903
https://owasp.org/www-project-top-ten/
https://snyk.io/blog/owasp-top-10-breaches/
https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
https://www.icij.org/investigations/panama-papers/
https://ubuntu.com/blog/notice-of-security-breach-on-ubuntu-forums
https://doi.org/10.1145/3377812.3390903

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

Table 1: Interviewees in our sample
By location, we specify the current country of the developer workplace. We have clustered
the companies as follows: free and open-source project (FOSS project), large enterprise
(LE), small and medium-sized enterprise (SME), and user group (UG).

position company
type country exper.

(years)
primary
languages

#1 CTO SME DE 3+ Python, JS
#2 Moderator UG IT 10+ Java
#3 Developer LE IT 10+ Java, JS
#4 CEO SME SI 7+ Python, JS
#5 Developer SME NL 3+ Python
#6 Freelancer SME RU 3+ Python, JS
#7 Developer SME DE 5+ Python, JS
#8 Developer LE RU 4+ Python, JS
#9 CTO SME IT 4+ JS
#10 Developer LE DE 10+ C/C++
#11 Developer LE VN 5+ C/C++
#12 Developer SME DE 4+ Java, Python
#13 Team leader LE RU 10+ JS
#14 Developer SME RU 4+ Java
#15 Project Leader FOSS UK 10+ Python, C/C++
#16 Developer SME IT 8+ Java
#17 Developer LE VN 3+ Java
#18 Senior Software Engineer LE IT 10+ Python, C/C++
#19 Developer SME RU 3+ Java
#20 Security Engineer LE DE 3+ JS
#21 Developer SME HR 3+ JS
#22 Developer SME IT 8+ JS
#23 Developer LE IT 9+ Java
#24 Full stack developer SME IT 3+ JS, Python
#25 Developer SME ES 3+ C/C++

tools, and (iv) mitigating bugs and vulnerabilities for which there is
no fixed dependency version. The interviewees have at least three
years of professional experience at various positions spanning from
regular developers to company CTOs. Table 1 describes the sample
of the developers in our study.

We followed the qualitative process of the ‘grand-tour’ semi-
structured interviews. Each interview (lasting 30’ on average) was
recorded and transcribed. The transcripts were anonymized and
sent back to the interviewees for confirmation. Each conversation
was then coded along the lines of applied thematic analysis [4] to
provide a quantitative assessment of the qualitative data so col-
lected. After completing the analysis, we also returned the overall
findings to the participating developers to check that we have not
misinterpreted their thoughts (MemberCheck).

4 PRELIMINARY FINDINGS
We summarize our findings of the facts the developers’ reported us
during the interviews as follows:

Library selection. When selecting a new dependency, devel-
opers pay attention to security only if it is required and enforced
by the policy of their company. Otherwise, they mainly rely on
popularity and community support of libraries (e.g., number of
stars, forks, project contributors).

Updating software dependencies. As generally, developers
lack resources to cope with possible breaking changes, they prefer
to avoid updating dependencies for any reason. Security vulnera-
bilities motivate developers for updating only if they are severe,
widely known, and adoption of the fixed dependency version does
not require significant efforts.

Automation of dependency management. Developers per-
form sensitive dependency management tasks (e.g., updates) manu-
ally. Current dependency analysis tools (if used) only facilitate the

identification of vulnerabilities in the project dependencies. Devel-
opers complain that dependency tools produce many false-positive
and low-priority alerts.

Unfixed vulnerabilities. The interviewed developers suggested
the following actions when a vulnerability is discovered in a depen-
dency, but no newer version fixes it:

• assess whether this vulnerability impacts them since maybe
they may not use that particular functionality;

• wait for the fix or a community workaround;
• adapt own project, i.e., disable vulnerable functionality or
rollback to a previously safe version of the library;

• maintain own fork of a dependency project (possibly fixing
and making a pull request to the dependency project).

5 CONCLUSIONS
We present a qualitative study of developers’ decision-making prac-
tices in the presence of security concerns for selecting new de-
pendencies, updating the already used ones, usage of dependency
analysis tools, and coping with vulnerable dependencies that do
not have a fixed version.

Our study provides important insights and suggestions for se-
curity researchers on how to design better approaches for secure
dependency management and dependency tool developers on how
to improve the dependency analysis tools.

ACKNOWLEDGMENTS
This research has been partly funded by the EU under the H2020
Programs H2020-EU.2.1.1-CyberSec4Europe (Grant No. 830929) and
the NeCS: European Network for Cyber Security (Grant No. 675320).

REFERENCES
[1] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.

How to break an API: cost negotiation and community values in three software
ecosystems. In Proc. of FSE’16. ACM, 109–120.

[2] Joël Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. 2015. Measuring
Dependency Freshness in Software Systems. In Proc. of ICSE’15 (ICSE ’15). IEEE
Press, Piscataway, NJ, USA, 109–118. http://dl.acm.org/citation.cfm?id=2819009.
2819027

[3] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.
Keep me updated: An empirical study of third-party library updatability on
Android. In Proc. of CCS’17. ACM, 2187–2200.

[4] Greg Guest, Kathleen M MacQueen, and Emily E Namey. 2011. Applied thematic
analysis. Sage.

[5] J. Huang, N. Borges, S. Bugiel, and M. Backes. 2019. Up-To-Crash: Evaluating
Third-Party Library Updatability on Android. In Proc. of EuroS&P’19. 15–30.

[6] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
Proc. of ICSE’13. IEEE Press, 672–681.

[7] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2017. Do developers update their library dependencies? Emp. Soft. Eng.
Journ. (11 May 2017). https://doi.org/10.1007/s10664-017-9521-5

[8] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert
Deline, and Gina Venolia. 2013. Debugging revisited: Toward understanding the
debugging needs of contemporary software developers. In Proc. of ESEM’13. IEEE,
383–392.

[9] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. 2018. Vulnerable Open Source Dependencies: Counting Those That
Matter. In Proc. of ESEM’18.

[10] Khaironi Y Sharif, Michael English, Nour Ali, Chris Exton, JJ Collins, and Jim
Buckley. 2015. An empirically-based characterization and quantification of infor-
mation seeking through mailing lists during open source developers’ software
evolution. Information and Software Technology 57 (2015), 77–94.

[11] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C Gall. 2018. Context is king: The developer perspective
on the usage of static analysis tools. In Proc. of SANER’18. IEEE, 38–49.

http://dl.acm.org/citation.cfm?id=2819009.2819027
http://dl.acm.org/citation.cfm?id=2819009.2819027
https://doi.org/10.1007/s10664-017-9521-5

