A Qualitative Study of Dependency Management and lIts
Security Implications

Ivan Pashchenko
ivan.pashchenko@unitn.it
University of Trento, IT

ABSTRACT

Several large scale studies on the Maven, NPM, and Android ecosys-
tems point out that many developers do not often update their
vulnerable software libraries thus exposing the user of their code
to security risks. The purpose of this study is to qualitatively in-
vestigate the choices and the interplay of functional and security
concerns on the developers’ overall decision-making strategies for
selecting, managing, and updating software dependencies.

We run 25 semi-structured interviews with developers of both
large and small-medium enterprises located in nine countries. All in-
terviews were transcribed, coded, and analyzed according to applied
thematic analysis. They highlight the trade-offs that developers are
facing and that security researchers must understand to provide an
effective support to mitigate vulnerabilities (for example bundling
security fixes with functional changes might hinder adoption due
to lack of resources to fix functional breaking changes).

We further distill our observations to actionable implications on
what algorithms and automated tools should achieve to effectively
support (semi-)automatic dependency management.

KEYWORDS

Dependency management, security, vulnerable dependencies, qual-
itative study, interviews

ACM Reference Format:

Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. 2020. A Qualitative
Study of Dependency Management and Its Security Implications . In to
appear in Conf. on Comp. and Comm. Sec. - CCS’20. ACM, New York, NY,
USA, 20 pages. https://doi.org/tbc

1 INTRODUCTION

Vulnerable dependencies are a known problem in the software
ecosystems [25, 33], because free and open-source software (FOSS)
libraries are highly interconnected, and developers often do not
update their project dependencies, even if they affected by known
security vulnerabilities [11, 25].

A handful of studies report that developers do not update depen-
dencies in their projects since they are not aware of dependency
issues [6] or do not want to break their projects [7, 16]. Although
functionality and security appear to be essential factors that affect

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00

https://doi.org/tbc

Duc-Ly Vu
ducly.vu@unitn.it
University of Trento, IT

Fabio Massacci
fabio.massacci@unitn.it
University of Trento, IT

developers’ decisions [3], those studies mainly focus on functional-
ity aspects, and therefore, provide limited insights on the impact of
security concerns on developers’ reasoning.

Other studies also show this tension between functionality and
security. On the Android ecosystem, mobile app developers do not
consider security as a top-priority task [11]. A later study by the
same group [20] explained the reason behind it as a major clash
with functionality: the ‘easy’ updates would actually break around
50% of dependent projects.

A key observation is that several of those studies are about
ecosystems that do not feature a central place for storing and man-
aging app dependencies. Developers with central dependency man-
agement system, like Maven, NPM, or PyPI, might have a very
different approach towards dependencies of their applications.

For example, an initial quantitative study of the Maven ecosys-
tem [25] analyzed more than 4600 Github repositories and provided
yet another evidence that developers keep their project dependen-
cies outdated. However, a later study [33] showed that several of the
reported vulnerabilities were in test/development libraries (i.e., not
shipped with the product), and therefore, irrelevant. So, not updat-
ing the library was not due to a breaking conflict with functionality
but a perfectly rational decision.

The goal of our paper is to provide a sound qualitative analysis of
the motivation of developers between the rigid format of surveys
(e.g., [11]) and the anecdotal examples that complement quantitative
studies on dependencies (e.g., [25]).

Following the process of semi-structured interviews we have
investigated the following research questions:

e RQ1: How do developers select dependencies to include into
their projects, and where (if at all) does security play a role?

e RQ2: Why do developers decide to update software depen-
dencies and how do security concerns affect their decisions?

e RQ3: Which methods, techniques, or automated analysis
tools (e.g., Github Security Alerts) do developers apply while
managing (vulnerable) software dependencies?

e RQ4: Which mitigations do developers apply for vulnerable
dependencies with no fixed version available?

This paper has the following contributions:

e qualitative investigation of the choices and the interplay
of functional and security concerns on the developers’ over-
all decision-making strategies for selecting, managing, and
updating software dependencies

e possible implications for research and practice to help im-
proving the security and the support of (semi-)automatic
dependency management.

Our qualitative study is based on semi-structured interviews
with 25 enterprise developers, who are involved in development of
web, embedded, mobile, or desktop applications. Some interviewees

https://doi.org/tbc
https://doi.org/tbc

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

also create their own libraries (i.e. supply dependencies to other
projects) but, to keep focus, our interviews investigated their role
in the demand of libraries. The interviewees have at least three
years of professional experience at various positions spanning from
regular developers to company CTOs, including the coordinator of
a Java Users’ Group and a lead developer of a Linux distribution.
They come from 25 companies located in nine different countries.

Each interview (lasting 30’ on average) was recorded and tran-
scribed. The transcripts were anonymized and sent back to the
interviewees for confirmation. Each conversation was then coded
along the lines of applied thematic analysis to provide a quantitative
assessment of the collected qualitative data.

This paper illustrates the insights with quotations from the in-
terviewees to provide a better grasp of developers’ reasoning while
managing software dependencies and how security concerns affect
their decisions!. After completing the analysis, we also returned
the overall findings to the participating developers to check that
we have not misinterpreted their thoughts.

2 TERMINOLOGY

We rely on the terminology established between practitioners:

o A library is a separately distributed software component,
which functionality might be reused by other software projects.

o A dependency is a library some functionality of which is
reused by other software projects. Although “dependency”
logically relates to a relation, we adopt the term as it is used
(and abused) by software developers® so we can correctly
communicate the meaning of their thoughts delivered in the
form of quotations later in the paper.

e Dependency management is the process of modification of the
configuration of a project by updating (i.e., adoption of new
versions of currently used dependencies) or adding/removing
dependencies. To manage dependencies, software developers
only need to modify own code of their project.

e Dependency maintenance implies access and modification of
the source code of project dependencies. For dependency
maintenance, developers typically have to access the depen-
dency source code repositories (e.g., Github repositories) and
contribute to the dependency projects (e.g., by creating pull
requests of the proposed changes).

3 BACKGROUND

To understand the state-of-the-art we looked in Elsevier Scopus for
papers published between 2006 and 2019 that report findings on one
of the code groups identified in Section 2 and that mention surveys,
interviews, case or qualitative studies, etc. After a preliminary
selection of 159 articles, we narrowed it down to 25 (including
suggestions from anonymous reviewers). A comparative analysis
of all papers is available in Table 7 in the Appendix.

!As this is a purely qualitative study, the presented findings may not necessarily
generalize to other ecosystems and the proposed implications encourage additional
investigations to confirm their validity.
Zhttps://maven.apache.org/guides/introduction/introduction-to- the-pom.html

Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

3.1 Dependency management and mitigation
of dependency issues.

Many empirical studies [2, 8, 9, 19, 22, 25, 26, 28, 33, 35, 36, 44]
investigate the topic of security vulnerabilities introduced by soft-
ware dependencies. Cox et al. [9] introduced the notion of “de-
pendency freshness” and reported that fresh dependencies are
more likely to be free from security vulnerabilities. However, vari-
ous studies of different dependency ecosystems, i.e., Java [25, 33],
JavaScript [19, 22, 44], Ruby [22], Rust [22], etc., provide the evi-
dence that developers often do not update software dependencies.

Derr et al. [11] surveyed Android developers to identify their us-
age of libraries and requirements for more effective library updates.
When updating their app libraries, developers consider bug fixing
to be the most important reason while security played a minor role.
Developers are wary of updating their dependencies if they work as
intended. A follow up quantitative study [20] found that the most
likely reason that stops developers from updating dependencies are
breaking changes due to deprecated functions, changed data struc-
tures, or entangled dependencies between different libraries and
even the host app. Limited insights are provided on the developers’
motivations for performing an update of each kind (functionality
or security). Moreover, since the study presented the findings from
the Android ecosystem that does not have a central dependency
management system, like Maven Central, NPM, or PyP], the results
might not generalize to the developers of other ecosystems.

Considering the ecosystems that have a centered dependency
management system, Haenni et al. [16] reported the impact of
changes to be one of the main developers’ concerns when updating
their dependencies. Later, Bogart et al. [6] observed that develop-
ers often find it challenging to be aware of potentially significant
changes to the dependencies of their projects and prefer to wait
for the dependencies to break rather than act proactively about
them. In their later study [7], breaking changes are the main factor
that prevents developers from updating their project dependencies.
Also, the authors observed that developers sometimes do not update
dependencies in their projects even though this is recommended by
the policy of their company. However, the studies took into account
only the effect of functionality issues introduced by dependencies
and did not consider the impact of security concerns.

Kula et al. [25] is the only paper to study the influence of security
advisories on dependency updatability we are aware of. The authors
found no correlation between the presence of security advisories
and dependencies update on FOSS projects in Github. An anecdotal
survey of developers showed that some were not aware of security
advisories and existing security fixes. However, the authors only
surveyed FOSS developers who did not update dependencies of their
projects, and therefore, the reported results might not generalize
when applied to all developers (e.g., enterprise developers). Also,
the study reported no in-depth qualitative analysis (e.g., no coding,
publishing only some quotations from email responses). Moreover,
a recent study by Pashchenko et al. [33] suggested that the results
presented in [25] might be affected by false positives as the authors
considered vulnerable dependencies used only for testing purposes.

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

A Qualitative Study of Dependency Management and Its Security Implications

Summary: Current qualitative dependency studies suggest that
dependency issues might affect developers’ decisions, however, the
studies focus mainly on functionality issues, and therefore, provide
limited insights on whether security concerns have any impact on
the developers’ decisions for the selection of new dependencies to
be included in software projects (RQ1), their further management
(RQ2), and how developers mitigate bugs and vulnerabilities in case
there is no fixed version of a dependency available (RQ4).

3.2 Technologies/tools for automating the
software development process.

Several papers studied the adoption of static analysis tools that
allow developers to identify both functionality and security issues
in the own code of their software projects. For example, Vassallo
et al. [43] investigated the impact of the development context on
the selection of static analysis tools. Tools are adopted in three
primary development contexts: local environment, code review,
and continuous integration. However, Johnson et al. [21] identified
that lack of or weak support for teamwork or collaboration, a high
number of false positives, and low-level warnings are the main
barriers that prevent developers’ adoption. These studies clarify
some issues that developers face while using automated tools but
might not apply to the developers’ perceptions of using dependency
analysis tools that do not actually analyze code.

Mirhosseini and Parnin [31] is the only study that analyzed how
developers use dependency analysis tools. The authors quantita-
tively studied whether automated pull requests encourage develop-
ers to update their dependencies: projects that used automatically
generated pull requests or badges updated dependencies more fre-
quently, but developers also ignored almost two-thirds of such pull
requests due to potential breaking changes. As the study consid-
ered functionality aspects, we don’t know whether security may
change the developers’ reactions to automated notifications. The
study focused on JavaScript developers who used greenkeeper.io as
a dependency management tool, so its findings might not apply to
other dependency management tools.

Summary: The qualitative studies of technologies and tools for
automating the software engineering process report interesting
observations regarding the developers’ experience, but current
studies that involve dependency analysis tools focus mostly on
functionality aspects, and therefore, provide limited insights on
how developers can use them to discover and mitigate security
issues introduced by software dependencies (RQ3, RQ4).

3.3 Information needs and decision making
during software development

Several studies [5, 16, 23, 25, 27, 34, 38, 39] describe the information
needs and decision-making strategies of industrial practitioners.
For example, Unphon and Dittrich [41] observed that an architect
or a key developer plays a central role in designing and revising
software architecture. Pano et al. [32] reported that a combina-
tion of four actors (customer, developer, team, and team leader),
performance size, and automation drive the choice of a JavaScript

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

Table 1: Descriptive statistics of the number of interview par-
ticipants in the selected papers

Note, that we do not report the data for the mailing lists study type, since we have
participants number only for one study: Kula et al. [25] involved 16 developers in their

study, while Sharif et al. [38] studied mailing lists from 6 FOSS projects but did not report
the number of participants.

#Papers #Developers
Study type 7 o median Q25% Q75%
interviews 16 12.1 6.4 12 6.8 15
surveys 7 1191 925 116 52 163
observations 3 8.7 6.4 6 5 11

framework. Again these papers capture information needs and be-
havioral patterns of enterprise developers but do not report security
concerns on decision-making preferences.

Assal and Chiasson [3] surveyed software developers to study
the interplay between developers and software security processes.
The authors observed that the security effort allocated to the im-
plementation stage is significantly higher than in the code analysis,
testing, and review stages. The paper provides a good insight into
human aspects of developers’ behavior towards their own code but
does not tackle software dependencies (i.e., other people’s code).

Linden [42] studied the developers’ perception of security in
various development activities, both with surveys and in a labora-
tory exercise. The authors found that developers mainly consider
security in coding activities, such as writing code or selection of
external SDKs. However, the study provides limited insights about
developers’ reasoning while working with dependencies. More-
over, the findings are reported based on observing and surveying
only Android developers, and therefore, might not apply for other
development environments, especially those having a central de-
pendency management system, like NPM or PyPIL

Summary: The studies on information needs provide useful in-
sights on developers’ decision-making strategies, however, the exist-
ing studies do not show how the developers’ actions and decisions
change in the presence of security issues introduced by software
dependencies (RQ1 and RQ2).

4 METHODOLOGY

Our goal is to study the developers’ perceptions of software de-
pendencies and the effect of security concerns on their decisions.
Online surveys or controlled experiments force the investigator’s
point of view on the arguments of interest, and therefore, may
blur the developers’ opinions. Instead, semi-structured interviews
suited best for our goals [46]. Being open, they allow new ideas to
be brought up during the interview as a result of what an intervie-
wee says, and it is indeed used by most of the selected studies (15
out of 22 studies in Table 7).

Table 1 shows the descriptive statistics of the number of par-
ticipants in the papers discussed in Section 3. We observe that an
interview-based study, on average, employs 13 developers. At the
same time, 75% of the selected papers report results from less than
17 interviews. Moreover, the studies typically report interview re-
sults from developers of a single company or the same community
of developers. This may potentially introduce some bias since devel-
opers may share the same development strategies and approaches.

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

Interviewee Interview collection Saturation check
identification ¢

Transcription & Yes
Sharing Additional

i confirmation
Open Coding 4—‘

Selective coding —> Code groups

Code co-occurences

Observations and
Implications

MemberCheck
Summary/Full paper

Figure 1: Research Stream

Table 2: Interviewees in our sample

The table describes interviewees in our sample. We report positions, professional experience,
and primary languages as communicated during the interviews. By location, we specify
the current country of the developer workplace. We have clustered the companies as
follows: free and open-source project (FOSS project), large enterprise (LE), small and
medium-sized enterprise (SME), and user group (UG).

position comp. country exper. dev. primary
type (years) type languages
#1 CTO SME DE 3+ web Python, JS
#2 Moderator UG 1T 10+ web Java
#3 Developer LE 1T 10+ web Java, JS
CEO SME SI 7+ web/desktop Python, JS
#5 Developer SME NL 3+ web/desktop Python
#6 Freelancer SME RU 3+ mobile Python, JS
#7 Developer SME DE 5+ web/desktop Python, JS
#8 Developer LE RU 4+ web Python, JS
CTO SME IT 4+ web JS
#10 Developer LE DE 10+ embedded C/C++
#11 Developer LE VN 5+ embedded C/C++
#12 Developer SME DE 4+ web Java,
Python
#13 Team lead LE RU 10+ desktop JS
#14 Developer SME RU 4+ web Java
#15 Project FOSS UK 10+ embedded Python,
Leader C/C++
#16 Developer SME IT 8+ web Java
#17 Developer LE VN 3+ web/desktop Java
Senior
#18 Software LE IT 10+ embedded Python,
Engineer C/C++
#19 Developer SME RU 3+ web Java
#20 i;cg‘;;‘zr LE DE 3+ web/desktop JS
#21 Developer SME HR 3+ web JS
#22 Developer SME IT 8+ web JS
#23 Developer LE IT 9+ web Java
soa PSRk g p 3¢ web]S, Python
eveloper
#25 Developer SME ES 3+ embedded C/C++

4.1 Recruitment of participants

As a source for finding software developers, we referred to local
development communities. We used the public channels for these
groups to post our call for interviews as well as contacted their refer-
ence people. Then we applied the snowball sampling approach [12]
to increase the number of interviewees by asking the respondents
to distribute our call within their friends and other development
communities they are involved in. To overcome the potential bias
of the snowballing approach, for our interviews, we selected devel-
opers with various roles and responsibilities, each representing a
different company and often a different country.

In our study, we recruited enterprise developers working in at
least one of the following programming languages: C/C++, Java,
JavaScript, or Python. The interviewees have at least three years of
professional working experience (with more than ten years for six

Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

developers) and held various positions, spanning from regular and
senior developers to team leaders and CTOs. Some of the partici-
pants are involved in internal/corporate development, while others
are working on web, embedded, mobile, or desktop applications.
In total, we interviewed 30 developers? and eventually retained 25
for the analysis distributed over 25 different companies located in
nine countries*. Table 2 summarizes the key demographics of the
interviewees in our sample.

4.2 Interview process

To collect primary data, we had interview sessions lasting approxi-
mately 30 minutes. We met personally the interviewees who reside
in our city and scheduled remote meetings with others via Skype or
Webex. We offered no monetary compensation for the interviewees
as the interviewed developers are highly skilled professionals who
are very unlikely to be motivated by a compensation we could offer.
Instead, we proposed them to share their expert opinions on the
topic interesting for them. We followed XXX Ethical Review Board
procedure for the management of consent and processing of data®.
We explained that all interviews would be reported anonymously,
and neither personal nor company identifiable data would be made
available. No personal data was collected.

We adopted the semi-structured interview type for our research
and framed our questions to allow developers to define the flow
of the discussion, i.e., followed the “grand tour interviews” princi-
ple [17]. Still, we made sure all interviews included the following
parts® (not necessarily in that order):

o Introduction - interviewer describes the context and motiva-
tion for the study;

o Developer’s self-presentation - developer (D) presents her pro-
fessional experience and the context of her current activities;

o Selection of new dependencies - D describes selection and
inclusion of new dependencies into her software projects;

o Updating dependencies - D explains the motivations and in-
sights of updating dependencies in her projects, i.e., when
it is the right time to update, how often she updates depen-
dencies, and if there is any routine or regulation regarding
the dependency update process in her company;

o Usage of some automated tool for dependency analysis - D
describes an automatic tool (if it is used) that facilitates de-
pendency analysis process in her projects, and provides some
general details about the integration of this tool into her de-
velopment process;

o Mitigation of dependency issues - D describes how she ad-
dresses issues in dependencies (e.g., bugs or vulnerabilities);

3We could have three more developers to participate in our study. They initially agreed
to let us observe their actions while analyzing software dependencies, but then the
process got stuck at the stage of selecting the analysis target. Their companies were
unwilling to let us study their internal libraries without a legal agreement in place,
while analysis of third-party FOSS libraries was not interested in the developers.
“Four interviewees were not confident enough to speak about software dependencies
in their projects since they just came into the company. Another developer said that
due to the company policy, they do not use software dependencies. Hence, we discarded
five interviews from our analysis.

5Url not provided as this would disclose the institution.

6 After the interviews were completed, two researchers checked that an individual
interview contains all elements mentioned above, by coding the interview transcripts
with the codes corresponding to each interview part. Five interviews (#6, #12, #14, #21,

#23) do not contain the Usage of some automated tool for dependency analysis part, since
the interviewees mentioned that they perform dependency management manually.

A Qualitative Study of Dependency Management and Its Security Implications

o Other general comments regarding dependency management -
this includes some general perceptions, comments, or recom-
mendations that D may give on the process of dependency
management and, in particular, about the security issues
introduced by software dependencies.

There were two interviewers at each interview session. Each
interviewer had a list of the interview parts mentioned above and
crossed off a part if she subjectively counted it as discussed. An
interview finished as soon as all the parts became crossed.

Each interview was recorded and transcribed. The transcripts
were anonymized and sent back to the developers for confirmation”.
The recordings were then destroyed for preserving the possibility
of identifying the interviewees.

4.3 Interview coding and analysis

To analyse the interviews, we have adopted the applied thematic
analysis [14]. Figure 1 summarizes our approach. It follows the
principle of emergence [13], according to which data gain their
relevance in the analysis through a systematic generation and iter-
ative conceptualization of codes, concepts, and code groups. Data
is analyzed, broken into manageable pieces (codes), and compared
for similarities and differences. Similar concepts are grouped under
the same conceptual heading (code group). Code groups are com-
posed in terms of their properties and dimensions, and finally, they
provide the structure of the analysis [40].

The first phase of analysis (open coding) consists of collecting
the critical point statements from each interviewee transcript; a
code summarizing the key points in a few words is assigned to
each key point statement. The interviewees are numbered #1 to
#25. Two researchers independently followed the “iterative process”
described by Saldafia [37] to code the transcribed interviews®. Then
they looked together at the resulting codes and agreed on the com-
mon code structure, which was reviewed by a third researcher not
involved in the preliminary coding process. So after each iteration,
we had a complete agreement on the codes and code groups by the
three researchers. Each time we reviewed the resulted codes, we
have also performed a check whether we have achieved a saturation
of the reported observations [30], i.e., if the interviewees discuss
the same concepts. After concluding that saturation is achieved,
we interviewed additional developers to control the stability of our
observations (Additional confirmation step in Figure 1).

We started the coding process as soon as we had ten interviews.
At first, we created 345 quotations and assigned 138 codes to them.
During the first six iterations, we were consolidating both quota-
tions and codes by looking at quotations and merging codes on
close topics. This resulted in 151 quotations with 28 codes assigned
to them. On the next stages, we have added 15 more interviews,
which significantly enlarged the number of quotations (533 quota-
tions on the 11th iteration). While adding them, we realized that
there was one irrelevant code (Scala)9, so we deleted it. Hence,
there were 27 codes on the 10th iteration. Then we have added
quotations and codes for the developer roles (SME, LE, FOSS, or UG
developer), which resulted in 31 codes and 574 quotations on the

"Except for the cases when the developer explicitly told us that she believed us to
transcribe everything correctly and did not want to check the transcript.

8For coding we have used the Atlas.ti software.

9The code Scala was mentioned by only one developer as an example of her subproject

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

11th iteration. On the last step of the coding process, we have added
the codes corresponding to the interview process parts. Hence, we
have ended up with four codes that correspond to developer roles,
six codes for interview process parts, and 27 codes for developer
answers assigned to 829 interview quotes.

To validate our observations and implications, we shared the
one-page summary of this study, along with the full version of
the paper with the interviewees. We asked them to validate if the
results correspond to their expectations (last step in Figure 1).

4.4 Final Code Book

To analyze the developer interviews, we introduce the following
code groups that tag a topic of a conversation:

e Dependencies code group indicates that a fragment of a con-
versation is specific to software dependencies rather than,
for example, to own code of a software project.

e Language code group labels conversations specific to a par-
ticular programming language (e.g., Java vs. Python) rather
than discussions of common issues relevant to the software
engineering process in general. A different code is used for
each programming language (C/C++, Java, JS, Python).

Additionally, we cluster similar topics in the conversations and
assign them to the corresponding code groups as follows:

e The Attitude code group captures a qualitative assessment
of a fact reported by a developer. E.g., a developer expresses
her likes, dislikes, or recommendations regarding particular
steps of dependency management.

e The Context code group captures background information
about the reported issues, such as whether an issue relates
to functionality or security.

e The Issues code group includes discussions about functional-
ity flaws or weaknesses, like bugs or breaking changes.

e The Operations code group captures specific modifications
of project own code or its dependencies. For example, a
conversation fragment discusses dependency management
or dependency maintenance.

e The Process code group captures the presence of established
development practices followed by developers. For example,
a conversation fragment describes how a developer team
automates the dependency management of their project.

Table 3 summarizes the resulted list of codes in our study while
Figure 2 shows number of code occurrences. Notice that the same
sentence may be labeled by several codes:

We have a contract that we inform our clients once a month. If

we have discovered vulnerability today the client would know

about it in a month. Of course, if the vulnerability is not
critical. If it is critical, we inform our client immediately
as soon as we gather the information.. (#5)
is associated to codes: dependency management, python (as the
developer is talking about Python), requirements, security.

5 FINDINGS

We have checked!'? whether practices established within develop-
ment communities affect our findings. Considering the per-language
code distributions, we observed that Java, JavaScript, and Python

OFor detailed analysis, please, refer to Appendix D.

To appear in ACM Conference on Computer and Communication Security, Nov 2020, Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

Table 3: Codes used in the study

The final code book consists of 27 codes grouped into 7 code groups. Figure 2 shows the frequency of occurrences of the resulted codes.

Code group Code Description Example
Dependencies dependency operations with dependencies We are using enough number of libraries. (#14)
C/C++ discussion specific to C/C++ [...] with the C++ you have to include the libraries yourself. (#10)
Language Java discussion specific to Java Well, this is a Java story (#14)
JavaScript discussion specific to JavaScript Well, the JavaScript world is a mess. (#7)
Python discussion specific to Python [...] but we are working with Python. (#24)
like positive assessment If we can apply automation test, it would be good for us [...] (#17)
Attitude dislike negative assessment [...] but we are also afraid of its effect on the other flows. (#17)
recommendation suggestion of improvements [...] having a SonarQube plug-in - it would be great. (#3)
functionality project functionalities or features [...] and we integrated that functionality in our project. (#8)
Context requirements policies or requirements We have a contract that we inform our clients once a month. (#5)
security security related statement It’s very complicated to figure out that your code has such a
vulnerability. (#3)
broken something not working [...] to avoid all service to go down. (#9)
bugs programming error description Well, bugs of course. (#12)
Issues resources human or time resources I cannot address every smallest issue [...] (#2)
licenses rights to use software [...] it is difficult to control compatibility of licenses (#2)
fix availability availability of a bug fix Simply we used another library [...] (#23)
maintenance changes that involve modifications of We suggest fixes to the contributors. (#7)
source code
Operations management changes that involve modifications of Every couple of days I would upgrade all of the packages. (#15)
project configuration
dependency selection selection of new dependencies When we select them, we have a discussion. (#5)
direct deps dependencies introduced directly [...] our direct dependency was Jenkins. (#9)
looking for info check 3rd-party sources for info I still go to Github, read sources[...] (#5)
transitive deps dependencies of dependencies If you have a transitive dependency [...] (#3)
automated solutions that automate software engineer- Thanks to various tools, bots, which just sit in your repository[...]
ing tasks (#7)
code tool tool for analysis of quality and security of It produces a report on the [] server. (#3)
code
workflow company practices discussion [ironically] Yes, we have a weekly reminder [...] (#5)
Process dependency tool tool for analysis of quality and security of ~We are using the [] scanner and it is the only one[...] (#20)
dependencies
manual solving a task without application of any ~We do not use any tools to check security. (#16)

automation tools

Table 4: Developers’ attitudes: likes vs dislikes

The table shows the co-occurrence of codes like and dislike with other codes of issues, process, operations, and context code groups. For example, codes dislike and management have 86
co-occurrences, which means the depelopers often expressed negative attitudes towards dependency management. We mark (underline and bold) the number of co-occurrences exceeding 18
(sum of the mean and one standard deviation of code co-occurrences). The full co-occurrence table is available in the Apendix E.

issues process operations context
broken bugs resources automated workflow management looking forinfo trans deps functionality security

dislke 21 29 23 14 16 86 15 12 23 36

like 6 31 3 4 6 4 9 1 8 4
developers shared similar attitudes regarding dependency man- the libraries are secure, while #5 checks security history of a library
agement: most frequent codes are management, security, and bugs. in case it is planned to be included in the core of their project.
Most concerns of C/C++ developers were on the co-occurrences of The developers #10, #12, and #13 mentioned that their companies
these codes with code dislike. Hence, below we present our findings have a pull of preapproved FOSS and homegrown libraries. These
without distinguishing by programming language. libraries and their dependencies are checked for the presence of

security issues and functionality bugs, and therefore, have a higher
priority to be used in comparison to their FOSS alternatives.

5.1 RQl: rationale for selection We are trying to use them [preapproved libraries] actively. This
is highly appreciated and sometimes is even forced due to code

reuse [...] (#13)
Discussion.Derr et al. [11] reported that Android developers con-
sider security among the least important criteria for selecting new
dependencies, while several recent papers underline the impact

To understand the developers’ rationale for the selection of new
dependencies for their projects and whether security aspects affect
their choices, we have studied the developers’ answers simultane-
ously marked by the codes management and looking for info.

Observation 1: Security is considered for selection if it is enforced of company policies on developers’ decisions to consider security.
by company policy: some companies have a pull of homegrown or The early dependency studies [7, 9] reported that company poli-
preapproved FOSS libraries, so developers are encouraged or even cies might encourage developers to consider security, but these
sometimes restricted to use them in their projects. policies are not always followed in practice. More recent studies

Three of the interviewed developers (#5, #10, #28) directly com- (e.g., [3, 42]) observed the stronger impact of the company policies
municated, that they considered security while selecting software on the developers’ decisions regarding considerations of security,
dependencies. However, for them, this was forced by the policy of however, these studies provide limited insights on the impact of
their companies: #10 has to use only the dependencies approved by company policies on the dependency selection process. Hence, our

an internal dependency assessment tool that as well ensures that

A Qualitative Study of Dependency Management and Its Security Implications

observation clarifies if company security policies also impact the
developers’ decisions regarding software dependencies.

Observation 2: Developers mostly rely on community support of
a library: if a vulnerability or a bug is discovered in a well-supported
library, the fix appears quickly, it is easy to adopt, and it does not
break the dependent library.

The other interviewed developers instead relied on community
support of considered libraries, as the community can be leveraged
for troubleshooting both functionality and security issues: in case
of a vulnerability is discovered in a well-supported library it will
be quickly fixed, and the security fix is usually easy to adopt as it
does not break the dependent project.

I maybe do a quick google and select the thing that works

best for a lot of people[...] if there’re bugs, it’s going to

be easier to work [them] out just by using, let’s say, the

canonical package [and asking the community for support.] (#15)
Discussion.The previous studies of Android developers [11, 21, 42]
reported that developers lack community support and a central
package manager. We fill the gap by studying the ecosystem of
developers working in the context of established central package
managers (Maven, NPM, PyPI). Previous papers [7, 16] suggested
that developers prefer libraries that are popular and well-supported
to include into their projects as they are more reliable from the
functionality perspective. Hence, we add to these observations by
providing evidence that developers perceive community support to
be a ‘guarantee’ for a library to be secure.

Observation 3: Dependency selection is often assigned to a skilled
developer or a software architect.

The task of selection of new dependencies is often assigned to
software architects (#10, #14, and #17) or to “someone who has
experience” (#12):

The most difficult case is to decide which dependencies should

be used, how dependencies should be used, or in general design

the structure of a project. That is the reason why the task of

designing the structure of software is assigned to the software

architect: because they have a lot of experience. They have to

check the project before developers actually work. (#17)
Discussion.Pano et al. [32] reported that a combination of devel-
opers, customers, team, and team leader often leads to the selection
of a development technology/framework. In this perspective, we
clarify that the dependency selection (i.e., specific libraries to be
used within a preselected framework) in big SMEs and LEs are often
assigned to a skilled developer or a software architect.

Observation 4: For dependency selection, developers mainly focus
on functionality support of a library, rather than its security.

Interviewed developers mentioned functionality aspects twice
more often rather than security while selecting new software de-
pendencies for their projects: 27 co-occurrences of functionality
and selection of new dependencies codes in the interviews of 12 de-
velopers in comparison to 11 co-occurences of security and selection
of new dependencies codes in the interviews of 7 developers.

Observation 5: For dependency selection, developers refer to high-
level information that demonstrates community support of a library,
rather than low-level details of a library source code.

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

When we asked questions about the selection of new depen-
dencies, developers often reported that they rely on third-party
resources to get additional information about new dependencies:
22 out of 25 developers (everybody, except #2, #3, and #20) shared
additional sources of information that they refer to before including
a new dependency into their projects.

14 out of 25 developers (#1, #4, #5, #6, #8, #9, #13, #15, #17, #19,
#22, #23, #24, and #25) named Github.com as the primary informa-
tion source since Github allows them to both understand whether
there exists a strong community behind a particular library, and, if
necessary, have additional details about library code. As for high
level information, the interviewees may refer to the number of
stars (#1, #4, #6, #9, #22, and #23), project contributors (#4, #15, and
#23), and library users (#4, #5, #9, #15, #22, and #25). Additionally,
developers were interested in the code style of a project (#5, #8, #9,
and #22), commit frequency (#4, #5, #8, #9, #17, #23, and #24), as
well as the number of issues resolved (#5, #9, and #17), still open
(#17), and how quickly an open issue is fixed (#4, #5, and #17).

If a library has thousands of issues that are open, then you
need to be careful. [Once] integrated, you may experience the
same problems. (#9)

Additional sources of information mentioned by developers were
Google (#4, #6, #15, #16, and #25), dependency repositories, like
Maven Central (#4, #12, #17, and #19), Node.js, or PyPI (#9, #24),
and StackOverflow (#22). The developers referred to these sources
to find the most popular dependencies that solve particular tasks.

According to the most referred sources and types of information,

the interviewed developers pay little attention to security aspects
(as unpalatable as this observation might be) and instead look for
excellent community support of the library: if a library features
quick security fixes, but fixes of its functionality issues linger, such
a library will likely not be selected.
Discussion.We complement the existing observations (e.g., [7, 9,
11]) on the information sources developers refer to while selecting
new dependencies and provide specific insights into why particular
information source is referred to from the security perspective.

Observation 6: To avoid legal issues, enterprise developers check
software licenses while selecting new project dependencies.

Besides security and functionality, developers of every type of
organization we covered specified that one needs to be careful
while selecting software dependencies, since there also exist license
issues of using them as part of a proprietary software project: FOSS
(#13, #24), SME (#14, #24), LE (#3, #10, #13), UG (#2)

[...] if you sell some software, and inside your software you

have a restricted license, like GPLv3, you could have a lot of

legal issues, because the owner of the library may discover that

and you may have a lot of legal problems. (#3)
Discussion.Current qualitative studies of FOSS ecosystem [16, 42]
provided limited insights on the impact of legal concerns on devel-
opers’ decisions for selecting software dependencies. For example,
Linden et al. [42] reported that individual developers recruited for
a laboratory task have a limited understanding of (and little pa-
tience to understand) legal issues behind the usage of third-party
software. In contrast, we observe that developers belonging to each
organization type we covered (FOSS, SME, LE, UG) have reported

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

that they consider licenses of dependencies before including them
into their projects.

5.2 RQ2: motivations for (not) updating

To answer this research question, we have looked into the particu-
larity of the dependency management process. More specifically, we
have considered the conversation fragments labeled by the codes
of the attitude code group (Table 4).

Observation 7: In general, developers have mixed perceptions
about dependency management process, while few developers have
strongly negative and strongly positive attitudes.

Developers expressed different perceptions of the dependency
management process: they have mentioned negative aspects (86 co-
occurrences of codes dislike and management in the interviews of 22
developers), as well as expressed positive attitudes towards depen-
dency management (44 co-occurrences of codes like and manage-
ment in the interviews of 18 developers). Six developers mentioned
only problematic aspects, two reported only positive attitudes, and
16 developers expressed mixed perceptions of the dependency man-
agement process (i.e., their interviews contained co-occurrences of
both dislike and like codes with management code).

Yeah, it was really hard to switch from AngularJS [...] to

Angular2. But they did a great job, so every other update, like

Angular2, 4, 5, 6, [...] the switch is really smooth. You don’t

have to do lots of crazy things. (#21)
Discussion.While several previous studies [6, 7, 9, 25, 31] reported
developers to have mainly negative attitudes towards dependency
management process, we observe that enterprise developers have
mixed perceptions while several developers expressed only positive
attitudes.

Observation 8: If developers update dependencies of their projects,
they pay attention to vulnerabilities.

The most important and discussed issue for the developers in our
sample were bugs (84 occurrences in the interviews of 22 develop-
ers). When the developers spoke about bugs, often they discussed
vulnerabilities (61 co-occurrences of codes bugs and security).

Observation 9: Developers perceive security-related fixes as easy
to adopt, as for widely-used and well-supported libraries such fixes
appear fast and do not break the dependent projects.

Developers do not have negative concerns about fixing vulner-
abilities in dependencies since they either use only well-known
stable libraries that rarely introduce vulnerabilities and quickly fix
them (#5, #6, #16, and #17); or their projects are not security critical,
i.e., used only for internal purposes, hence even if a vulnerability
appears in their dependencies, they will not be exploited (#3, #4, #9,
and #24). Also, the adoption of fixed dependency versions typically
does not break the dependent projects (#1, #4, #11, and #14).
Discussion.Developers are reported to be less proactive about de-
pendencies [6] as they felt it is difficult to manage the dependencies
or the lack of support in providing updates from vendors [25].
However, we observe a generally positive attitude of developers
to security fixes in software dependencies, since fixed versions of

Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

well-supported dependencies appear fast, and their adoption does
not break the dependent projects.

Observation 10: Developers tend to avoid updating dependencies
of their projects since they lack resources to cope with the breaking
changes (possibly hidden in transitive dependencies) introduced by
new dependency versions.

Many interviewees reported that, generally, they try to avoid
updates of dependencies in their projects. 14 developers (#1, #4,
#7, #8, #9, #10, #11, #12, #14, #15, #16, #17, #18, and #23) said that
they do not have enough resources to perform proper dependency
management, while 11 developers (#4, #7, #8, #9, #12, #13, #14, #16,
#17, #19, and #23) mentioned that they avoid updating dependencies
of their projects since updates might introduce breaking changes:

Our project is huge. We tried once, and 1000 tests became down.

To fix it[...] We just do not have time for that. Hence everything

became frozen. (#8)

Eight developers (#1, #2, #3, #7, #13, #14, #17, and #23) said that
they experienced problems with dependency management due to a
high number of transitive dependencies that are difficult to control.
Discussion.The previous studies of developers perceptions on de-
pendencies [7, 11, 31] reported breaking changes to be the main
factor that stops developers from updating dependencies of their
projects. Our finding complements these studies and also suggests
project stability to be the highest priority for developers. Le., they
are not updating dependencies for security reasons unless develop-
ers are confident that this update is free from breaking changes (or
developers have enough time and resources to thoroughly test their
projects). Also, our observation shows that the lack of control over
the high number of transitive dependencies causes a significant
strain in managing and updating dependencies. It can be one of
the main reasons for not updating dependencies, in addition to
technical debts, performance reasons, or bug fixes [11].

Observation 11: Company policy significantly affects developers’
decisions about updating software dependencies by splitting the field
in two: adopt every new version or ignore all updates.

Developers #7 and #19 said that the established practice and
company mindset might force developers to follow different depen-
dency management strategies. For example, developers #7, #15, #19,
and #21 said they keep dependencies of their projects fresh and
perform “small” updates every time the new dependency version
appears. The update process seems “quite smooth” for them.

I faced dependency updates in [company name]. And there such

task appeared maybe twice a month. (#19)

On the other hand, developers #7, #8, #12, #15, and #19 men-
tioned that they try to avoid updates of software dependencies as
much as possible due to the risk-averse mindset and lack of proper
motivation for updating software dependencies (as new does not
mean bug-free): although they did not express any problematic
aspect in it, developers #8, #12, and #19 reported that they do not
update dependencies in their projects since their company policies
suggest keeping versions of dependencies unchanged.

A Qualitative Study of Dependency Management and Its Security Implications

Table 5: Dependency operations vs Process

The table shows the number of co-occurrences of codes of dependency operations and
process code groups. For example, codes workflow and management have 45 co-occurrences,
which means the depelopers often discussed how they integrated dependency management
into their workflow. We mark (underline and bold) the number of co-occurrences exceeding
18 (mean + one standard deviation). The full co-occurrence table is in Apendix E.

Dependency operations

mainte- manage- direct Took for trans

nance ment deps info deps
automated 1 18 0 7 2
code tool 0 5 0 2 0
workflow 1 45 2 13 2
dependency tool 3 26 0 9 1
manual 7 13 1 7 1

I faced at this job, that most people do not understand why it’s

needed to update libraries, why we need to refactor code. If

everything works, do not touch it, do you need that most? And if

I start to fix everything by myself, I would just become crazy

to convince everyone. Actually, I had a not so good experience,

when I tried to increase the code quality a bit. And people

started to complain: why did you touch that? (#8)
Discussion.Developers are reported to be not always encouraged
to update a library as it works as intended [11, 31], the update
contains only minor improvements [3], or there are not enough
development resources available [25]. In contrast with the previous
studies, we observe that several enterprise developers have an
opposite approach: they update dependencies of their projects as
soon as the new version of a dependency appears. Our interviewees
suggest the company policy to be the key factor for such a change
in the dependency management practice.

5.3 RQ3: automation of dependency
management

To answer RQ3, we have looked at the developers’ answers that
were marked by one of the codes from the process code group.

Observation 12: Dependency analysis tools (if used) are applied
for identification of arising issues within dependencies, so developers
can assess the findings to decide whether to adopt a new dependency
version. The dependency update itself is performed manually.

On dependency management (see Table 5), developers often
referred to the contextual information established within their com-
panies: the codes management and workflow co-occurred 45 times in
the interviews of 16 developers (#3, #5, #7, #9, #10, #12-14, #18-25).

Developers #3, #5, #7, and #10 reported that they apply depen-
dency analysis tools in their day-by-day work to identify possible
problems within dependencies of their projects (26 co-occurrences
of codes dependency tool and management). They have the auto-
matic dependency scanning tools integrated with their workflow,
and they have to check the generated issues manually. If they decide
to update a dependency, developers #3, #7, #9, #17, and #18 prefer
to manually configure the project to use the new version and then
manually test the project to ensure that it functions correctly.

You add a request and say: “I would like to have this library”.

There is a process for that and someone will investigate this and

will run the [Dependency Tooll, and you will get an automatic

report. And so the [library] will be cleared or not. (#10)
Discussion.Several studies [6, 9, 20] reported that developers do
not update dependencies due to the lack of awareness about secu-
rity issues affecting their projects. There are some reasons for this:

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

the absence of proper security knowledge, lack of plans for secu-
rity assessment, and appropriate tools [3]. But the studies did not
investigate the roles of dependency analysis tools. We observe that
enterprise developers are aware of existence of dependency analy-
sis tools, and (if applicable) use them as the supporting source of
information for planning manual dependency management tasks.
However, they do not rely on the tools for sensitive operations,
like automatically updating dependencies of their projects. The
last observation aligns and complements the finding reported by
Mirhosseini and Parnin [31].

Observation 13: Developers recommend introducing high-level
metrics that show that a library is safe to use (security badge), mature,
and does not bring too many transitive dependencies.

To facilitate the selection of new dependencies, developer #6 rec-

ommends having badges in Github (or one’s dependency manage-
ment system) that show whether usage of a particular dependency
is safe. Besides checking for vulnerabilities in a specific version of a
dependency, the developers #16 and #25 suggest defining whether
the dependency is mature (See 5.1), while the developer #13 would
like to see if the new dependency increases the technology stack or
introduces new transitive dependencies.
Discussion.Mirhosseini and Parnin [31] reported that developers
would like to see some supporting and explanatory arguments for
an automated bug fixing suggestions to be accepted. Also, the au-
thors found that developers prefer to have passive notifications
(e.g., badges) about changes in dependencies. We observe similar
developers’ desire regarding the information about software depen-
dencies — developers would like to have a high-level metric (i.e., an
argument) showing if a library should be adopted.

Observation 14: Developers think that dependency analysis tools
generate many irrelevant or low priority alerts.

The developers #9, #15, and #22 tried dependency analysis tools,
but decided not to introduce them into their work process due to a
significant number of unrelated alerts:

I had one [dep. analysis tool] and it tended to spamming, and I
turned it off. For example, it reported minor vulnerabilities,

so I was kind of annoyed by them. (#15)

Observation 15: Several developers tried dependency analysis
tools but decided to rely on the information about vulnerability fixes
and functionality improvements distributed via social channels.

Many developers (#1, #2, #3, #7, #9, #10, #11, #17, and #18) perform
manual analysis of their dependencies. Five developers (#1, #2, #4,
#18, and #24) said that they use social channels, like Twitter or
dependency mailing lists, to receive information about discovered
issues and new versions of their project dependencies.
Discussion.Observation 14 suggests that dependency analysis tools
share the well-known weakness of static analysis tools (e.g., [21, 43])
used to find security issues in the own code of software projects:
false-positive and low-level alerts annoy developers. Hence, they
abandon the tools and prefer to seek social support, although the
information it sometimes provides is too much to digest [7].

Observation 16: Developers recommend dependency analysis
tools to report only relevant alerts, work offline, be easily integrated
into company workflow, and report both recent and early safe versions
of vulnerable dependencies.

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

Regarding the dependency analysis tools, developer #18 suggests

the tools to report only the findings that really affect the analyzed
project (reduce the number of false positives if possible). Developer
#9 suggests that security tools should work offline, since otherwise,
they may disclose some sensitive information about the analyzed
projects. Developer #19 suggests that the tools for analyzing soft-
ware dependencies should be easy to integrate with development
pipelines, while developer #22 would like to have reported both
early and recent safe versions of the identified vulnerable depen-
dencies, so there will be a possibility to consider several versions
to update to.
Discussion. Johnson et al. [21] reported that developers want code
analysis tools that provide faster feedback in an efficient way that
does not disrupt their workflows and allow them to ignore specific
defects about their own code. We observe similar requirements for
dependency analysis tools.

Observation 17: Developers consider dependency analysis tools to
be similar to static (or dynamic) analysis tools and recommend these
tools to be integrated so that they could be applied simultaneously.

Developers #2, #3, #8, #9, and #13 considered dependency analy-
sis tools to be similar to code analysis tools (i.e., static or dynamic
analysis tools). Hence, they could be applied to the same stage of
the software development process.

Security assessment of your dependencies should stay near the

security assessment of your code, because it’s part of the

security assessment of your code. (#3)

Developers #3 and #13 even gave us the recommendation to aug-
ment the reports from a code analysis tool (for example, SonarQube)
with alerts generated by a dependency analysis tool:

Maybe it’s possible to plug the results of dependency analysis

to SonarQube? So we would be able to use it later on in our

continuous integration and do continuous code analysis. It would

be cool to have this. (#13)

Discussion.We do not find other related works that discuss the
integration of dependency analysis tools into the development
workflow. Since enterprise developers often perceive the depen-
dency analysis tools to be integration-wise similar to static analysis
tools, the tools could be applied at the same time during the devel-
opment process, e.g., build or compile time [21, 43], integrated in
an IDE [15], or into a code review [43].

5.4 ROQ4: Mitigating unfixed vulnerabilities

To answer RQ4, we had examined the developers’ answers, where
they described the mitigations of the cases when no newer ver-
sion of a vulnerable dependency had a fix for a vulnerability (the
interview fragments tagged with codes fix availability and dislike).

Observation 18: When discovered a vulnerable dependency that
does not have a fix, developers first try to understand whether this
vulnerability affects their project. If its fix requires significant effort,
then developers will likely decide to stay with the vulnerability.

Although the interviewees #1, #3, #7, #11, and #23 said that they
always were able to find a fixed version of a vulnerable dependency,
the others considered such a situation as probable and problematic.

When discovered a case of a vulnerable dependency that does not
have a fix, the developers #3, #5, #7, and #14 firstly assess whether
this vulnerability impacts their projects since maybe they do not use

Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

the affected functionality. In case a vulnerable dependency does not
impact their project, developers may just decide to leave the project
unchanged (for example, #16). Even if a project depends on the
affected functionality, but the vulnerability fix requires significant
development effort, developers #1, #2, #12, and #15 prefer to stay
with the vulnerability.

If I have to rewrite all the application and the cost is huge,

then maybe we will stay with the vulnerability. (#2)
Discussion.Several developers’ studies (e.g., [11, 25, 29]) reported
the evidence that developers try to avoid changing dependencies un-
less they understand the absolute necessity of this operation. Hence,
this finding aligns with these studies, as the first step for developers
is to understand if the vulnerability impacts their project [16, 25]
and estimate the effort required to mitigate the vulnerability.

Observation 19: If vulnerability affects their project, some devel-
opers may decide to temporarily disable the affected functionality and
wait for an “official” patch.

Developers #2 and #12 said that they could just roll back to a
previous unaffected version of a vulnerable dependency.

If developers decide to address the security issue without a fix
in the dependencies of their projects, then they are likely to check
the solutions suggested by other library users or maintainers (for
example, #4 and #15). In case they discover that the maintainers
are working on the problem and are going to release a fix soon,
the developers #4, #17, and #20 temporarily disable the project
functionality that is exposed to the vulnerability:

We had to change the configuration of [image] library to totally

disallow that particular attack vector. (#20)

Discussion.Bogart et el. [7] observed that developers act less proac-
tive about dealing with (functionality) bugs in their dependencies:
sometimes developers decide to do nothing with their own project
but wait for the fixed version of the dependency [29]. We observe
that in case of vulnerability disclosures, developers are more proac-
tive: they check the impact of the vulnerability on their projects
and provide immediate solutions by disabling affected functionality
of their projects.

Observation 20: Skilled developers fix vulnerabilities in their
dependencies and contribute to the dependency projects.

The skilled developers #4, #7, #8, #13, and #15 may decide to fix
security vulnerability by themselves. While developers #4, #8, #13,
and #15 said that they prefer to create an internal fork of a vulner-
able dependency and maintain it until an “official” vulnerability
fix is released, the developers #7 and #13 reported that develop-
ers of their companies actually fix discovered security issues and
contribute to third-party projects by opening pull requests in their
FOSS repositories:

If this vulnerability seriously impacts our work and if this is

an open source product, then we just fix it. For example, if it

is just in Github, we just fix it, creating Pull Request. And

we ask contributors or maintainers to merge this Pull Request

into the master branch. And we are pushing them to release a

new version faster. (#13)
Discussion.Several recent papers [7, 16, 29] reported that, depend-
ing on the expertise, developers might decide to contribute to the
dependency projects to fix some functionality issues. The inter-
viewed developers reported that they distinguish functionality and

A Qualitative Study of Dependency Management and Its Security Implications

security fixes, and think that security fixes require higher exper-
tise. We also observe that skilled developers also contribute to the
dependency projects by fixing their security issues.

Observation 21: As the last resort, developers may substitute vul-
nerable dependency of their project with another library that provides
similar functionality.

If the fix of a software library is too complicated and the library
is not well supported, then developers may decide just to stop using
it and switch to another library (for example, #3 and #23).

Simply, we used another library, which more or less did the
same thing. [...] And that, of course, caused us to rewrite
some piece of software. At least we solved this memory leak
problem in [Library Namel. (#23)
Discussion.Several studies suggested that developers might decide
to update or downgrade a vulnerable dependency to fix bugs [29]
or even contribute to the dependency project [7, 29]. In this respect,
we contribute to this body of knowledge by showing that enterprise
developers sometimes decide to substitute a vulnerable library with
another one that provides similar functionality.

6 IMPLICATIONS

Implication 1: Considering security while selecting new dependen-
cies might be expensive for individual and SME developers.

While looking for libraries to include in their projects, develop-
ers have to seek and combine information from various sources,
like discussions present in developer forums or code metrics ex-
tracted from software repositories. This process requires time and
expertise, and therefore, is preferably performed by experienced
developers or software architects (O3). In large enterprises devel-
opers sometimes have a pull of preapproved FOSS and homegrown
libraries (O1). The developers of such companies could use these
libraries without further investigations as they are guaranteed to
be reliable. However, smaller software development companies or
individual developers (e.g., freelancers) do not have such a reliable
source. While hiring an experienced software architect might be
quite expensive for them.

Research ideas: To help SME and individual developers consider
security while selecting new dependencies for their projects, the
complex information could be combined, e.g., in the form of badges
or meta-metrics accessible and understandable by developers (013).
Such meta-metrics are expected to facilitate the following tasks:
o demonstrate that library is well-supported and its issues are
resolved quickly (O2 and O9);
e suggest that the library is not affected by known security
vulnerabilities (0O13);
o demonstrate that the library is mature, so it does not bring
many undiscovered bugs and security vulnerabilities (013);
o show licenses for the library itself and its transitive depen-
dencies (06).

Implication 2: Both LE and SME developers are more likely to
adopt a security fix not bundled with functionality improvements.

Since security fixes (at least for well-supported libraries) typi-
cally do not introduce breaking changes (09) and they should not
be bundled together with functionality improvements: if they are
mixed together, developers would have to spend efforts to cope
with breaking changes introduced by functionality improvements.

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

Under the constraints of limited resources (010), developers will
most likely ignore such an update and stay with the vulnerability.
Instead, if a security fix is well-indicated, well-documented, and it
does not require significant development effort, then it has more
chances to be adopted.

Research ideas: To help library creators always keep functionality,
updates, and security fixes separate, researchers could design an
automatic approach capable of distinguishing functionality and
security changes. Then developers might decide to release two
independent library versions. For library users, researchers could
develop an automatic classifier capable of identifying whether a
specific library version includes changes related to functionality or
security. So, developers could immediately adopt security fixes (as
they do not introduce breaking changes) and schedule adoption of
functionality updates.

Implication 3: LE developers tend to adopt automated depen-
dency analysis tools, while SME and individual developers are not
encouraged to use them.

LE developers have policies to consider the security of their de-
pendencies, and therefore they are forced to use the dependency
analysis tools (O11). In contrast, SME and individual developers
lack procedures for considering security in their projects. Moreover,
they are more concerned about developing new functionality, and
therefore, they often prefer to ignore “annoying” alerts of depen-
dency analysis tools (014) and fix security issues in dependencies
of their projects only if these issues are severe and widely-known.
Research ideas: To facilitate the adoption of dependency analysis
tools by SME and individual developers, tool creators could design
their tools to satisfy the following developers’ requirements:

e report only vulnerable dependencies that actually affect the
analyzed project (014, O16, and O18);

o identification of the part of the analyzed project affected by
the vulnerability (018);

o suggest both new and early safe versions of the dependency,
so developers could select the best mitigation strategy: to
adopt a new version or roll-back to an earlier one (016);

o suggest if a fixed version introduces breaking changes (016).

Implication 4: LE developers are more proactive in fixing vulnera-
bilities within dependencies of their projects, while SME and individual
developers tend to behave passively.

LE developers sometimes contribute to the projects they depend
on by fixing vulnerabilities and creating pull requests (020). How-
ever, SME and individual developers might not have enough time,
skills, and development resources to support dependency projects.
Therefore, they tend to rely on community support of their depen-
dencies and would prefer to either stay with vulnerability (O18) or
temporarily disable some functionality of their projects!! (019).
Research ideas: If there is no fixed version available for a vulnera-
ble dependency, the developers perform manual analysis to devise
the countermeasures for the discovered issue. Since this action is
critical, on top of the requirements presented in Implication 3, there
is a need to have support from the dependency analysis tools on
the following aspects (especially for LE developers):

!1Some LE developers also prefer to temporarily disable the feature within their
projects, when such an option is allowed by their company policy.

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

Table 6: Summary of Results

Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

RQ

Analysis summary

Implications

RO1

RQ2

RQ3

RQ4

When selecting a new dependency, developers pay attention to security only if it is required
and enforced by the policy of their company. Otherwise, they mainly rely on popularity and
community support of libraries (e.g., number of stars, forks, project contributors).

As generally developers lack resources to cope with possible breaking changes, they prefer to
avoid updating dependencies for any reason. Security vulnerabilities motivate developers for
updating only if they are severe, widely known, and adoption of the fixed dependency version
does not require significant efforts.

Developers perform sensitive dependency management tasks (e.g., updates) manually. Current
dependency analysis tools (if used) only facilitate identification of vulnerabilities in the project
dependencies. Developers complain that dependency tools produce many false-positive and low-
priority alerts.

The interviewed developers suggested the following actions when a vulnerability is discovered in
a dependency, but no newer version fixes it: (i) assess whether this vulnerability impacts them
since maybe they may not use that particular functionality; (ii) leave the vulnerability and wait for
the fix or a community workaround, (iii) adapt own project, i.e., disable vulnerable functionality
or rollback to a previously safe version of the library; (iv) maintain own fork (possibly fixing and

High level metrics, that allow developers to understand that the
library is well-supported, mature, and not affected by security vul-
nerabilities, could facilitate library selection.

To be adopted, library versions that fix vulnerabilities should (i)
be well-indicated, (ii) not introduce breaking changes, and (iii) not
contain functionality improvements (as they are likely to break
dependent projects).

Dependency analysis tools should (i) generate alerts only relevant to
the fragments of the libraries used by dependent projects; (ii) show
the affected components of the dependent projects; (iii) suggest if
there exists a fixed version and if its adoption introduces breaking
changes.

Dependency tools should (i) primarily determine which part of the
dependent project is actually affected by the vulnerability in a depen-
dencys; (ii) facilitate access to the dependency source code, so devel-
opers could assess and possibly fix the vulnerability by themselves;
(iii) suggest an alternative library that provides similar functionality.

making a pull request).

e accessing the dependency source code, so the developers
could directly check it and possibly fix the issue (020);

o finding an alternative library with similar functionalities and
estimating the cost of switching to this library (021).

7 THREATS TO VALIDITY

We recruited developers for our study without using any material
rewards, only based on their interest in the topic. In our study, we
aimed to receive information from industrial specialists who have
good solid positions. Hence, we could not think of any better reward
for them than a possibility to improve the development practice
by sharing their experience and to tell us their opinions on their
problems. Moreover, very often, the developers were motivated
by the fact that we had already had a prototype of a tool that we
could use to produce some dependency analysis reports for their
projects. We believe that this strategy allowed us to receive the
especially valuable feedback from the field specialists, who have
the appropriate level of knowledge of the topic.

We applied the snowballing approach to increase the number of
developers we could reach. This may potentially attract developers
from the same development communities who share common views.
To mitigate this bias, we selected developers to come from different
companies and different countries. The finally interviewed devel-
opers have various backgrounds and company positions. Hence,
we believe that this threat is minimal.

Our observations are based on facts as perceived by the intervie-
wees. They might not necessarily reflect the reality, hence, more
qualitative and quantitative studies are needed to validate the pre-
sented implications. Unfortunately, field observational studies are
hard to get. For example, de Souza and Redmiles [10] report two
case studies for a total of 23 interviews. In spite of de Souza being
embedded in the company for several weeks, only ‘some of the
team members agreed to be shadowed for a few days’. Similarly
[42] did a survey of 274 developers but, to observe developers, had
to recruit 44 of them and assigned them laboratory designed tasks.

Currently, we mostly asked developers about dependency manage-
ment practices within their companies, which may hide some issues
related to the development of FOSS projects. However, nowadays,

developers often have to consume, contribute to, or, at least, fol-
low the trends in FOSS community: several interviewees, although
being industrial employees, also told us about their contributions
to FOSS projects. Hence, we believe that the analysis and the im-
plications presented in this study provide valuable insights for
developers working in both FOSS and enterprise contexts.

We present our interpretations of the developers statements. To min-
imize confirmation bias, the two researchers individually extracted
their observations and implications from the interviews, while the
third researcher performed an additional validation of the analysis
results. Additionally, we performed a validation of the results with
the developers, by sharing the one-page summary of the findings
with the interviewees. Hence, we believe our results correspond to
the actual reported dependency management practices.

8 CONCLUSIONS AND FUTURE WORKS

This paper reports the results of a qualitative study of developers’
perception of software dependencies and the relative importance
of security and functionality issues. We run 25 semi-structured
interviews, each around 30’, with developers from both large and
small-medium enterprises located in nine different countries.

All interviews were transcribed and coded, along with the prin-
ciples of applied thematic analysis. We summarise the implications
of our qualitative findings as follows:

e Optimal selection of (FOSS) libraries could be facilitated
with high-level metrics that allow developers to understand
that a library is well-supported, mature, and not affected by
security vulnerabilities.

e Dependency updates break dependent projects, so if ain’t
broken, don’t touch it rules the world. To be adopted, secu-
rity fixes should be well-indicated, not introduce breaking
changes, and not require significant efforts.

o To maximize utility, dependency analysis tools should gener-
ate alerts only relevant to the fragments of the libraries used
by dependent projects and suggest possible mitigation strate-
gies along with estimation whether they introduce breaking
changes.

A Qualitative Study of Dependency Management and Its Security Implications

e Given the strong forces against updates, general security
alerts are likely to end as unheeded ‘cries for wolf”. Action-
able tools should determine which part of the dependent
project is actually affected by the vulnerability in a depen-
dency and suggest alternative libraries that provide similar
functionality along with the estimation of the cost of switch-
ing to that library.

Several nuances are still unaddressed by our study, starting from
broadening our studies to more countries to correlating results
with different types of industries (e.g., financial companies, critical
infrastructures, or social media - as we cover all of them but with
too few samples each). The most challenging future work for us
and the community at large is to develop the dependencies and
security analysis tools required by our developers.

ACKNOWLEDGMENTS

We thank the interviewed developers for their time and wiliness to
share their perceptions on the dependency management process.
We are grateful to Dr. Achim D. Brucker, Dr. Leysan Nurgalieva,
and Prof. Paolo Tonella for their valuable comments on the early
versions of this paper and to the anonymous reviewers for their
insightful and actionable suggestions.

This research has been partly funded by the EU under the H2020
Programs H2020-EU.2.1.1-CyberSec4Europe (Grant No. 830929) and
the NeCS: European Network for Cyber Security (Grant No. 675320).

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

REFERENCES

[1] B. Adams. 2018. Developers of popular software projects are overloaded by
the requests from academic researchers. (2018). Suggested during a personal
communication with the authors at ESEM’2018.

Sultan S Alqahtani, Ellis E Eghan, and Juergen Rilling. 2016. Tracing known secu-
rity vulnerabilities in software repositories—A Semantic Web enabled modeling
approach. Sci. Comp. Program. 121 (2016), 153-175.

[3] Hala Assal and Sonia Chiasson. 2019. "Think secure from the beginning’ A Survey
with Software Developers. In Proc. of CHI'19. 1-13.

[4] Earl T Barr, Christian Bird, Peter C Rigby, Abram Hindle, Daniel M German, and
Premkumar Devanbu. 2012. Cohesive and isolated development with branches.
In Proc. of ICFASE’12. Springer, 316-331.

[5] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. 2010. Codebook:
discovering and exploiting relationships in software repositories. In Proc. of
ICSE’10, Vol. 1. IEEE, 125-134.

[6] Christopher Bogart, Christian Késtner, and James Herbsleb. 2015. When it breaks,
it breaks: How ecosystem developers reason about the stability of dependencies.
In Proc. of ASEW’15. IEEE, 86-89.

[7] Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. 2016.
How to break an API: cost negotiation and community values in three software
ecosystems. In Proc. of FSE’16. ACM, 109-120.

[8] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen. 2015. Track-
ing known security vulnerabilities in proprietary software systems. In Proc. of
SANER’15. IEEE, 516-519.

[9] Joél Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. 2015. Measuring
Dependency Freshness in Software Systems. In Proc. of ICSE’15 (ICSE °15). IEEE
Press, Piscataway, NJ, USA, 109-118. http://dl.acm.org/citation.cfm?id=2819009.
2819027

[10] Cleidson de Souza and David Redmiles. 2008. An empirical study of software

developers’ management of dependencies and changes. In Proc. of ICSE’08. IEEE,

241-250.

Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.

Keep me updated: An empirical study of third-party library updatability on

Android. In Proc. of CCS’17. ACM, 2187-2200.

[12] Leo A Goodman. 1961. Snowball sampling. AOMS (1961), 148-170.

[13] Robert Wayne Gregory, Mark Keil, Jan Muntermann, and Magnus Mahring. 2015.
Paradoxes and the nature of ambidexterity in IT transformation programs. ISR
26, 1 (2015), 57-80.

[14] Greg Guest, Kathleen M MacQueen, and Emily E Namey. 2011. Applied thematic

analysis. Sage.

Sarra Habchi, Xavier Blanc, and Romain Rouvoy. 2018. On adopting linters to

deal with performance concerns in android apps. In Proc. of ASE’18, Vol. 11. ACM

Press.

Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. 2013. Cate-

gorizing developer information needs in software ecosystems. In Proc. of WEA’13.

ACM, 1-5.

Mohanad Halaweh. 2012. Using grounded theory as a method for system require-

ments analysis. JISTEM 9, 1 (2012), 23-38.

Regina Hebig and Jesper Derehag. 2017. The changing balance of technology

and process: A case study on a combined setting of model-driven development

and classical C coding. Journal of Software: Evolution and Process 29, 11 (2017),

e1863.

JI Hejderup. 2015. In dependencies we trust: How vulnerable are dependencies

in software modules? (2015).

J. Huang, N. Borges, S. Bugiel, and M. Backes. 2019. Up-To-Crash: Evaluating

Third-Party Library Updatability on Android. In Proc. of EuroS&P’19. 15-30.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.

2013. Why don’t software developers use static analysis tools to find bugs?. In

Proc. of ICSE’13. IEEE Press, 672-681.

[22] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure

and evolution of package dependency networks. In Proc. of MSR’17. IEEE, 102~

112.

Andrew J Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in

collocated software development teams. In Proc. of ICSE’07. IEEE Press, 344-353.

Paul R Kroeger. 2005. Analyzing grammar: An introduction. Cambridge University

Press.

Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro

Inoue. 2017. Do developers update their library dependencies? Emp. Soft. Eng.

Journ. (11 May 2017). https://doi.org/10.1007/s10664-017-9521-5

Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo

Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the

Use of Outdated JavaScript Libraries on the Web. In Proc. of NDSS’17.

Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert

Deline, and Gina Venolia. 2013. Debugging revisited: Toward understanding the

debugging needs of contemporary software developers. In Proc. of ESEM’13. IEEE,

383-392.

SS Jeremy Long. 2015. Owasp dependency check.

[2

[11

[15

=
&

(17

[18

[19

[20

[21

[23

[24

[25

[26

[27

[28

http://dl.acm.org/citation.cfm?id=2819009.2819027
http://dl.acm.org/citation.cfm?id=2819009.2819027
https://doi.org/10.1007/s10664-017-9521-5

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

[29] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and Baowen Xu.
2017. How do developers fix cross-project correlated bugs? A case study on the
GitHub scientific Python ecosystem. In Proc. of ICSE’17. IEEE, 381-392.

[30] Mark Mason. 2010. Sample size and saturation in PhD studies using qualitative

interviews. In Forum qualitative Sozialforschung/Forum: qualitative social research,

Vol. 11.

Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests encour-

age software developers to upgrade out-of-date dependencies?. In Proc. of ASE’17.

IEEE Press, 84-94.

Amantia Pano, Daniel Graziotin, and Pekka Abrahamsson. 2018. Factors and

actors leading to the adoption of a JavaScript framework. Empirical Software

Engineering (2018), 1-32.

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio

Massacci. 2018. Vulnerable Open Source Dependencies: Counting Those That

Matter. In Proc. of ESEM’18.

Shaun Phillips, Guenther Ruhe, and Jonathan Sillito. 2012. Information needs for

integration decisions in the release process of large-scale parallel development.

In Proc. of CSCW’12. ACM, 1371-1380.

Henrik Plate, Serena Elisa Ponta, and Antonino Sabetta. 2015. Impact assessment

for vulnerabilities in open-source software libraries. In Proc. of ICSME’15. IEEE,

411-420.

Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2018. Beyond Metadata:

Code-centric and Usage-based Analysis of Known Vulnerabilities in Open-source

Software. In Proc. of ICSME’18.

Johnny Saldafia. 2015. The coding manual for qualitative researchers. Sage.

Khaironi Y Sharif, Michael English, Nour Ali, Chris Exton, JJ Collins, and Jim

Buckley. 2015. An empirically-based characterization and quantification of infor-

mation seeking through mailing lists during open source developers’ software

evolution. Information and Software Technology 57 (2015), 77-94.

[39] Jonathan Sillito, Gail C Murphy, and Kris De Volder. 2008. Asking and answering
questions during a programming change task. IEEE Transactions on Software
Engineering 34, 4 (2008), 434-451.

[40] Anselm Strauss and Juliet Corbin. 1990. Basics of qualitative research. Sage.

[41] Hataichanok Unphon and Yvonne Dittrich. 2010. Software architecture awareness
in long-term software product evolution. Journal of Systems and Software 83, 11
(2010), 2211-2226.

[42] Dirk van der Linden, Mark Levine, and John Towse. 2020. Schrédinger’s Security:

Opening the Box on App Developers’ Security Rationale. In Proc. of ICSE’20.

IEEE.

Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy

Zaidman, and Harald C Gall. 2018. Context is king: The developer perspective

on the usage of static analysis tools. In Proc. of SANER’18. IEEE, 38-49.

[44] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the
dynamics of the JavaScript package ecosystem. In Proc. of MSR’16. IEEE, 351~
361.

[45] Aiko Yamashita and Leon Moonen. 2012. Do code smells reflect important
maintainability aspects?. In Proc. of ICSME’12. IEEE, 306-315.

[46] RobertK Yin. 2015. Qualitative research from start to finish. Guilford Publications.

[31

[32

w
&

(34

[35

[36

[37
[38

[43

A APPENDIX - STATE OF THE ART
COMPARISON

Table 7 presents a summary of qualitative studies of developers’
attitudes and practices. We identify the following sources of infor-
mation used by the selected studies: interviews, surveys, mailing
lists, observations of developers’ work process. For each study we
report the number of participants and whether the study provided
the insights for the code groups identified in Section 2.

B APPENDIX - FAILED ATTEMPT OF THE
INTERVIEWEE SELECTION

Interviewee selection — failed attempt. First, to invite develop-
ers for the interviews, we decided to reach developers of the most
popular open-source Java projects. For this purpose, we created
a search on Github by the keyword “Java” and selected the top
20 most starred projects (Table 8). Then we used our tool for the
dependency study (See §4.1 for details) to generate dependency
analysis reports for those projects. We sent these reports to the
main contributors (or owners) of the selected projects and asked
them to provide their feedback on the reports as well as to dedicate

Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

Language: c/c++ —{ 4
Language: java —{] 9
Language: javascript -] 17
Language: python -] 12
Attitude: like [75
Attitude: dislike] 114
Attitude: recommendation] 27
Context: functionality {62

Context: requirements | 20

Context: security |] 106
Issues: broken]34
Issues: bugs [T 84
Issues: resources |]37
Issues: licenses |_] 13
Issues: fix availability] 18
Operations: management | 149

Operations: maintenance [| 24
Operations: direct deps [8
Operations: looking forinfo [75
Operations: transitive deps] 16
Process: automated |]37
Process: code tool {] 11
Process: workflow []74
Process: dependency tool [T] 41
Process: manual {27

50 100
Code frequency

Figure 2: Code frequency by code groups

some time for an interview. Unfortunately, this activity did not pro-
vide us with the sufficient number of interviewees, because there
was only one response.

In agreement with B.Adams [1], the most likely reason for the
fact, that developers of the most popular Github projects ignored
us, is that they may be overloaded by the various research studies.
Le., the developer selection approach we followed is very tempting
for researchers. Hence, developers of popular research projects
may receive many emails with different requests for participation
in various scientific studies. So, they treat such kind of requests
as spam and ignore it. In our case the request for the study also
contained an attachment. And in the light of constantly increasing
threat of ransomware, such kind of emails looked very suspicious.
So, we had to select a different strategy for hiring interviewees.

C APPENDIX - CODES DISTRIBUTION

Figure 2 shows the frequency distribution (number of occurrences)
of the codes attributed to the fragment of interviews. Developers
are worried about the possible issues (including security bugs)
that dependencies may introduce into their projects: dislike (114
occurrences), security (106 occurrences), and bugs (84 occurrences)
are within the topmost mentioned codes. At the same time, the
relatively low number of occurrences of codes such as direct deps
(8 occurrences) and transitive deps (16 occurrences) in an interview
about dependencies suggests that developers may not consider
all details of the dependency management process to be really
problematic (like had 75 occurrences). After all, this is the whole
advantage of using dependencies as black boxes:

If there’s something we really know to be broken, we fix it.

Otherwise, it’s kind of left to itself. (#1)

A Qualitative Study of Dependency Management and Its Security Implications To appear in ACM Conference on Computer and Communication Security, Nov 2020,

Table 7: Summary of qualitative studies about developers’ attitudes and practice

The table presents a summary of qualitative studies of developers’ attitudes and practices by interviews (I), surveys (S), mailing lists (M), observations of developers’ work process (O). For
each study we report the number of participants and whether the study provided the insights for the code groups used in this study

Dependency studies Tool/Technique validation studies Information needs and decision making
(11] [16] [10] [29] [6] [7] [9] [25] | [31] ([21] [15] [43] [18] [4] | [32] ([38] [41] ([39] [27] ([34] ([23] [5] [45] [3] [42]] Ours
Type S S O+1 S I I I M S I I S+1 I I I M I (6] I I (6] I O+ S S I
#Partic. 203 14 6,8+15 116 7 28 5 16 62 20 14 42+11 6 6 18 ND 15 25 15 7 17 15 6+6 123 274 | 25
Deps v /7 4 v v v / v v 4 v v
Lang v v v v v / v v v / v v v v v
Attitude | vV v v v v/ v v v o/ v v v\ v v v v v v v vV vV V|V
i I A A A A
unction.
context | ooV A
ecurity
Issues v v 7 v v v o/ v v vV |/ v v v |/
Operationf v v v v v 7 v oo/ v V| v / v v v v v/ v |/
Process | v/ v v 7/ 4 v 7/ 4 v vV |/ v v v v v v v /Y V|V
Table 8: Top 20 most starred projects from Github
url version project name
https://github.com/square/retrofit parent-2.4.0 retrofit
https://github.com/square/okhttp parent-3.11.0 okhttp
https://github.com/google/guava released-all-futures | Google Guava
https://github.com/apache/incubator-dubbo dubbo-2.6.4 Apache Dubbo
https://github.com/zxing/zxing BS-4.7.8 ZXing
https://github.com/kohsuke/jenkins 1.386 Jenkins
https://github.com/raver119/deeplearning4;j latest_release Deeplearning4j
https://github.com/eclipse/vert.x 35.4 Vert.x
https://github.com/prestodb/presto 0.212 Presto
https://github.com/perwendel/spark 2.7.2 Spark
https://github.com/brettwooldridge/HikariCP HikariCP-3.2.0 HikariCP
https://github.com/junit-team/junit4 JUnit 4.12 Junit4
https://github.com/xetorthio/jedis jedis-2.9.0 Jedis
https://github.com/code4craft/webmagic WebMagic-0.7.3 WebMagic
https://github.com/google/auto auto-value-1.6.3rc1 | Google Auto
https://github.com/dropwizard/dropwizard v2.0.0-rc0 Dropwizard
https://github.com/emeroad/pinpoint 1.6.2 Pinpoint
https://github.com/redisson/redisson redisson-3.8.2 Redisson
https://github.com/codecentric/spring-boot-admin | 2.0.3 Spring Boot Admin
https://github.com/swagger-api/swagger-core v2.0.5 Swagger Core library

The preliminary analysis also suggests that developers prefer to
use dependencies as they are (i.e., adopt new ones or update them)
rather than to go deeper into details and change the source code: all
interviewed developers discussed management (149 occurrences),
while only 15 out of 25 developers touched the maintenance topic
(24 occurrences).

Then we analyze the codes that are mentioned together. For this
purpose, we have extracted the co-occurrence table of the inter-
view codes [24]: each column and row of the table corresponds to
an interview code, while each cell contains the number of code
co-occurrences. To identify the cells with a significantly high num-
ber of co-occurrences, we have calculated the mean and standard
deviation for the code co-occurrences (u = 8.27, 0 = 11.62) in the
table and underlined the values in cells, where the number exceeds
1 by at least the value of o (i.e. 19.89). To reduce the noise, we will
not report the columns where cell values do not exceed .

D APPENDIX - PER LANGUAGE ANALYSIS

Figure 3 shows the distribution of codes by languages.

E APPENDIX - COMPLETE
CO-OCCURRENCE TABLE

Figure 4 shows the complete co-occurence table for the Section 5.

To appear in ACM Conference on Computer and Communication Security, Nov 2020, Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

Code i direct_deps [looking_for_info |trans_deps &
ac ac sc c
automated A 2] 2 3 automated |broken |bugs |mai T direct_deps onality | workflow Security & [looking_for_info |trans_deps
Code ac sc_|ac |ac ac ac ac ac ac c ac ac

code tool 0 0 0 0 0 dislike 1 14 3 0 6 2 2 6 4 0

(workflow 0 ! 0| 7] 0 c like 0| of 1 0 0| 0 0 0| 0| 1 0| 0|
tool 0 3 0 4 0

manual 0‘ a | d d d

direct_deps [looking_for_info [trans_deps &
Java

& Java & Java & Java & Java
automated automated |broken [bugs |mai T direct_deps ionality [workflow security & [looking_for_info [trans_deps
1 4 0 1 1 &Java [8Java & & Java & Java & Java & Java sJava |&Java [Java & Java & Java
Java

code tool 0 3 0 1 0 dislike 31 5 2 1 5 7 5 3 5

workflow 0! 1 1 1 JAVA 2 19 2| 18| 0| 6 4 0 4 1
tool 1 4 0 1 1

manual 4 4| d 4 d

direct_deps |looking_for_info [trans_deps &
J

&Js &JS &Js
automated i B o B B automated |broken [bugs [mai T direct_deps ionality |workflow security & |looking_for_info |trans_deps
&Js &Js |&Js [&Js &JS &Js &Js &Js &Js Js &Js &Js
code tool [2 0 1 0 i 6 3[4 1 1 2 3 2 10| 5 5
workflow 0 [3| ol JAVASCRIPT [3| 10 2] 18) 0 0 4 2| 17] 1 1
tool 2) 15| 0 4 1
manual Y o o K B
i direct_deps |looking_for_info [trans_deps & automated |broken [bugs [mai T direct_deps ionality |workflow security & |looking_for_info |trans_deps
&Python |&Python __|& Python _|& Python Python & Python _|& & |&Python |&Python |&Python |&Python |&Python |& Python |Python |& Python & Python
0 9 0 2 0 4 6[11 0| 0| 8 1 2] 2
code tool 0| 1 0 0 0 Python 1 4] 1] 0f 22 [1 0 0 16] 5 0
workflow 0 H 1 2| 1
tool 0| 10| 0 1 0
manual of 6] 1 3] 1
Do for D P! for

Figure 3: Distribution of codes by languages. Available online at https://gofile.io/?c=u54rXh

https://gofile.io/?c=u54rXh

To appear in ACM Conference on Computer and Communication Security, Nov 2020,

A Qualitative Study of Dependency Management and Its Security Implications

mojpom

sdop
onpsuen

Rynoos

s92.n0s01 | SpusWaIINba! | uopepUSWILIOSD)

uouhd

lenuew

JuowaBeuew | soueusjurew

ou
104 Buryoo|

o

sesuoay| | 1duosenef

enel

Aujeuonouny

ARungejrese
Xy

oSt

100}
9P 1994P | £ g uadop| 199 2P0

+49]

sbng

molptiom
sdap sanisuen
fyunoss
sanosal
Suswaunbas
uonepUsWIWO9a)
uouhd
lenuew
jueweBeuew
eoueuBuEW
oju1 10} Bupjoop
a1
sasued|
dosenef

enef

Aujeuonouny
I Anaeireae xij

st
sdep joanp
100} Aouspuadap
100} 2pod
+491
sBng

o [e

usxoiq | pejewoine 8pod

Full Co-occurence table. Available online at https:

Figure 4

iBuWJw

//gofile.io/?c

https://gofile.io/?c=iBuWJW
https://gofile.io/?c=iBuWJW

To appear in ACM Conference on Computer and Communication Security, Nov 2020, Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

F APPENDIX - INTERVIEW TRANSCRIPT EXAMPLE

a. How do you deal with software dependencies in your projects?

Usually, when I deal with software dependencies, I rely on some tools, for example, Maven, Gradle for Java.
Or pip for Python. Some dependencies, that you introduce, which can be, let’s say, not compliance with other
libraries about some reason maybe. Maybe one dependency has a dependency on another library, but different
versions, which can be tricky. I think so. Let’s say, I have also an issue, while external dependency for..
I think, it was Json, no xml parser in Java. And this library created memory leaks in context at the time.
And that was very bag experience with external libraries. Because I needed to take some memory snapshot to
understand what was the leak. And I understood, that the leak was caused by an external library. So not by
the code, that we were writing.

b. And how did you cope with that bug? What did you do?

Simply we used another library, which more or less did the same thing. Now I am thinking, that it wasn’t
an xml parser, it was something to, an utility to expose REST services in Java. And we used another tool.
We basically changed library. And that, of course, caused us to rewrite some piece of software. At least we
solved this memory leak problem in Tomcat.

c. Ok, I see. So you basically substituted this library?

Exactly. A solution maybe to make an issue to a library and wait for a fix, but at that time we decided to
change the library. Also because we changed the library and we wrote better some piece of software. We took
the moment to do it.

d. Yes, sure. Fair enough. There was an alternative. That’s good. I see. I wanted to understand better on what

you’re telling me. Can you tell me a bit about your background? I nderstand, that you’re a Java developer.
How much experience do you have?
I was working basically five years in .Net, and then three years in Java plus university projects if you
can count them. They were also in Java. And then also one year and a half in Python. There was a JavaScript
framework for web development. Which in the case was NodeJS. But, let’s say, in that case we used npm, so
node package manager to manage the libraries in JavaScript.

e. And currently you are working in a company, right?

Yes, I recently changed again. Yesterday I started at the new company. SO here the recent project, that I am
involved in, again Java. I came back to Java.

f. And in the previous job?

In the previous job I was working with Python and I was working with Django. So, the back- end. And at least
vJS at some time.

g. I see. And what was the scope of the company? I mean, what kind of projects were you working on?

This is a big corporate, wanted to implement a certain solution. They produce plastic for automatic surface.
And it has several clients all over the world. China, South America, Europe, Nothern America. And they wanted
to build a system to make the Industry 4.0. Basically, so it is still a big project. The development of
a web application to be used by all the employees of the company, which allows to read data from sensors
installed on the machines through several protocols, for example, PROTOCOL1. To read SOME data. And then to
also read data from other sources. For example, some ERP system. And then a lot of features, that are still
under development to digitalize the production sector and standardize the way they use the system all over
the world. It’s very big activity to summarize it in several words. I hope, I was enough clear.

h. Yeah, yeah. I understand something. In broad perspective. Ok, and how old was the project, that you were
working on?

This project, I mean, in the last company was.. I mean, we started it from scratch. Then I had other experiences
before, working on some, let’s say, established software. And so in that case we had a lot of dependencies.
And introduced those dependencies, I think, in our pipeline or development environment.
i. Ok, I see. in both projects, that you are talking about. They were Python projects, right?
Python project was in the last company, where I was working for one and a half years. Before I was working
in another company, and there I was developing in Java. There I was working on both old piece of software
without any kind of, unfortunately, a dependency management. At the beginning. Then we introduced Maven to
fix the jar we were facing, let’s say. It works on my machine, then I had a chance to use Gradle. But for
those projects I used Gradle as a very beginning level. So the depependency were controlled by those tools.

j. Ok, and so when you implemented this switch to Maven, when you introduced Maven to this project.. How did
you select the dependencies, that you want to include?

Well it was complicated. Let’s say, we had lib folder with a lot of dependencies inside. The guy, who
implemented the software didn’t.. They had no idea on how to organise them better. And then basically we

A Qualitative Study of Dependency Management and Its Security Implications To appear in ACM Conference on Computer and Communication Security, Nov 2020,

started from scratch to compile the software and added dependencies one by one. It was a long process. And
then we faced also some problems of these versions of required libraries. And then we also had some problems
at runtime. You know, in pom files there are explicit dependencies to other jar files. So sometimes it also
depends on the quality of the dependency. Dependency pom file. Sometimes they say compile exception, because
the dependency tree was not satisfied. And it was a painful process. But it was necessary to introduce a new
development to the field. And it was a mess with it. And then without this technology you cannot think about
any improvements. You know, like continuous deployment or use some automatic tools online to build and deploy
applications.

k. Yeah, of course. I see. And so. Ok, when you.. Did you also face sometime the situation, when you have to
select the new dependency for your project? Like to introduce some new functionality?

Yes, I did. This especially happens with the project I started by myself. Of course, I needed some extra
features. And I used dependencies for that. And it actually very convenient to take external dependencies.

1. 0k, but how do you actually select them? So, what do you consider during that selection?

Well, I usually, check if they are reliable by looking at Github sites and numbers of.. I am talking only
about open source dependencies. I check if they are reliable, I look at the Github stars, number of commits,
contributors. I see if the project is active. And so I understand, that this is a dependency I can introduce,
because a lot of people is using it. And it is still maintainable. It is stable. Then in other cases you can
buy some external library. But it was really bad situation. And I was basically just asking for feedback of
other people, who were using the same library. You can read reviews online. If there is a customer support
also. Of course, when you have paid solution, you have also another kind of support.

m. I see. In case you had to select this paid library.. Why did you have to go for it? Why did you decide to

select the private, commercial library and not the open source?
Especially, when you work for a Microsoft environment for .Net applications, there are no a lot of free
alternatives for enterprise applications. For example, windows form applications for, let’s say rapid
development. You want to speed up the development, so you basically buy these libraries, because there
was no open source solutions in that case. For example, to develop user interfaces in windows form, I used
the vectors. And the library, which was build on top of windows form, that also they have libraries for also
web development and other software stuff. And there, of course, you pay quite a lot. But then you have a lot
of features already out of the box, functionalities, which is actually 99% what customer wants. So in that
case, let’s say. Since you pay, these libraries are very reliable. Usually there is no problem of integration
or bugs, or malicious software.

n. I see. But still, there may be some new bugs discovered. Or some new vulnerabilities discovered?
Vulnerabilities - no. But bugs - yes. Sometimes you find some bugs also in this case. And there is a support,
that you submit these issues. And if you pay, they answer you after it. Then it depends if you are... Because
we are working for a customer and he had, he bought the golden support. And with golden support they also
release patches for you. And they introduce the patch in the next version, so for other people. So this is
the other type of contact.

o. Ok, I mean, that’s interesting. This patch, I assume, that you need to just basically apply for your dependency,
without update to a new version. Right?

Yes.

p. And doesn’t break the build of the project?

Usually it’s a minor release, so it’s not breaking anything. Then, of course, when there are major releases.
The risk you break something, which also can be high.

q. I see. Did you actually face the updates of the library? Did you have to updates the libraries in your

projects?
Yes. Let’s say. It depends on the policy of the company. Some says, do not touch anything unless it stops
working. But then you, maybe if you need to update some library and you move some version 1.0 to 3.5, because,
let’s say, you decide or your CTO in three years do not update anything. But then it becomes a mess. Because
skipping a lot of versions can really break a lot of stuff. In another company they instead have this policy
to update the main libraries very often. And that of course any time when the library was updated, you should
do a lot of tests.

r. Ok, but do you see any correlation with the policy of the company and programming language that they use?
Well, it is. Usually I saw Microsoft environment, let’s say, in corporate environments of big companies,
big corporates, that can afford paying licenses. And another companies that use Java and other open source
technologies are much smaller. But about the policies about updating or not updating dependencies - no. I
cannot say anything, that there is a correlation.

s. In this case do companies prefer to update libraries or they prefer just to keep them?

To appear in ACM Conference on Computer and Communication Security, Nov 2020, Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci

It depends on the company. How many developers you have, how money you have on the project. Because, of
course, this updating process is also time consuming. Apparently time consuming, because it take resources
from developing new features, solving new bugs. But then, let’s say, in long term, I think, it saves a lot of
time, because ok, one day you will need to update all libraries, I think. Because, you know, some bugs, some
vulnerabilities.. I don’t know. It can be a lot of stuff. It really depends on how long the company exists,
how experience the managers are.

t. I see. This is really interesting what actually drives the companies to update software dependencies. For
example, in your experience, how often did you update dependencies? And when did you decide to update them?
Let’s say, in.. When I was working for .Net applications. At least we updated the main dependencies once per
year. Because these libraries received major updates once per year. So we basically updated these. To always
be align with basic features. But it was a more structured company and we had people to do it. And also,
let’s say, there was no issue not to do it. Then, of course, if you work for a smaller company. Or maybe if
you are alone managing the project, then you basically update when you need to. Or several factors can drive
this. For example, you need to.. There is a bug or there are new features, that the new version offers. Or
you need to change the version of Java, because the version you are using needs updating. Then you understand,
that your all dependencies need to be updated also. Let’s say, I think in a well-structured software company,
they should plan the updates frequently. If you want to maintain your products. If you want to include new
features. But then, of course, it depends on different cases.

u. And what about the security side? So, did you ever faced the security of the dependencies?

About security I do not have a lot of examples. I know, that, for example, for Java and also other environments,
they. At some point they stop to release patches, security patches. It depends also how much you.. Is your
business to make application secure.

v. So in your experience, do the companies looked somehow on the security sides of their dependencies? Did they

check their dependencies on the presence of security vulnerabilities?
No, in this case, I can say. Let’s say, in this case I saw the dependencies are used around, where, let’s
say, mostly trustworthy, because they are very used dependencies. Because they are also, dependencies are
coming from enterprises. So you kind of trust them. It’s not just a random dll or random jar you find. So,
let’s say, that we are using, we search for reliable sources. Also, you sometimes want to look at the code
to understand if it actually introduces some security vulnerabilities.

w. Ok, I see, it’s fair enough. If the publisher development company is trustable, if it is big enough. Like

Microsoft, then you kind of trust them And they do not ship bad code.
Yes yes yes. Also if you use some dependencies from open source, from Github with a lot of contributors, a
lot of stars, you can trust. I don’t know if anyone is going to check anything in such libraries. A lot of
people use them and they can just do whatever. But there is someone in the world, some nerd ones, that take
look at the code, at every line of code and do this work for me.

x. Yes, sure. That’s the idea behind the dependencies. So kind of outsource some part of your work to somebody
else.

Aha, yeah.

y. I have just last question basically. You already mentioned, that there was a time, when you had to switch to
another library, because there was a problem, there was a bug. So basically there was no fix. Can you comment
about this situation? So, if you, also from the perspective of different companies where you worked. So, if
you face this situation, when there is no fix, what would be your reaction if there is no new version with
the fix of the bug or security vulnerability?

In this case if it was an open source library, I don’t know, we could complain to the maintainer of the
library. If there is a license somewhere, if there is a line saying: I’m not responsible for any bugs. That
policy of the company was, that when they understood, that the memory leak was caused by this library in our,
let’s say, in our software configuration. We checked where the library was used and we understood if it was
very painful to change it or not. And we understood, that it wasn’t that painful and we took also the chance
to rewrite some old class in a better way. Then we didn’t experience, the memory leak, let’s say, any more.

	Abstract
	1 Introduction
	2 Terminology
	3 Background
	3.1 Dependency management and mitigation of dependency issues.
	3.2 Technologies/tools for automating the software development process.
	3.3 Information needs and decision making during software development

	4 Methodology
	4.1 Recruitment of participants
	4.2 Interview process
	4.3 Interview coding and analysis
	4.4 Final Code Book

	5 Findings
	5.1 RQ1: rationale for selection
	5.2 RQ2: motivations for (not) updating
	5.3 RQ3: automation of dependency management
	5.4 RQ4: Mitigating unfixed vulnerabilities

	6 Implications
	7 Threats to Validity
	8 Conclusions and Future Works
	References
	A Appendix – State of the Art Comparison
	B Appendix – Failed attempt of the interviewee selection
	C Appendix – Codes Distribution
	D Appendix – Per language analysis
	E Appendix – Complete co-occurrence table
	F Appendix – Interview transcript example

