The CORAS approach to modeldriven risk analysis

RISE presentation May 13, 2011

Atle Refsdal, SINTEF

Outline

General introduction

- what is risk analysis, definition of terms, ...
- Overview of the CORAS process and risk modeling language
- The eight steps of a CORAS risk analysis
- Small demo/exercise?

What is risk analysis?

- Determining what can happen, why and how
- Systematic use of available information to determine the level of risk
- Prioritisation by comparing the level of risk against predetermined criteria
- Selection and implementation of appropriate options for dealing with risk

Definition of Terms

- Asset: Something to which a party assigns value and hence for which the party requires protection
- Consequence: The impact of an unwanted incident on an asset in terms of harm or reduced asset value
- Likelihood: The frequency or probability of something to occur
- Party: An organization, company, person, group or other body on whose behalf a risk analysis is conducted
- Risk: The likelihood of an unwanted incident and its consequence for a specific asset
- **Threat:** A potential cause of an unwanted incident
- Threat scenario: A chain or series of events that is initiated by a threat and that may lead to an unwanted incident
- **Treatment:** An appropriate measure to reduce risk level
- Unwanted incident: An event that harms or reduces the value of an asset
- Vulnerability: A weakness, flaw or deficiency that opens for, or may be exploited by, a threat to cause harm to or reduce the value of an asset

Elements of risk analysis

The CORAS process

- Risk management process based on ISO 31000:
 Risk Management – Principles and Guidelines
- Provides process and guidelines for risk analysis

Context identification

- Characterise target of analysis
 - What is the focus and scope of the analysis?
- Identify and value assets
 - Asset-driven risk analysis process
 - Business oriented, e.g. availability of services generating revenue
- Specify risk evaluation criteria
 - There will always be risks, but what losses can the client tolerate?
 - Similar to requirements in system development

Risk identification

Identify threats to assets through structured brainstorming

- Hazard and Operability analysis (HazOp)
- Involving system owners, users, developers, domain experts, risk analysis experts, etc. (typically 5-7 people)

Identify vulnerabilities of assets

Questionnaires and checklists

Equipment physical security

- Is equipment properly physically protected against unauthorised access to data or loss of data?
- Are power supplies handled in a manner that prevents loss of data and ensures availability?

Risk evaluation

- We cannot completely eliminate all risks
- Determine which risks need treatment
 - We need to know how serious they are so we can prioritise
- Risk level is determined based on analysis of the likelihood and consequence of the unwanted incident
 - Quantitative values: e.g., loss of 1M€, 25% chance per year
 - Qualitative values: e.g., high, medium, low

Risk treatment

Identify treatments for unaccepted risks
Evaluate and prioritise different treatments

Model-based risk analysis

What is CORAS?

- The CORAS process
 - A process for security risk analysis
- The CORAS language (diagrams)
 - A graphical language that supports the analysis process
 - Basis for communication, documentation and analysis
- The CORAS semantics
 - A schematic translation of any CORAS diagram into English
- The CORAS guideline
 - A guideline for best use of the language within the process
- The CORAS tool
 - A computerized tool supporting the above

The CORAS language

The CORAS diagrams

Asset diagrams

Describes the focus of the analysis

Threat diagrams

Describes scenarios which may cause harm to the assets

Risk diagrams

Summarises the risks presented in threat diagrams

Treatment diagrams

Adds proposed treatments to threat diagrams

Treatment overview diagrams

Adds proposed treatments to risk diagrams

Threat Diagram – Example 1

Threat Diagram – Example 2

Semantics: Translation into English

Vertices

- *Hacker* is a deliberate human threat.
- Threat scenario Power supply in Norway breaks down occurs with undefined likelihood.
- Threat scenario Power supply in Sweden breaks down occurs with likelihood 1:5 years.
- Unwanted incident Blackout in Norway occurs with likelihood 3:100 years.
- *Power production in Norway* is a direct asset.

Relations

- Hacker initiates Power supply in Norway breaks down with likelihood 1:100 years.
- Power supply in Norway breaks down leads to Blackout in Norway with conditional likelihood 1.0.
- Power supply in Sweden breaks down leads to Blackout in Norway with conditional likelihood 0.1.
- Blackout in Norway impacts Power production in Norway with consequence critical.

Identifying and documenting assets

- Asset: Something to which a party assigns value and hence for which the party requires protection
- The client specifies its assets and risk acceptance levels
- Difficult, faults may jeopardize the whole analysis
 - wrong focus
 - wrong level of details

Identifying and documenting assets

One may also specify other interested parties than the client

- Different parties may have different assets
- Two parties may assign value to the same parts or aspects (e.g. confidentiality), but possibly with different priority (asset value) and different protection requirements
- Possible to specify how assets can depend on other assets
 - company reputation
 - income

Identifying and documenting threats and unwanted incidents in threat diagrams

- Threat: A potential cause of an unwanted incident
- Unwanted incident: An event that harms or reduces the value of an asset

Threat	Unwanted incident	Asset damaged
Virus	Virus attack makes information unavailable	Business contracts
Virus	Virus attack makes information unavailable	Product information
Employee	Product information is accidentally published on the web	Product information
Insider	Competitor receives confidential information	Product information
Insider	Competitor receives confidential information	Budget

Identifying and documenting vulnerabilities and threat scenarios

- Vulnerability: A weakness, flaw or deficiency that opens for, or may be exploited by, a threat to cause harm to or reduce the value of an asset
- Threat scenario: A chain or series of events that is initiated by a threat and that may lead to an unwanted incident
- Forces the participants to specify "why" incidents can happen (vulnerabilities) and "how" (threat scenarios)

Identifying and documenting likelihoods and consequences

- **Likelihood:** The frequency or probability of something to occur
- Consequence: The impact of an unwanted incident on an asset in terms of harm or reduced asset value

Documenting risks

- Risk: The likelihood of an unwanted incident and its consequence for a specific asset
- Compared to the party's risk acceptance levels
- Acceptable and nonacceptable risks are shown in a risk diagram
 - decision makers
 - planning treatments
 - communicating risks

Identifying and documenting risk treatments

Risk treatment: An appropriate measure to reduce risk level

Treatments are added where they should have effect

Example CORAS diagrams

Example asset diagram

Example threat diagram

Example treatment diagram

Example treatment overview diagram

Building a threat diagram (1)

Building a threat diagram (3)

Building a threat diagram (4)

37

The eight steps of a CORAS risk analysis

Step 1: Preparation

- The purpose of Step 1 is to do the necessary initial preparations prior to the actual startup of the analysis
- This includes
 - roughly setting the scope and focus
 - informing the customer of its responsibilities

Step 2: Customer presentation

- The second step involves an introductory meeting
- The main item on the agenda for this meeting is to get the representatives of the client to present their overall goals of the analysis and the target they wish to have analysed
- Hence, during the initial step the analysts will gather information based on the customer's presentations and discussions

Tasks

- The security analysis method is introduced
- The customer presents the goals and the target of the analysis
- The focus and scope of the analysis is set
- The meetings and workshops are planned

People that should participate

- Analysis leader (required)
- Analysis secretary (required)
- Representatives of the customer:
 - Decision makers (required)
 - Technical expertise (optional)
 - Users (optional)

Modelling guideline

- At this early stage of the analysis it can be useful to describe the target with informal drawings, pictures or sketches on a blackboard
- The presentation can later be supplemented with more formal modelling techniques such as UML or data flowdiagram

Telemedicine case

Step 3: Refining the target

- The third step also involves a separate meeting with representatives of the customer
- However, this time the analysts will present their understanding of what they learned at the rst meeting and from studying documentation that has been made available to them by the client
- The third step also involves a rough, high-level security analysis
- During this analysis the first threats, vulnerabilities, threat scenarios and unwanted incidents are identied
- They will be used to help directing and scoping the more detailed analysis still to come

Tasks

- The target as understood by the analysts is presented
- The assets are identied
- A high-level analysis is conducted

People that should participate

- Security analysis leader (required)
- Security analysis secretary (required)
- Representatives of the customer:
 - Decision makers (required)
 - Technical expertise (required)
 - Users (optional)

Modelling guideline for the target description

- Use a formal or standardised notation such as UML, but ensure that the notation is explained thoroughly so that the participants understand it.
- Create models of both the static and the dynamic features of the target.
- Static may be hardware congurations, network design etc., while dynamic may be work processes, information ow etc.
- For the static parts of the description UML class diagrams and UML collaboration diagrams (or similar notations) are recommended.
- For the dynamic parts we recommend UML activity diagrams and UML sequence diagrams (or similar notations)

•

•

Symbols from the CORAS risk modelling language

Asset diagram

High-level risk table

Who/what causes it?	How? What is the incident? What does it harm?	What makes it pos- sible?	
Hacker	Breaks into the system and steals health records	Insufficient security	
Employee	Sloppiness compromises confiden- tiality of health records	Insufficient training	
Eaves- dropper	Eavesdropping on dedicated con- nection	Insufficient protection of connection Unstable connection/ immature technology	
System fail- ure	System goes down during examina- tion		
Employee	Sloppiness compromises integrity of health record	Prose-based health records	
Network failure	Transmission problems compro- mises integrity of medical data	Unstable connection/ immature technology	
Employee	Health records leaks out by acci- dent, compromises their confiden- tiality and damages the trust in the system	Possibility of irregu- lar handling of health records	

Step 4: Approval

The fourth step involves a more refined description of the target to be analysed, and also

- all assumptions being made and
- other preconditions made
- Step 4 is terminated once all this documentation has been approved by the customer

Tasks

- The client approves target descriptions and asset descriptions
- The assets should be ranked according to importance.
- Consequence scales must be set for each asset within the scope of the analysis
- A likelihood scale must be defined
- The client must decide risk evaluation criteria for each asset within the scope of the analysis

People that should participate

The same as in the previous meeting, but since this step sets the boundaries for the further analysis it is important that the relevant decision-makers are present

57

Asset table

Asset	Importance	Туре
Health records	2	Direct asset
Provision of telecardiology service	3	Direct asset
Public's trust in system	2	Indirect asset
Patients' health	1	Direct asset

Consequence scale for health records

Consequence value	Description
Catastrophic	1000+ health records are affected
Major	101–1000 health records are affected
Moderate	11–100 health records are affected
Minor	1–10 health records are affected
Insignificant	No health records are affected

Likelihood scale

Likelihood value	Description	Definition
Certain	Five times or more per year	$[50,\infty\rangle:10y=[5,\infty\rangle:1y$
Likely	Two to five times per year	$[20, 50\rangle : 10y = [2, 5\rangle : 1y$
Possible	Less than twice per year	$[5, 20\rangle : 10y = [0.5, 2\rangle : 1y$
Unlikely	Less than once per two years	$[1, 5\rangle : 10y = [0.1, 0.5\rangle : 1y$
Rare	Less than once per ten years	$[0, 1\rangle : 10y = [0, 0.1\rangle : 1y$

Risk evaluation matrix

		Consequence					
		Insignificant	Minor	Moderate	Major	Catastrophic	
Frequency	Rare						
	Unlikely						
	Possible						
	Likely						
	Certain						

Step 5: Risk identification

- This step is organised as a workshop gathering people with expertise on the target of evaluation.
- The goal is to identify as many potential unwanted incidents as possible, as well as threats, vulnerabilities and threat scenarios.

The initial threat diagrams should be completed with identified threats, vulnerabilities, threat scenarios and unwanted incidents.

People that should participate

- Security analysis leader (required)
- Security analysis secretary (required)
- Representatives of the client:
 - Decision makers (optional)
 - Technical expertise (required)
 - Users (required)

Initial threat diagram: accidental actions

Initial threat diagram: deliberate actions

Initial threat diagram: non-human threats

Final threat diagram: accidental actions

Step 6: Risk estimation

- The sixth step is also organised as a workshop
- This time with focus on estimating consequences and likelihood values for each of the identied unwanted incidents

69

Tasks

- Threat scenarios must be given a likelihood estimate and likelihoods for unwanted incidents are based on these
- Every relation between an unwanted incident and an asset must be given a consequence estimate

People that should participate

- Security analysis leader (required)
- Security analysis secretary (required)
- Representatives of the client:
 - Decision makers (required)
 - Technical expertise regarding the target (required)
 - Users (required)

Modelling guideline

Risk estimation on threat diagrams:

- Add likelihood estimates to the threat scenarios.
- Add likelihood estimates to the unwanted incidents, based on the threat scenarios.
- Annotate each unwanted incident-asset relation with a consequence taken from the respective asset's consequence scale.

Threat diagram with estimates

Combined likelihood estimates

Threat scenario Likelihood		Unwanted incident	Combined likelihood	
Health records sent to unauthorised people	<i>Rare</i> ([0, 1) : 10y)	Compromise of confiden- tiality of health records	$[0, 1\rangle : 10y + [1, 5\rangle : 10y =$ $[1, 6\rangle : 10y$	
Health record copies stored on local com- puter	<i>Unlikely</i> ([1, 5) : 10y)		It is decided that <i>unlikely</i> is the best fit	

Step 7: Risk evaluation

- This step involves giving the client the first overall risk picture
- This will typically trigger some adjustments and corrections

Tasks

- Likelihood and consequence estimates should be confirmed or adjusted
- The final adjustments of the acceptable area in the risk matrices should be made (if needed)
- An overview of the risks may be given in a risk diagram

People that should participate

- Security analysis leader (required)
- Security analysis secretary (required)
- Representatives of the client:
 - Decision makers (required)
 - Technical expertise regarding the target (optional)
 - Users (optional)

Risk evaluation matrix with risks

		Consequence						
		Insignificant	Minor	Moderate	Major	Catastrophic		
Frequency	Rare			<i>CC1</i> , <i>CC1</i> (<i>I</i>)				
	Unlikely					PR1		
	Possible		CII(I), SSI(I)	CI1, SS1				
	Likely				SS2			
	Certain							

Risk overview diagram

Step 8: Risk treatment

The last step is devoted to treatment identication, as well as addressing cost/benefit issues of the treatments

This step is best organised as a workshop

Tasks

- Add treatments to threat diagrams
- Estimate the cost/benefit of each treatment and decide which ones to use
- Show treatments in risk overview diagrams

People that should participate

- Security analysis leader (required)
- Security analysis secretary (required)
- Representatives of the client:
 - Decision makers (required)
 - Technical expertise (required)
 - Users (required)

Treatment overview diagram

The CORAS web page

- publications
- tool download
- http://coras.sourceforge.net/

