
Runtime Enforcement of Security Policies
on Black Box Reactive Programs

Minh Ngo Fabio Massacci
University of Trento, Italy

ngo@disi.unitn.it,Fabio.Massacci@unitn.it

Dimiter Milushev Frank Piessens
iMinds-DistriNet, KU Leuven, Belgium

{Dimiter.Milushev,Frank.Piessens}@cs.kuleuven.be

Abstract
Security enforcement mechanisms like execution monitors are used
to make sure that some untrusted program complies with a policy.
Different enforcement mechanisms have different strengths and
weaknesses and hence it is important to understand the qualities
of various enforcement mechanisms.

This paper studies runtime enforcement mechanisms for reac-
tive programs. We study the impact of two important constraints
that many practical enforcement mechanisms satisfy: (1) the en-
forcement mechanism must handle each input/output event in finite
time and on occurrence of the event (as opposed to for instance Lig-
atti’s edit automata that have the power to buffer events for an ar-
bitrary amount of time), and (2) the enforcement mechanism treats
the untrusted program as a black box: it can monitor and/or edit the
input/output events that the program exhibits on execution and it
can explore alternative executions of the program by running addi-
tional copies of the program and providing these different inputs.
It can not inspect the source or machine code of the untrusted pro-
gram.

Such enforcement mechanisms are important in practice: they
include for instance many execution monitors, virtual machine
monitors, and secure multi-execution or shadow executions.

We establish upper and lower bounds for the class of policies
that are enforceable by such black box mechanisms, and we pro-
pose a generic enforcement mechanism that works for a wide range
of policies. We also show how our generic enforcement mechanism
can be instantiated to enforce specific classes of policies, at the
same time showing that many existing enforcement mechanisms
are optimized instances of our construction.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection

General Terms Security

Keywords Runtime Enforcement; Hypersafety Policy; Black Box
Mechanism; Reactive Program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright c© 2014 ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676978

1. Introduction
An enforcement mechanism is a mechanism to ensure that some
untrusted program will comply with an independently specified se-
curity policy for that program. An interesting question that has re-
ceived a considerable amount of attention over the past decade is:
for what classes of policies do there exist secure and precise en-
forcement mechanisms? Roughly speaking, an enforcement mech-
anism is secure if it ensures that any program running under the
enforcement mechanism complies with the policy. It is precise if
it does not change the behavior of secure programs in any signifi-
cant way, i.e. secure programs are not affected by the enforcement
mechanism.

For purely static enforcement mechanisms (i.e. mechanisms that
should accept or reject the program after some finite amount of
analysis, possibly including verification of the code of the program,
model checking of the program, or the execution of a finite number
of test runs) it is known that they can enforce exactly the recursively
decidable properties of programs (i.e. the class Π0 of the arithmetic
hierarchy) [15].

For dynamic (runtime) enforcement mechanisms, the picture is
more complicated. At least in part this is the case because it is
less clear what exactly runtime mechanisms are allowed to do. Can
they only monitor the program and halt it on an observed policy
violation? Or are they also allowed to change the program and/or
its executions? And if so under what constraints? Obviously, the
enforcement mechanism should not be allowed to make arbitrary
changes if it is to be precise; it should preserve (in some sense) the
behavior of secure programs.

For the important mechanism of execution monitoring, the
mechanism can only observe executions of the program and ter-
minate them (i.e. prevent any further actions) as soon as they are
observed not to comply with the policy. The enforcement power of
this mechanism was first studied by Schneider [25] and Schneider’s
results were later refined by Viswanathan et al. [28] and Hamlen
et al. [15]. Roughly speaking, execution monitors can enforce the
computable safety properties, but the details depend on the inter-
vention power of the monitor (if there are certain events/actions that
the monitor can not prevent from happening, such as the passing of
time, this impacts the set of enforceable properties) [4, 15].

Edit automata are a generalization of execution monitors where
the monitor can also suppress, insert or change actions that the
program performs. They were shown to be strictly more powerful
than execution monitors [19]. Edit automata can enforce the so-
called infinite renewal properties, a class of properties that also
includes some liveness properties. Yet, this is only possible at the
expense of assuming that the monitor can buffer input/output events
for an arbitrary amount of time. For reactive programs, it would be
desirable if the enforcement mechanism handles each input/output
event on occurrence of the event. Buffering an input/output event

will often inhibit further progress of the reactive program: events
happen in response to earlier events.

The main objective of this paper is to come to a better under-
standing of the enforcement power of dynamic enforcement mech-
anisms for deterministic reactive programs that satisfy two con-
straints that are important in practice. First, we require the enforce-
ment mechanism to handle each input event in finite time and be-
fore processing the next input event (no buffering). Second, the en-
forcement mechanism does not analyze the code or runtime state of
the program: it treats the program as a black box. The enforcement
mechanism can intercept input/output events and possibly modify
them. It can also run multiple copies of the program as in secure
multi-execution [11] or shadow executions [7].

In summary, this paper makes the following contributions:

• we define the class of black box enforceable policies, a class
of policies that is enforceable by only considering the I/O be-
haviour of a program (and hence without any analysis of the
source or binary code of the program).

• we establish upper and lower bounds for this class.
• we develop a generic black box enforcement mechanism, and

prove that it is secure and precise.
• we show how this generic enforcement mechanism can be in-

stantiated to interesting policies.

The remainder of this paper is structured as follows: in Sections 2
and 3 we define reactive programs and security policies. In Sec-
tion 4 we define and study the notion of black box enforceable poli-
cies, and construct a generic black box enforcement mechanism. In
Section 5 we show specific useful and interesting instances of the
generic construction, and we discuss some of the implications of
our result in Section 6. Finally Sections 7 and 8 discuss related
work and conclude.

2. A Model of Reactive Programs and
Observations

We model reactive programs as states in a labeled transition system
with a total computable deterministic transition relation. Programs
are black boxes in the sense that the only observation one can do
on a program is feeding it input and observing the corresponding
output. This section formalizes these concepts.

2.1 Programs
Let I (resp. O) be enumerable sets of input (resp. output) values.
The metavariable i (resp. o) ranges over I (resp O).

A stream of inputs I (resp. stream of outputs O) is defined
coinductively from [], the empty stream and the observation i : I
(resp. o : O) of a value i and a tail stream I . The set of (finite
and infinite) streams over I (resp. O) is denoted I∞ (resp. O∞).
The set of finite streams over I (resp. O) is denoted I? (resp. O?).
We abuse notation and denote by I : i the operation of appending
value i to the finite stream I . For simplicity we will abbreviate
[i1 : [. . . [in : []] . . .]] as [i1 : . . . : in] for n ≥ 1.

Definition 2.1. A labelled transition system (LTS) is a tuple
〈C, I,O,→〉, where C is the set of states and → ⊆ C × (I ×
O)×C is a transition relation. We denote a transition as C

i|o→ C′.
An LTS is input-total if for all C ∈ C, and i ∈ I, there exist

C′ ∈ C and o ∈ O such that C
i|o→ C′. An LTS is deterministic if

for all C ∈ C and for all i ∈ I, if C
i|o→ C′ and C

i|o′→ C′′ then
o = o′ and C′ = C′′.

For this paper, program states C are elements of the state set C
of some input-total and deterministic LTS 〈C, I,O,→〉.

We assume throughout the paper that the function mapping any

(C, i) to (o, C′) such that C
i|o→ C′ holds is total and computable.

The intuition is that if C
i|o→ C′ holds then program state C will

process input i, produce output o in finite time, and transition to the
new program state C′. We will often refer to states C as programs,
rather than program states.

Each program C transduces an input stream I into an output

stream O. This process coinductively defines a relation C
I|O→ C′

by the rules specified below.

NIL
C

[]|[]→ C
CONS

C
i|o→ C′′ C′′

I|O→ C′

C
i:I|o:O→ C′

This relation defines a function on finite input streams that maps
any (C, I) to some (O,C′). Since the function that processes an
individual input is total and computable, also the function over
streams is total and computable for finite input streams I . There-
fore, we write C(I) = O if there is some program C′ such that

C
I|O→ C′ and say that program C, on input I , produces output O.
Programs run for ever in this model (every program state is

ready to accept more inputs), but termination of a program can be
modeled by producing a special oend output value ad infinitum for
every input value.

Bohannon et al.’s model of reactive systems [6] allows diver-
gence on a single input value. We impose the constraint that a pro-
gram can not diverge on a single input value, because we want to
impose that same constraint on enforcement mechanisms. The con-
sequences of this choice are significant, and further discussed in
Section 6.

Listing 1 shows an example program, specified as a function on
an input value and on program state stored in a state variable.

Listing 1. A sum program
1 state var sum:Integer = 0
2 input(i:Integer) {
3 sum := sum + i;
4 output(sum)
5 }

This program maps for instance input stream [1 : 2 : 3] on output
stream [1 : 3 : 6], and the infinite input stream [1 : 1 : 1 : . . .] on
the infinite output stream [1 : 2 : 3 : . . .].

2.2 Finite observations on programs
A primitive observation is a pair (I,O) where I ∈ I∗ and O ∈ O∗

are finite and of equal length. A program C has the primitive
observation (I,O) iff C(I) = O.

An observation M is a finite set of primitive observations, i.e.
a partial mapping of finite input streams to finite output streams. A
program C has the observation M (denoted by M ⊆ C) iff it has
all the primitive observations in M .

The prefix of a primitive observation (I : i, O : o) is (I,O). An
observation M is prefix-closed if for each (I : i, O : o) ∈ M , it is
also the case that (I,O) ∈ M . The prefix closure of M (denoted
as M) is the smallest set that includes M and is prefix-closed. It is
straightforward to prove that if M ⊆ C, then M ⊆ C.

We write inputs(M) for the set {I | (I,O) ∈ M}. Given a
finite set Is of finite input streams, we define

map(C, Is) = {(I,O) | I ∈ Is ∧ C(I) = O}.
It is easy to see that M ⊆ C iff map(C, inputs(M)) = M .
We say an observation M is possible if there exists a program

C that has the observationM . For instance, {([1], [1]), ([1 : 2], [1 :

3])} is possible because it is an observation on the sum program
above, but the observation {([1], [1]), ([1 : 2], [2 : 3])} is not
possible: any program that has primitive observation ([1 : 2], [2 :
3]) must also have the primitive observation ([1], [2]) and hence by
determinism of programs it can not have observation ([1], [1]).

Proposition 2.1. An observation is possible if and only if its prefix-
closure is deterministic i.e. (I,O) ∈ M and (I,O′) ∈ M implies
that O = O′.

In the sequel, we only consider possible observations. We write
OBS for the set of all possible observations, and use the metavari-
able M ∈ OBS to range over them.

Definition 2.2. Two programs C and C ′ are observationally
equivalent (denoted by C ∼ C′) iff they have the same primitive
observations.

It follows that, if two programsC andC′ are not observationally
equivalent, there is some finite input I such that C(I) 6= C′(I).

3. Policies
A policy P can be defined very generally as the set of programs
allowed by the policy. Membership of the policy is required to
be compatible with observational equivalence: if C ∈ P then all
programs observationally equivalent with C must also be in P .
Hence, one can also think of a policy as a set of sets of primitive
observations: a program satisfies the policy iff the set of primitive
observations of the program is an element of the policy [10].

For black box dynamic enforcement mechanisms such as the
ones in this paper, we are interested in the subset of policies for
which violation of the policy can be detected by means of a finite
observation, and for which the test of violation is decidable.

3.1 Hypersafety policies
The policies for which violation can be detected by a finite ob-
servation were formalized by Clarkson and Schneider [10] as the
hypersafety policies: ifC is not in the policy thenC has a finite ob-
servation Mbad that only programs disallowed by the policy have.

Definition 3.1. A policy P is a hypersafety policy iff

∀C 6∈ P ⇒ (∃Mbad ∈ OBS. Mbad ⊆ C
∧
(
∀C′. Mbad ⊆ C′ ⇒ C′ 6∈ P

))
If there is a bound k on the cardinality of these bad observations,

the policy is a k-safety policy.

Definition 3.2. A policy P is a k-safety policy iff

∀C 6∈ P ⇒ (∃Mbad ∈ OBS. Mbad ⊆ C ∧ |Mbad| ≤ k
∧
(
∀C′. Mbad ⊆ C′ ⇒ C′ 6∈ P

))
Hypersafety policies can be specified by defining a set M of

bad or disallowed observations. The corresponding policyP is then
defined as: C 6∈ P if and only if C has one of the specified bad
observations Mbad ∈M. However, for a given hypersafety policy,
M need not be unique. For example, one may chooseM to be the
set containing any one Mbad for every C 6∈ P .

Example 1. Suppose there are two distinguished output values
osend (the program is sending something over the network) and
oread (the program initiates a read action on the file system). The
1-safety policy no-send-after-read (NSAR) can be specified by the
following set of bad observations:

{{(I,O)}|sendAfterRead(O)}

where sendAfterRead(O) is a boolean function defined as:

sendAfterRead([]) = false

sendAfterRead(oread : O) = occurs(osend, O)

sendAfterRead(: O) = sendAfterRead(O)

where the boolean function occurs(o,O) is true if the value o
occurs somewhere in finite stream O.

NSAR is 1-safety since every specified bad observation is a
singleton containing 1 primitive observation.

Example 2. Noninterference (NI), the policy that low (L) outputs
do not depend on high (H) inputs is a 2-safety policy, and can be
specified by defining a set of disallowed observations as follows.
Let lvl be a function that assignsH orL to input and output values.
Given a finite stream I , let I|L be the resulting stream after filtering
out the input values i with lvl(i) = H (and similarly for O|L).

Then a program C is noninterferent (or C ∈ PNI) iff

∀I, I ′ ∈ I∗ : I|L = I ′|L =⇒ O|L = O′|L,
where C(I) = O and C(I ′) = O′.

A set of bad observations that specifies PNI is:

{{(I,O), (I ′, O′)} | I|L = I ′|L ∧ O|L 6= O′|L}.
A program C that has an observation in this set is not NI. If C

does not have any such observation, then it is NI.
NI is a 2-safety hyperproperty since the bad observations in the

set above all have cardinality 2.

Here is an example of a k-safety policy for arbitrary k [10].

Example 3. Let oi be the act of outputting the i-th share of a secret
(for 0 < i ≤ k). The policy that no observation on the program will
ever reveal all k shares can be specified by defining the following
set of bad observations:

{{(I1, O1), . . . , (Ik, Ok)} | occurs(o1, O1)∧. . .∧occurs(ok, Ok)}

3.2 Testable hypersafety policies
To enforce a policy, it should be decidable whether an observation
made on the program is allowed or not by the policy. For policies
specified by a set of bad observationsM, this seems to imply we
want membership ofM to be decidable.

However, a hypersafety policy can be specified by different sets
of bad observations, and membership can be decidable for some of
these sets and not for others.

A canonical set of bad observations for a given policy is the
maximal set.

Definition 3.3. For a hypersafety policy P , we define MP , the
maximal set of bad observations as:

MP = {Mbad | ∀C : Mbad ⊆ C =⇒ C 6∈ P}
An observation M is allowed by a policy P iff M 6∈ MP .

It is maximal in the sense that any other setM that specifies the
same policy P is a subset ofMP .

For any hypersafety policy P , the maximal set MP always
exists. Yet, it is possible that P can be specified by a computable
set of disallowed observations, even ifMP is not computable.

Example 4. Let O be the set of closed terms t of the untyped λ-
calculus. Consider the policy that specifies that programs can only
output valid reduction sequences (in some deterministic reduction
relation): for any input, the next term on the output is a valid re-
duction of the previous term on the output stream. A program can
therefore only emit a valid reduction of the term until it reaches
normal form, and then no valid output is possible anymore. Recall
from Section 2 that programs have to keep producing output (pos-
sibly stuttering on a specific output value to model termination).

Hence, the only programs satisfying the policy are the programs
that output sequences starting with a λ-term whose reduction does
not terminate, and ad infinitum output further reductions of this
term.

We define two predicates isValidRS(O) which holds iff O is a
valid reduction sequence and isValidNTRS(O) which holds iff
O is a valid reduction sequence that ends in a term that is not
normalizing (and hence can be further reduced indefinitely long).

isValidRS([]) = true
isValidRS([t]) = true

isValidRS(t1 : t2 : O) = t1 λ-reduces to t2 ∧
isValidRS(t2 : O)

isValidNTRS(O) = isValidRS(O) ∧
last(O) not normalizing

We can use the following set of bad observations:

{M | ∃(I,O) ∈M,¬isValidRS(O)}
Membership in this set is computable and correctly captures the
policy: any bad program will eventually have one of these bad
observations. Yet, it is not maximal for the hypersafety policy it
specifies: we can have observations (e.g. a program emitting a
normalizing term), that are themselves not in the specified set of
bad observations, but any program that has the observation is
bound to eventually violate the policy. Once a program has output
a normalizing term, it will eventually have to stop outputting valid
reductions: it can reduce until it reaches normal form, but then the
next element in the output cannot be obtained by a reduction of the
former element, and the policy is violated.

The maximal set corresponding to this policy is:

{M | ∃(I,O) ∈M,¬isV alidNTRS(O)}
Any observation that is bound to eventually fail is in this set: as
soon as a program outputs a term that will always terminate (i.e.
is normalizing), the program is rejected. However, membership in
this maximal set is not computable (as this would require deciding
termination of λ-terms).

Definition 3.4. A hypersafety policy P is testable iff membership
inMP is decidable.

For the construction of enforcement mechanisms, we limit our
attention to testable hypersafety policies. Such policies can be
specified by giving a total computable boolean function reject(M)
that for an observation M returns true iff M ∈MP .

It is non-trivial to check whether a set of bad observations
specified by a reject function is actually maximal. For example,
the set of bad observations that we specified in Example 2 for NI
is not maximal. It does not contain observations that have violated
the policy in the past but where things have ”re-adjusted” as the
execution progressed, as shown in the following example:

Example 5. Suppose that I = O = {0, 1} and that lvl(0) = L
whereas lvl(1) = H . Consider the following observation {([0 :
1 : 0], [0 : 1 : 0]), ([1 : 0 : 0], [0 : 0 : 1])}. This observation
is possible and it satisfies the simple test presented in Example 2
because the outputs are equivalent [0 : 1 : 0]|L = [0 : 0] =
[1 : 0 : 0]|L. However, no program that satisfies the NI policy
can generate this observation because it will have to first generate
the observation {([0 : 1], [0 : 1]), ([1 : 0], [0 : 0])} which would
violate the policy.

Fortunately, the maximal set for NI is still decidable.

Example 6 (NI, a testable 2-safety hyperproperty). For the NI pol-
icy discussed in Example 2, a reject predicate can be constructed

as follows:

reject(M) =

true ∃Mbad = {(I,O), (I ′, O′)},

Mbad ⊆M s.t. I|L = I ′|L and O|L 6= O′|L,
false otherwise.

It is straightforward to check that this is a total computable func-
tion. We show that it specifies the maximal set of bad observations
by contradiction.

Suppose that there is an observation M such that reject(M) =
false andM ∈MP . By construction of the reject function we have
that reject(M) = false. SinceMP is maximal, M ∈MP .

By definition ofMP , all programs C such that M ⊆ C must
not belong to the policy. Consider now one of such programsCgood

such that for all (I,O) ∈ M , Cgood(I) = O and otherwise it
always outputs a value o with lvl(o) = H . This program satisfies
the policy. Contradiction.

Example 7. The policy in Example 4 is an example of a hypersafety
policy that is not testable.

3.3 Incrementally constructing observations allowed by a
policy

An enforcement mechanism must not only decide whether or not
an observation is rejected by the policy. It must also “correct”
programs that turn out to have observations that are not allowed
(for instance by terminating the program, or more generally by
modifying the outputs of the program).

Given an observation M of the untrusted program that is still
allowed so far, when we find for the next input i that the corre-
sponding output will lead to a violation of the policy, we need to
find another output that will not lead to a violation of the policy.

Definition 3.5. Given a set of bad observationsM that specifies
a hypersafety policy, a function extendM(M, I, i) is an extension
function forM iff, for any observation M 6∈ M, where (I,O) ∈
M , it returns an o ∈ O such that M ∪ {(I : i, O : o)} 6∈ M.

Any extension function can be used for “correcting” outputs.
Think of I as the input processed so far, i as the new input to be
processed, and M as the set of observations made on the program
so far (possibly including primitive observations on alternative
input streams). If the new output o observed of the program makes
M ∪{(I : i, O : o)} a bad observation, then extendM(M, I, i) can
be used to replace this output.

One of the reasons why it is useful to work with the maximal
set of bad observations to specify a policy is that for the maximal
set, an extension function always exists.

Proposition 3.1. For any hypersafety policy P , there exists an
extension function for the maximal set of bad observationsMP .

Proof. If the policy P is empty then all observations are bad obser-
vations (inMP) and therefore the precondition for the applicability
of the extension function is false, and we are done.

If the policy is not empty, consider an observation M that is
allowed byMP . By definition of maximal set of bad observations
there must be a program Cgood such that M ⊆ Cgood and Cgood ∈
P (if none existed M would have been inMP).

Let I be an arbitrary input stream such that (I,O) ∈ M
and i an arbitrary input value. By definition of observation on a
program, it must be Cgood(I) = O. Since programs are input total,
Cgood(I : i) has the form O : o for some o ∈ O. Pick this o as the
return value for extendMP (M, I, i).

Suppose now M ∪ {(I : i, O : o)} ∈ MP . Since M ∪ {(I :
i, O : o)} ⊆ Cgood by definition of maximal set of bad observation
it should beCgood 6∈ P . Contradiction. Therefore the setM∪{(I :
i, O : o)} is also allowed byMP . �

For a given hypersafety policy P , we write extendP(M, I, i)
as an abbreviation for some function extendMP (M, I, i) that is
guaranteed to exist by the proposition above.

Interestingly, for testable hypersafety policies, there is always a
total computable extension function.

Proposition 3.2. Let P be a testable hypersafety policy, then there
exists a total computable extension function forMP .

Proof. Let M be an observation, I be an arbitrary input stream in
inputs(M) and i be an arbitrary input value. The total computable
extension function is constructed as follows:

1. if the first argument M already belongs toMP then the func-
tion returns an arbitrary output value; (in this case the precondi-
tion for the extension function is not satisfied, and we can return
any value)

2. otherwise the function enumerates all output values o and sub-
mits each observation M ∪ {(I : i, O : o)} to the total com-
putable membership test for MP continuing until the reject
function returns false.

Since (by Proposition 3.1) an ogood exists such thatM∪{(I : i, O :
ogood)} is not inMP this procedure terminates. �

The function constructed in the proof of this proposition is not
very efficient. Many policies admit much more efficient ways of
extending allowed observations.

Example 8. For the NSAR policy, extendPNSAR(M, I, i) can be
defined to always return oread: Appending oread to an allowed
output stream is always allowed.

Example 9. For the NI policy, we can define extendPNI (M, I, i)
as follows. Let oH be an arbitrary output value with lvl(oH) = H .

1. if (I : i, O : o) is in M , then return o,
2. else if lvl(i) = H , then return oH ,
3. else if lvl(i) = L:

(a) if there exists (I ′ : i, O′ : o′) in M s.t. I ′|L = I|L then
return o′

(b) otherwise, return oH .

We show that this is a correct extension function by contradiction.
Suppose there exists an input stream I , an input value i, and an

output stream O such that (I,O) ∈ M , reject(M) = false, and
reject(M ∪ {(I : i, O : o)}) = true, where the reject predicate is
specified as in Example 6 and o = extendPNI (M, I, i) is the result
of the above algorithm.

By construction of the reject function we also have reject(M ′) =
reject(M ′) for all M ′. Let M1 = M ∪ {(I : i, O : o)}, then by
hypothesis and the properties of the reject predicate we have that
reject(M1) = true. Further, since (I,O) ∈ M we have that
M1 = M ∪ {(I : i, O : o)}.

• If (I : i, O : o) is in M , then M1 = M . Thus, reject(M) =
true. Contradiction.

• If lvl(i) = H , then o = oH , hence lvl(o) = H . Since
reject(M1) = true, there exists (Ib, Ob) in M s.t Ib|L = I :
i|L and Ob|L 6= O : o|L. Because lvl(i) = lvl(o) = H ,
it follows that I : i|L = I|L and O : o|L = O|L. But
then Ib|L = I|L and Ob|L 6= O|L. Thus, reject(M) = true.
Contradiction.

• If lvl(i) = L and there exists (I ′ : i, O′ : o′) in M s.t.
I ′|L = I|L, then o is o′. Since reject(M1) = true, there exists
(Ib, Ob) in M s.t Ib|L = I : i|L, and Ob|L 6= O : o|L. But
I ′ : i|L = I : i|L and O′ : o′|L = O : o|L, and since

both (Ib, Ob) and (I ′ : i, O′ : o′) are in M it follows that
reject(M) = true. Contradiction.

• If lvl(i) = L and there is no (I ′ : i, O′ : o′) in M s.t.
I ′|L = I|L, then o = oH . Since reject(M1) = true, there
must exist Ib in inputs(M) s.t Ib|L = I : i|L. Let I ′b be the
prefix of Ib that removes all elements with level H at the end of
Ib. Then I ′b is in inputs(M), and it must have the form I ′′b : i
and it must have I ′′b |L = IL. Contradiction.

4. Black Box Enforcement Mechanisms
4.1 Definition
We model enforcement mechanisms as total computable functions
from programs to programs: they turn a program (that possibly does
not satisfy the policy) into a program that definitely complies with
the policy (the security property). Moreover, they do not have any
observable impact on untrusted programs that do happen to satisfy
the policy (the precision property). Finally, they should be black
box, i.e. only depend on the externally observable behaviour of their
input program.

Definition 4.1. A black box enforcement mechanism for a policy
P is a total computable function EP from programs to programs,
which satisfies the following properties:

• Security: for all programs C, EP(C) ∈ P
• Precision: if C ∈ P , then C ∼ EP(C)
• Black box: if C1 ∼ C2, then EP(C1) ∼ EP(C2)

A policy P is black box enforceable iff there exists a secure and
precise black box enforcement mechanism for P .

Because enforcement mechanisms produce programs in our
program model, they have to respond to any input event in finite
time with an appropriate output event without buffering inputs or
outputs.

In this section, we derive upper and lower bounds on the set of
black box enforceable policies.

4.2 Upper bounds on black box enforceable policies
First, non-suprisingly, any policy that is black box enforceable is a
hypersafety policy.

Theorem 4.1. If an enforcement mechanism EP exists for a pol-
icy P , then P is a hypersafety policy.

Proof. Suppose C 6∈ P . We have to construct an Mbad such that
(1) Mbad ⊆ C, and (2) ∀C′. Mbad ⊆ C′ ⇒ C′ 6∈ P .

If C 6∈ P , then, by security of the enforcement mechanism
EP(C) is not observationally equivalent to C. Hence, there must
be some finite input stream I such that C(I) 6= EP(C)(I). Take
as Mbad the set of all primitive observations that EP has done
on C during the execution of EP(C)(I), and add the primitive
observation (I, C(I)). This set is necessarily finite as EP(C)(I)
must process the finite input I in finite time.

It is clear that (1) holds, as Mbad is constructed only using
primitive observations on C.

In order to prove (2), suppose a program C′ has this same ob-
servation. Then C′(I) = C(I), because Mbad includes (I, C(I)).
But also EP(C′)(I) = EP(C)(I), as C′ will respond exactly
as C, to all the observations that EP does while processing the
input stream I and EP is a deterministic program. Hence C′(I) 6=
EP(C′)(I). By hypothesis the enforcement mechanism is precise
and therefore C′ 6∈ P . �

Obviously, the converse is not true: there are many hypersafety
policies that are not enforceable. For instance, the non-testable

policy in Example 4 is not enforceable: if the program outputs a
first λ-term, the enforcement mechanism should output this term
unmodified iff it is non-terminating. Obviously, it cannot decide
this in finite time.

This upper bound can be substantially tightened. We say a
hypersafety policy is semi-testable if membership in MP is co-
recursively enumerable, i.e. we can enumerate all the observations
that are allowed by the policy.

Theorem 4.2. Let P be a hypersafety policy. If an enforcement
mechanism EP exists for P , then P is semi-testable.

Proof. We have to provide an algorithm for the reject function that
will return false for any observation M that is not inMP and will
return true or diverge for any observation M that is inMP .

Given an observation M , the algorithm enumerates all possible
programs in some complete programming language for writing
reactive programs. For each program, it applies the enforcement
mechanism to inputs(M) and then tries to observe M . It returns
false if it can observe M and otherwise continues with the next
program.

If M ∈ MP , then – by the security property of the enforce-
ment mechanism – M will never be observed, and the algorithm
diverges.

If M 6∈ MP , then – by the maximality of MP there exists
some program Cgood that has M and satisfies P . By precision, the
enforcement mechanism applied to Cgood will be observationally
equivalent to Cgood and hence will have observation M . Hence, if
M 6∈ MP , we will eventually enumerate Cgood, and the algorithm
for the reject function will terminate with return value false.

�

4.3 A lower bound on black box enforceable policies
For 1-safety policies it is obvious that testability (as defined in Def-
inition 3.4) is a sufficient condition for enforceability. If member-
ship of an observation in the maximal set of bad observations is
decidable, then it is obviously possible to decide whether primitive
observation {(I,O)} is a bad observation. Therefore, one can sim-
ply use the reject function as a security automaton in the sense of
Schneider [25]. At the point where the primitive observation corre-
sponding to the current execution is about to violate the policy, one
can use the extension function to correct the execution. Schneider
considers only termination as a corrective measure (in the termi-
nology of this paper, he assumes that outputting oend is never dis-
allowed by any policy, and hence one can use the constant function
on oend as an extension function). In cases where policies can talk
about termination too [15], one can use another extension function.
Only in the case where the policy is empty (and hence the max-
imal set of bad observations contains all observations), a testable
1-safety policy is not black box enforceable.

Surprisingly, testability is also a sufficient condition for black
box enforceability for general hypersafety policies. We show that
in this section by constructing a secure and precise enforcement
mechanism for any testable hypersafety policy. We need to address
two challenges: (1) testing a sufficient number of alternative execu-
tions, and (2) doing corrections in a consistent way.

4.3.1 Generating sufficient test inputs
For k-safety policies with k > 1, it is not obvious that testability
is a sufficient condition for enforceability. For such policies, the
enforcement mechanism should not only look at the input/output
streams (I,O) of the current execution. For k-safety it should also
make sure that other primitive observations that the policy defines
to be incompatible with the current execution do not exist, and in
general there will be infinitely many alternate input streams that
can possibly lead to incompatible observations.

Example 10. For the NI policy, for a given primitive observation
(I,O), the set of all other primitive observations that are incom-
patible with (I,O) is:

{(I ′, O′) | I|L = I ′|L ∧O′|L 6= O|L}
This set contains an infinite number of input streams I ′, so the
enforcement mechanism can not query the program C with all of
them in finite time.

Fortunately, it is not necessary to check the behavior of the
program on all input streams that might be potentially conflicting
with the current input stream.

We introduce the notion of test generator, a function that com-
putes a finite and sufficient set of alternative input streams to check.

Definition 4.2. A test generator for a hypersafety policy P is
a function g : I? → finite 2I? s.t. for all C ∈ C and all
Mbad ∈MP :

(∀I ∈ inputs(Mbad) : map(C, g(I)∪{I}) 6∈ MP)⇒Mbad 6⊆ C
In other words, if a program C has a bad observation Mbad,

then there is at least one input stream I ∈ inputs(Mbad) for which
g(I) is a sufficiently large set of input streams such that testing the
program C on these input streams in addition to the actual input
stream I will detect a policy violation.

Lemma 4.1. If, for every I , map(C, g(I) ∪ {I}) 6∈ MP , then
C ∈ P .

Proof. Suppose C 6∈ P . By definition, there is a bad observation
Mbad ∈MP such that Mbad ⊆ C.

From the property of generators in Definition 4.2, it follows that
there exists an I ∈ inputs(Mbad) such that map(C, g(I) ∪ I) ∈
MP . But this contradicts the condition of the lemma. �

Example 11. For 1-safety policies, g(I) = {} is a test generator.
Since a 1-safety policy defines a predicate on primitive observa-
tions, any Mbad contains at least one (I,O) that violates the pred-
icate. Hence ifMbad ⊆ C, then at least one of the {(I, C(I))} will
be inMP .

Example 12. For the NI policy from Example 2 (with reject speci-
fied in Example 6), g(I) = {I|L} is a test generator.

LetMbad ∈MPNI . This means there must exist (I,O), (I ′, O′) ∈
Mbad with I|L = I ′|L and O|L 6= O′|L.

Now, suppose Mbad ⊆ C, i.e. C(I) = O and C(I ′) = O′. We
show that C has a bad observation either on inputs I and I|L, or
on inputs I ′ and I ′|L.

Consider the output O′′ of C on I|L = I ′|L. Since O|L 6=
O′|L, we must have either that O′′ 6= O|L or O′′ 6= O′|L.

• If O′′ 6= O|L, then C has a bad observation on inputs I and
I|L.

• If O′′ 6= O′|L, then C has a bad observation on inputs I ′ and
I|L.

This implies that g is a generator.
We can further reduce the size of the generator. Let us define g′

as follows:

g′(I) = if I|L = I then {} else {I|L}
Since for all I , g(I) ∪ I = g′(I) ∪ I ′, it follows easily from
Definition 4.2 that g′ is a generator if g is a generator.

4.3.2 Consistently correcting executions
A second challenge that needs to be addressed is how to correct
executions. While processing an input stream I , the enforcement
mechanism will explore other input streams in order to check that

there are no bad observations. So the output for input stream I will
be computed in different circumstances: while EP(C) is actually
processing I , as well as while the mechanism’s actual input is an-
other stream I ′ and the stream I is only considered as a potential
candidate jointly with I ′ for membership in a bad set. The enforce-
ment mechanism should compute the same output for I in any of
these circumstances.

Example 13. Assume that I = O = {0, 1}. I ⊕ I ′ is defined
for I and I ′ of equal length as a pair-wise xor of I and I ′, where
(0⊕ 1) = (1⊕ 0) = 1 and (0⊕ 0) = (1⊕ 1) = 0. Similarly, we
define O ⊕O′. Let 1 (resp. 0) denote a stream consisting of only 1
values (resp. 0 values).

A program C satisfies a policy Pxor iff

∀I, I ′ : I ⊕ I ′ = 1⇒ O ⊕O′ = 1

The reject function that decidesMPxor is as follows:

reject(M) =

true ∃Mbad = {(I,O), (I ′, O′)},

Mbad ⊆M s.t. I ⊕ I ′ = 1 and O ⊕O′ 6= 1,
false otherwise.

We define g(I) , {I ′ | I⊕I ′ = 1}. Obviously, given an I , such
I ′ is unique. It is easy to show that it actually is a test generator.

Now consider a naive construction of an enforcement mecha-
nism EPxor that on execution of a program C on input stream I ,
checks the behavior of C also on g(I) = {I ′}. If the enforcement
mechanism finds that C(I)⊕ C(I ′) 6= 1, it corrects the output for
C(I) to make it compliant with the policy. For instance, letC be the
program that just outputs 0 for any input value (i.e. C(I) = 0 for
any I). If EPxor (C) is executed on [0], the enforcement mechanism
would see that C([0]) = [0] and that C([1]) = [0], and it would
decide to correct the output for [0] to [1]. It is easy to see that EPxor

is not a secure enforcement mechanism, because if EPxor (C) is ex-
ecuted on [1], it would see that C([1]) = [0] and that C([0]) = [0],
and it would decide to correct the output for [1] to [1]. Essentially
EPxor (C) will be a program that always outputs 1 on every input,
and it violates the policy Pxor as badly as C does.

This is an example of inconsistent corrections: on execution of
EPxor (C) on [0], we are considering the alternate execution [1],
but we are not taking into account that the alternate execution
might as well be corrected if it were ever executed.

Guaranteeing consistency of corrections is challenging. One
idea is to use recursive invocations of the enforcement mechanism
while checking alternative inputs.

Example 14. For the example above, if EPxor (C) is executed
on [0], the enforcement mechanism would see that C([0]) = [0]
and then it should not check this against C([1]), but against
EPxor (C)([1]). Unfortunately, for the given generator, this would
lead to divergence, as EPxor (C)([1]) will again recursively call
EPxor (C)([0]).

We address the issue of divergence by means of the notion of
well-founded test generator: a generator is well-founded, if there
exists a well-founded partial order @ on the set of finite input
streams, such that:

• I @ I : i

• ∀I ′ ∈ g(I), I ′ @ I

Now, we can recursively call the enforcement mechanism on
alternative input streams generated by the generator, and this will
make sure that corrections are done consistently.

Example 15. Consider again the Pxor policy. We now propose the
following generator: g(I : 0) , ∅ and g(I : 1) , {I ′ : 0|I :
1⊕ I ′ : 0 = 1} .

This is a well-founded generator. The partial order @ can be
defined as (the transitive closure of) I @ I : i and I : 0 @ I : 1.

Now consider again an enforcement mechanism EPxor that on
execution of an untrusted program C on input stream I , checks
the behaviour of EPxor (C) also on g(I). Now the enforcement
mechanism will let any program C do its original output on 0s and
it will correct the output on 1s so that the policy is satisfied.

For instance, let C again be the program that just outputs 0 for
any input value. If EPxor (C) is executed on [0], the enforcement
mechanism would output [0]. If EPxor (C) is executed on [1], our
algorithm would see that C([1]) = [0] and that EPxor (C)([0]) =
[0], and it would decide to correct the output for [1] to [1]. Es-
sentially EPxor (C) will now be a program that echoes inputs on
outputs, and hence it is a secure program. The recursive calls to
EPxor (C) always terminate thanks to the well-founded generator.

Lemma 4.2. Every non-empty testable hypersafety policy has a
well-founded generator.

Proof. Construct an enumeration of I∗ (the set of finite streams of
input values) that has the property that I is enumerated before I : i
for all i, I . The constructed enumeration defines a total order on
I∗. Say I @ I ′ if I is enumerated before I ′. Define the generator
g(I) = {I ′ | I ′ @ I}. It is easy to check that this is a generator: for
any Mbad, let I be the maximal element in the set inputs(Mbad).
Then inputs(Mbad) ⊆ g(I) ∪ {I}. Since C is deterministic
and inputs(Mbad) ⊆ g(I) ∪ {I}, if Mbad ⊆ C then Mbad ⊆
map(C, g(I)∪{I}), and hence map(C, g(I)∪{I}) ∈MP (from
the property of maximal set of bad observations). �

4.3.3 A generic enforcement mechanism
We now have all the necessary ingredients to construct a secure
and precise enforcement mechanism for any testable hypersafety
policy. This construction will be useful in two ways. We will use it
in Section 5 to construct enforcement mechanisms for interesting
policies by constructing efficient well-founded generators for these
policies. We will also use it to show a lower bound on enforceable
policies (Theorem 4.6).

Definition 4.3. Let P be a testable hypersafety policy (specified as
a total computable reject(M) predicate), with a total computable
well-founded generator g(I) and a total computable extension
function extendP(M, I, i).

We define a function EP from programs to programs as follows.
A state of EP(C) is a tuple 〈I, C,C′, O〉, where C is the original
program, C′ is the current state of the program after input I ,
and O is a good output of the enforcement mechanism on I (or
EP(C)(I) = O). The initial state of EP(C) is a tuple 〈[], C, C, []〉.
The transition relation of EP(C) is defined by the following rules:

OK

M = map(EP(C), g(I : i))

C′
i|o→ C′′ reject(M ∪ {(I : i, O : o)}) = false

〈I, C,C′, O〉
i|o
_ 〈I : i, C, C′′, O : o〉

NOK

M = map(EP(C), g(I : i))
reject(M ∪ {(I : i, O : o)}) = true

C′
i|o→ C′′ o′ = extendP(M ∪ {(I,O)}, I, i)

〈I, C,C′, O〉
i|o′
_ 〈I : i, C, C′′′, O : o′〉

The first rule says that, if the observation obtained by combining
the recursive application of EP to g(I : i) and the new observation
that C is producing are allowed by the policy, then we just release
the output of C.

The second rule says that, if the obtained observation is not al-
lowed, we will correct the execution. We correct it by selecting a

new output using the consistent extension function extendP . The
successor state for the monitored program can be an arbitrary pro-
gramC′′′: as the program being monitored is definitely not compli-
ant with the policy, we do no longer have to care about precision.
C′′′ could for instance be a state that terminates (i.e. continuously
emits the oend output). While C′′′ can be chosen arbitrarily, the
enforcement mechanism should choose it deterministically based
only on its current state and input (in order to make EP(C) a de-
terministic program).

Notice that in the antecedent of our rules we do not check
the output of the program C on the additional inputs from the
generator, but the output of EP(C). This avoids inconsistency of
corrections as we had in Example 13.

We have to show that the rules OK and NOK are a proper
definition for a program.

Lemma 4.3. For every state (I, C,C′, O) of the enforcement
mechanism, and for every input i, the transition relation is (1)
total computable, and (2) deterministic.

Proof. We show both properties by total induction on the well-
founded order@ on I∗. So, suppose both properties (1) and (2) hold
for all states (I0, C0, C

′
0, O0) and input i0 with I0 : i0 @ I : i.

The transition from (I, C,C′, O) on input i is total computable,
because (a) the transition relation on C is total computable, (b)
the reject and extension functions are total computable, and (c)
the computation of the map of EP(C) only needs a finite number
of transitions on states (I0, C0, C

′
0, O0) and inputs i0 such that

I0 : i0 @ I : i (this follows from the fact that g is well-founded and
hence all I ′ ∈ g(I : i) @ I : i). Hence by the induction hypothesis
all these transitions are total computable.

The transition from (I, C,C′, O) on input i is deterministic,
because (a) the transition relation on C is deterministic, (b) the
computation of the map of EP(C) only needs transitions on states
(I0, C0, C

′
0, O0) and inputs i0 such that I0 : i0 @ I : i. Hence

by the induction hypothesis all these transitions are deterministic.
Now reject deterministically returns either true or false. For the
false case, we are done. For the true case, since the extension func-
tion is indeed a function and its parameters are deterministically
determined by the input state and input value, this function deter-
ministically returns an o′. Finally, the state C′′′ in the output state
is chosen arbitrarily but deterministically based on current state and
input value. �

Now that we have established that EP is a total computable
function from programs to programs, we can prove its properties.

Theorem 4.3 (Security). Let P be a testable and non-empty hy-
persafety policy. Then EP(C) ∈ P for any C.

Proof. Let us say that a program C is I-level secure if it does not
have any bad observation Mbad with for all I ′ ∈ inputs(Mbad),
I ′ v I .

We first show the following property: For all I ∈ I∗, EP(C) is
I-level secure. We prove this by complete induction on the well-
founder order @. So suppose the property holds for all inputs
I1 @ I . We prove it holds for I .

For the case where I is empty: Since the empty list is a minimal
element under the @ relation, we just have to show that the prim-
itive observation ([], []) is not in MP . This follows from the fact
that P is non-empty: there is a program C ∈ P , and every C has
the observation ([], []).

For the case where I has the form I1 : i, we show that
map(EP(C), g(I1 : i) ∪ {I1 : i}) 6∈ MP .

• For the subcase where the last output on this input was derived
by the OK rule, this follows from the fact that reject(M ∪{(I1 :
i, O : o)}) = false for M = map(EP(C), g(I1 : i)).

• For the subcase where the last output on this input was derived
by the NOK rule, we can use the induction hypothesis. All the
input streams in g(I1 : i) ∪ {I1} are @ I1 : i. Hence, the first
argument to the extend function is an allowed observation.
By the property of the extend function, we then also get for this
subcase that map(EP(C), g(I1 : i) ∪ {I1 : i}) 6∈ MP .

Now we can show that EP(C) is I-level secure. Suppose there
is an Mbad with all elements of inputs(Mbad) v I . Then we
can easily see that for all I ′ ∈ inputs(Mbad) it holds that
map(EP(C), g(I)∪{I}) 6∈ MP . (For I ′ @ I this follows from the
induction hypothesis and the fact that g is well-founded, for I ′ = I
we have just shown it.) But then the definition of test generator tells
us that Mbad 6∈ MP .

Finally, using this fact that EP(C) is I-level secure for all I , we
can apply Lemma 4.1 and we get that EP(C) ∈ P . �

Theorem 4.4. EP(C) is precise.

Proof. We have to show that C and EP(C) have exactly the same
primitive observations when C ∈ P . We show this by complete
induction on the well-founded partial order @ on I?.

Assume that C and EP(C) have the same primitive observa-
tions (I ′, O′) for all I ′ @ I : i. We have to show that EP(C)(I :
i) = C(I : i).

From the induction hypothesis, it follows that the derivation
of the last step of EP(C) processing input I : i was done by
the OK rule: EP(C) is applied only on I ′ @ I : i, hence the
induction hypothesis applies, and EP(C) has the same outputs as
C on g(I : i). Hence, map(EP(C), g(I : i) ∪ {(I : i, O : o)})
is actually an observation on C, and since C ∈ P it follows
that map(EP(C), g(I : i)) ∪ {(I : i, O : o)} 6∈ MP , and
hence the call to reject must return false. As a consequence, the
primitive observation of EP(C) on I : i is the same as the primitive
observation of C on I : i. �

Theorem 4.5. EP(C) is black box.

Proof. By the same induction technique as in Lemma 4.3 one can
show that map(EP(C1), g(I : i)) is equal to map(EP(C2), g(I :
i)) if C1 ∼ C2. �

4.3.4 A lower bound
Finally, we can establish an interesting lower bound for the set of
black box enforceable policies.

Theorem 4.6. Every non-empty testable hypersafety policy is black
box enforceable.

Proof. For any non-empty testable hypersafety policy:

• the reject predicate is total computable by definition of testable.
• Proposition 3.2 gives us a total computable extension function.
• Lemma 4.2 gives us a well-founded generator.

Hence, we can construct an enforcement mechanism as in Defini-
tion 4.3, and Theorems 4.3, 4.4 and 4.5 tell us that this enforcement
mechanism is secure, precise and black box. �

Obviously, this construction is very inefficient, but from a the-
oretical point of view this lower bound on the class of black box
enforceable policies is interesting. In the next section, we turn to
constructing concrete enforcement mechanisms.

5. Instances
Given a hypersafety policy P , the steps that need to be taken to
enforce the policy using our generic enforcement mechanism are:

1. specify a total computable reject function that decides member-
ship inMP . Prove that the set of observations for which reject
returns true is indeed maximal in the sense of definition 3.3.

2. specify a total computable test generator function, and prove it
satisfies the property required of a test generator as stipulated
in definition 4.2.

3. specify a total computable extension function, and prove that
it has the property required of such a function as specified in
definition 3.5. Since our enforcement mechanism only applies
extend to observationsM with inputs(M) of the form g(I : i)∪
{I}, it is sufficient to define extend for such input parameters.

In this section, we construct interesting instances and relate them
to existing enforcement mechanisms. We also discuss some opti-
mizations to improve the performance of the generic enforcement
mechanism.

5.1 1-safety policies
The simplest instantiation of our mechanism is the case where P is
a 1-safety policy.

1. The generator g maps every I on {} (cfr Example 11).

2. The reject function can be simplified to just a boolean predicate
on primitive observations. Maximality ensures that any primi-
tive observation that is not rejected can be further extended in
a way acceptable to the policy. Hence, reject is a benevolent
detector in the sense of Hamlen et al. [15].

3. The extend function just takes a primitive observation (I,O)
and a new input i and returns a valid output o.

Since g always returns the empty set, no recursive calls of the
enforcement mechanism are needed: processing an input/output
event just requires one call to reject and one call to extend.

Even this simplest instantiation admits interesting examples.

Example 16. For the NSAR policy, reject was specified in Exam-
ple 1, the generator always returns the empty set, and an extend
function was defined in Example 8.

Example 17. Consider the policy that forbids any primitive ob-
servation of length bigger than 5. (Also counting the oend output
values) This policy is empty (no program complies), and hence not
enforceable. The reject function for this policy is the constant func-
tion that returns true.

Suppose the policy requires termination after at most 5 steps.
This policy is enforceable. The reject function is:

reject((I,O)) = ∃o 6= oend : occurs(o, (drop 5 O))

The extend function always returns the termination event.

extend(I,O, i) = oend

If a program fails to terminate before its 5th step, the enforce-
ment mechanism will force it to terminate. For instance the sum
program from Listing 1 will process the input stream [1 : 1 : 1 : . . .]
to the output stream [1 : 2 : 3 : 4 : 5 : oend : oend : oend : . . .]
when executed under this enforcement mechanism.

5.2 Non-interference with two levels
Let pr be a total idempotent function from finite input streams to
finite input streams. That is, for all I ∈ I?, pr(I) = pr(pr(I)). We
think of pr as a projection that removes confidential information
from the input stream.

A program C is non-interferent w.r.t. pr iff

∀I, I ′ ∈ I? : pr(I) = pr(I ′) =⇒ O|L = O′|L,
where C(I) = O and C(I ′) = O′.

The projection pr can be instantiated in many ways, and our
enforcement mechanism can handle all these instantiations.

• pr(I) = I|L,HD where I|L,HD is the resulting stream after
replacing the H input values in I with default values: this is
a variation of NI where content of input events is secret but
the occurrence of the input event is not. With the optimizations
in Section 5.4 our generic enforcement mechanism reduces to
standard secure multi-execution [11, 22].

• pr(I) = I|L: models standard NI as in Example 2. Our generic
enforcement mechanism defines a reactive variant of secure
multi-execution as in [5, 30].

• pr can more generally project to values that depend on all pre-
vious values in the input stream. This can model for instance
NI with stateful declassification policies [27]. Our generic en-
forcement mechanism even improves on the mechanism in [27],
as it does not require declassify annotations for precision since
in [27] a declassify operator is just a directive indicating that a
particular value is computed by the release function.

Construction of the reject predicate and the test generator for this
policy is similar to Example 6 and Example 12. For this more
general case, the following definitions work:

reject(M) =

true ∃Mbad = {(I,O), (I ′, O′)},

Mbad ⊆M s.t. pr(I) = pr(I ′)

and O|L 6= O′|L,
false otherwise.

g(I) = {pr(I)} \ {I}
The well founded order for the generator is the smallest ordering

such that for all I and i, I @ I : i and if pr(I) 6= I then pr(I) @ I .
A sufficient condition is that pr(I) has smaller or equal length as I ,
and this is satisfied in all instances for pr mentioned above.

Since extend is only called for M = {(I,O), (I ′ : i′, O′ : o′)}
where pr(I : i) = I ′ : i′, this function is as below where oH is an
arbitrary value such that lvl(oH) = H .

extendPNI1(M, I, i) =

{
oH if lvl(i) = H where lvl(oH) = H

o′ if lvl(i) = L.

5.3 Non-interference for multiple levels
It is relatively straigtforward to extend all the variants of NI above
to multiple confidentiality levels. We illustrate this for standard NI.
Let 〈L,≤〉 be a complete lattice of security levels with a top
level (>) and a bottom level (⊥), and let lvl be a function from
I ∪O to L. A program C is non-interferent with respect to lvl iff
∀I, I ′ ∈ I? : I|l = I ′|l =⇒ O|l = O′|l, where C(I) = O and
C(I ′) = O′, and I|l filters out all i with lvl(i) 6≤ l (and similarly
for O|l).

reject(M) =

true ∃Mbad = {(I,O), (I ′, O′)},

Mbad ⊆M s.t. I|l = I ′|l
and O|l 6= O′|l, for some l

false otherwise.

g(I) = {I|l | l ∈ L} \ {I}

extendPNI (M, I, i) =

{
o> if lvl(i) 6= ⊥ where lvl(o>) = >,
o⊥ if lvl(i) = ⊥.

(taking into account that extend is only called for M =
{(I,O)} ∪ {(I ′ : i′, O′ : o′) | I ′ : i′ ∈ g(I : i)} and
(I⊥ : i⊥, O⊥ : o⊥) is in M , where I⊥ : i⊥ = (I : i)|⊥)

5.4 Optimizations and extensions.
The construction in Definition 4.3 is designed to minimize the
state of the enforcement mechanism (thus making the security and
precision proofs relatively simple). However, it is very suboptimal
in terms of execution time. The recursive calls to the enforcement
mechanism will often recompute observations on EP(C) over and
over many times.

A standard optimization for such cases is memoization: cache
the results of calls to EP(C) in some data structure and reuse them
from the cache instead of recomputing them.

A data structure that is particularly well suited for optimization
of our enforcement mechanism is an array of entries 〈Ij , Cj , Oj〉,
where for each j, it holds that 〈Ij , C, Cj , Oj〉 is the state reached
by the enforcement mechanism after processing input stream Ij .
This data structure (1) caches all the output streams that EP(C)
produces on any of the Ij (or prefixes of Ij), and (2) it is efficient
to update the data structure for growing Ij . Essentially, such a data
structure maintains a set of alternative executions of C (taking into
account corrections to the execution where necessary), in a way that
is very close to secure multi-execution [11]. Proving the correctness
of this optimization for an arbitrary policy and relating it to secure
multi-execution is an interesting avenue for future work.

Finally, our generic construction also constructs secure and pre-
cise enforcement mechanism for many other policies. However, it
is not always obvious that efficient test generators exist. For exam-
ple, the k-safety policy from Example 3 is enforceable, but we have
not been able to come up with an efficient generator for this policy.
Another interesting line of future work is to look for efficient gen-
erators for other hypersafety policies.

6. Discussion
Many enforcement mechanisms used in practice make no, or very
limited use of analysis of the code of the programs they are mon-
itoring. Operating system kernels, virtual machine monitors, and
application firewalls treat the programs they are guarding as black
boxes. Hence it is interesting to understand what exactly can be
enforced under this black box constraint.

Figure 1 summarizes our results on upper and lower bounds
for the class of black box enforceable policies. The shaded region
corresponds to the class of policies that are black box enforceable
as defined in Definition 4.1. First, in Theorem 4.1 we have shown
that any policy that is black box enforceable must be hypersafety.
More importantly, in Theorem 4.2 we have shown that such policies
must be semi-testable hypersafety policies. Based on this theorem,
the policy in Example 4 is not black box enforceable. Finally,
in Theorem 4.6 we have shown that every non-empty testable
hypersafety policy is black box enforceable. The empty policy is
not enforceable since there is no program in this policy and the
mechanism is just a program.

An interesting question is how tight the bounds we establish
for black box enforceable policies are. There is a gap between the
sufficient condition, i.e. that the policy is testable hypersafety, and
the necessary condition, i.e. that the policy is semi-testable hyper-
safety. Clearly, the upper bound is not tight: an example 1-safety
policy that is semi-testable but not enforceable is the policy that re-
quires programs to only output terminating λ-terms. The comple-
ment of the maximal set of bad observations is recursively enumer-
able, hence the policy is semi-testable. However an enforcement
mechanism would have to decide termination. The question now is
whether the subset marked with ??? on Figure 1 is empty. For the

Hypersafety

Semi-Testable
Hypersafety

Testable and Enforceable: NI

Not testable: Non-
terminating reduction
sequence. (Ex. 4)

Testable but not
enforceable: Empty Policy

Black Box Enforceable
Hypersafety

Empty Policy

Testable
Hypersafety

NI

???

Example 4: output valid
reduction sequences of 𝜆-terms

Output terminating 𝜆-terms

Figure 1. Lower and upper bounds of black box enforceable hy-
persafety policies.

lower bound, we believe it might actually be tight, but we have not
been able to prove this yet.

One important aspect of our results is the fact that they hold for
our specific model of reactive programs where programs can not
diverge on a single input value. On the one hand, this is a positive
aspect as many programs satisfy this constraint, and under this
program model enforcement mechanisms can be guaranteed not to
diverge while still being allowed to speculatively execute programs
until the next observable output. Divergence of a program could
perhaps be modeled by having the program react with a special
output value obusy to any input value while diverging, but this does
impact the policies that are enforceable, as output values such as
obusy become observable, and hence policies have to take them
into account. On the other hand, this constraint on programs makes
enforcement easier, and some of our results will clearly not hold for
programs that do diverge on some inputs. An important question for
future work is to explore the impact of variations of the program
model on our results.

Another interesting question to ask is: what is the relation be-
tween policies enforceable by program rewriting [15], and the black
box enforceable policies (under our model of programs)? Clearly,
the black box enforceable policies are also enforceable by rewrit-
ing. But rewriters seem to have additional power as they can in-
spect and transform the code of the program at will. However, we
have not been able to find policies that are enforceable by rewrit-
ing but not black box enforceable. It seems that the power to edit
input/output events and explore alternative runs is very close to the
power to rewrite and inspect code – at least if one operates under
the constraints that (1) the resulting enforcement mechanism must
be secure and precise, and (2) programs must not diverge on single
inputs.

Besides the bounds on enforceability, this article also introduces
a general enforcement mechanism that can be used to build practi-
cal enforcement mechanisms. This was demonstrated in Section 5,
where we have seen that several different flavors of enforcement
mechanisms for NI are particular instances of our techniques with
efficient test generators. We believe that the existence of efficient
test generators is the key to practical enforceability. In fact, one
can prove that the existence of an efficient enforcement mechanism
implies the existence of an efficient test generator: one can take as
g(I) all the input streams I ′ that the efficient enforcement mech-
anism feeds to the untrusted program while processing input I . It
is not too hard to see that this defines a test generator. Hence, we
believe one of the interesting conclusions of this work is that the
key to developing a black box enforcement mechanism for a hyper-
safety policy is to come up with an efficient test generator.

7. Related Work
7.1 Enforcement power of enforcement mechanisms
Erlingsson and Schneider [12, 25] initiated the investigation of dy-
namic enforcement of security policies via execution monitoring
(EM). Schneider [25] demonstrated that for a security policy to be
enforceable by EM, the policy has to be a safety property on exe-
cution traces. He also introduced a class of monitors called security
automata that can be used as recognizers for safety properties. Such
an automaton is capable of observing system actions, recognizing
violations and terminating the observed system (called the target)
when it is about to perform a violation. A target system is allowed
to perform a computation step if and only if the respective security
automaton can transition to some next state by performing the same
step. Our proposed mechanisms can be seen as a generalization of
Schneider’s enforceable security policies, as they can be instanti-
ated on nonempty 1-safety policies.

Schneider’s work was refined by Viswanathan [28] who showed
that a property has to be decidable in order to be enforceable.
Formally, Viswanathan argued that the class of dynamically en-
forceable policies with EM is actually equivalent to the class of
co-recursively enumerable (coRE) properties, also known as the
class Π1 of the arithmetic hierarchy. However, it was later shown
by Hamlen et al. [15] that coRE is actually an upper bound on the
class of EM enforceable properties. The reason is that some poli-
cies in coRE are not enforceable because the monitor might not
have enough power to intervene. For instance, it is impossible to
enforce a policy that forbids all the interventions available to the
EM.

Fong [14] analyzed the impact of memory-limitations on the
enforcement mechanisms. He introduced shallow history automata
which only store information about the occurrence of past events
and not about their order. Despite this limitation, many interest-
ing properties were shown to remain enforceable. Talhi et al. [26]
extended Fong’s work by introducing bounded history automata,
combining features of security and edit automata and having
bounded memory. In addition, they proposed an algorithm that de-
cides whether there exists a bounded history automaton for a policy
in a language from a subclass of the regular languages (called the
locally testable languages [21]). Falcone et al. [13] investigated the
properties that are recognizable by different automata models with
a finite set of control states and enforcement operations in terms of
the safety-progress hierarchy [9]. In addition, they presented a sys-
tematic technique to synthesize monitors from an automaton rec-
ognizing some safety, guarantee, obligation or response properties.
Hamlen et al. [15] defined the class of security policies enforceable
by program rewriting (RW) and called it RW -enforceable . How-
ever, they did not provide a precise characterization of this class
and even argued that a characterization in complexity theoretic
terms might not exist. Finally, Chabot et al. [8] explored the prob-
lem of policy enforcement w.r.t. a trace universe. They showed that
a truncation enforcement mechanism is more powerful if it only
considers the possible traces and not all traces in the trace universe.
They also presented an algorithm that takes as an input a finite state
automaton (i.e. the policy) and a finite state transition system (i.e.
the target system) and checks if the policy is enforceable. Addition-
ally, if the policy is found to be enforceable, the algorithm returns
a secured version of the target system.

Ligatti et al. [18, 19] introduced edit automata, capable of en-
forcing a class of non-safety (including purely liveness) policies
called infinite renewal properties. They argued that infinite re-
newal properties subsume the computable safety properties. Edit
automata are a black box enforcement mechanism, capable of in-
serting and deleting system actions as well as terminating a target
system in the case of a policy violation. The authors also showed

how to construct an enforcement mechanism that provably enforces
any “reasonable” infinite renewal property [18]. Edit automata are
similar to our approach in that they offer a black box mechanism ca-
pable of monitoring and/or editing the input/output behavior of pro-
grams. However, to enforce infinite renewal properties, they have to
buffer program actions – something that is undesirable for reactive
programs. Also, edit automata are not capable of exploring alterna-
tive executions.

Unlike edit automata, mandatory-result automata [20] have an
interface to interact with a target system: they get requests from
the system and send outputs back to the system but do not enforce
policies that are more expressive than those investigated by Basin
et al. [4]. Basin and his coauthors revisited Schneider’s work and
proposed to distinguish between actions that are under the control
of the enforcement mechanism and actions that are merely observ-
able (for instance the passing of time), i.e. the mechanism cannot
prevent their execution. For this refinement of the problem, the au-
thors presented necessary and sufficient conditions to characterize
when a policy is EM enforceable, based on their generalized no-
tion of safety. In addition, they studied the problem of whether a
policy is enforceable for several specification languages. They also
showed how to synthesize an enforcement mechanism for a given
enforceable policy and gave complexity results.

Clarkson and Schneider [10] were the first to propose hyper-
properties (sets of trace properties) as a model for security poli-
cies. They generalized safety and liveness to hypersafety and hyper-
liveness, and proposed a static verification approach for verifying
compliance with a hypersafety property. The fact that hypersafety
aligns so well with black box enforceability is additional evidence
that their classification of security policies as hypersafety or hyper-
liveness is a useful taxonomy of policies.

7.2 Existing black box enforcement mechanisms for
non-interference

Besides the general purpose black box enforcement mechanisms
(such as the different variants of execution monitors and edit au-
tomata) discussed above, a considerable amount of research has
been done on dynamic enforcement of non-interference, some of
it assuming only black box access to programs. Le Guernic’s PhD
thesis [17] presents an extensive survey of the state of the art in dy-
namic information flow control circa 2007. The major more recent
results are presented next.

There have been several proposals for information flow runtime
monitors. Sabelfeld et al. proposed such monitors for DOM-like
structures [24], dynamic code evaluation [1] and timeouts [23].
Austin and Flanagen [2] presented alternative techniques that have
the potential of being more permissive. All these monitors are
useful and relatively efficient, however a common problem is that
they are not precise, i.e. they over-approximate the problem and as
a result sometimes block secure executions.

A secure and precise dynamic enforcement technique is se-
cure multi-execution (SME), developed independently by several
researchers [11, 16, 29]. Khatiwala et al. [16] proposed a technique
called Data Sandboxing, which partitions the program into two pro-
grams at source-code level and then uses system call interposition
to control the output channels. In a follow-up article, Capizzi et al.
[29] abandoned source-code partitioning; instead, they proposed to
run two processes for the public and secret levels respectively and
as a result provide strong confidentiality guarantees. Devriese and
Piessens [11] independently proposed the related technique that
they called SME. The overall idea of SME is to keep a program
secure by separating computations at different security levels. To
that end, the original program is executed multiple times, once for
each security level and giving inputs and outputs special treatment;
this technique guarantees security and precision.

Austin and Flanagan [3] developed a more efficient implemen-
tation of SME based on multi-faceted evaluation. Rafnsson and
Sabelfeld [22] upgraded the SME technique to distinguish between
presence and content of secret messages on a channel, to perform
declassification and to make SME precise for observers having ac-
cess to more than one level. Zanarini et al. [30] proposed combining
SME with execution monitoring. The idea is at each step to com-
pare the current execution with what SME would produce in order
to detect (and report) actions that offend the policy. Similarly to
Rafnsson and Sabelfeld [22], they use a scheduling strategy that
preserves the interleaving of events from different security levels,
thus increasing the precision of SME. Vanhoef et al. [27] proposed
an SME-based technique for enforcing information flow policies
with support for stateful declassification for event-driven programs.
They used a projection function to specify what information about
an event can be declassified and a stateful release function to spec-
ify aggregate information about secret events seen so far that can be
declassified. It is clear that the mechanisms presented in this work
are a generalization and at the same time go beyond a number of
flavors of SME, for instance the vanilla one with 2-levels, the one
with n-levels [11], and with stateful declassification [27].

8. Conclusion
We have studied security policy enforcement mechanisms for deter-
ministic reactive programs that respond to input events in finite time
with an observable output event. Our enforcement mechanisms are
black box: the enforcement mechanism only needs to be able to (1)
intercept and edit the input/output events of the untrusted program,
and (2) run multiple isolated copies of the untrusted program in or-
der to test the behaviour of the program on alternative inputs. The
enforcement mechanism can not do (or more positively: does not
need to do) analysis on the source or machine code of the program.

We have given a constructive proof that under these assump-
tions any testable hypersafety policy is enforceable: if it is decid-
able whether an observation can not be produced by any program in
the policy, then the policy is black box enforceable by a generic en-
forcement mechanism. The construction in the proof is inefficient,
but one can construct more efficient enforcement mechanisms by
providing a reject function, an efficient test generator and an exten-
sion function as inputs to the general construction.

We have also shown an upper bound on black box enforceable
policies: any enforceable policy is a semi-testable hypersafety pol-
icy, i.e. the observations that are possible for some program in the
policy are enumerable.

While these lower and upper bounds are of theoretical interest,
we have also shown that our generic enforcement mechanism is
of practical interest by instantiating it to concrete enforcement
mechanisms for a number of relevant policies.

Acknowledgments
The authors are grateful to Deepak Garg for proofreading this paper
and suggesting numerous improvements. This research is partially
funded by the Research Fund KU Leuven, by the Research Foun-
dation - Flanders (FWO), by the Italian project TENACE PRIN (n.
20103P34XC), and by the project EU-IST-NOE-NESSOS.

References
[1] A. Askarov and A. Sabelfeld. Tight enforcement of information-

release policies for dynamic languages. In CSF, pages 43–59, 2009.

[2] T. H. Austin and C. Flanagan. Permissive dynamic information flow
analysis. In PLAS, pages 3:1–3:12, 2010.

[3] T. H. Austin and C. Flanagan. Multiple facets for dynamic information
flow. In POPL, pages 165–178, 2012.

[4] D. Basin, V. Jugé, F. Klaedtke, and E. Zălinescu. Enforceable security
policies revisited. TISSEC, 16(1):3:1–3:26, June 2013.

[5] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-
interference for a browser model. In 5th International Conference on
Network and System Security, pages 97–104, 2011.

[6] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic.
Reactive noninterference. In CCS, pages 79–90, 2009.

[7] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P. Sistla. Prevent-
ing information leaks through shadow executions. In ACSAC, pages
322–331, 2008.

[8] H. Chabot, R. Khoury, and N. Tawbi. Extending the enforcement
power of truncation monitors using static analysis. Computers &
Security, 30(4):194–207, June 2011.

[9] E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of temporal
property classes. In ICALP, pages 474–486, 1992.

[10] M. R. Clarkson and F. B. Schneider. Hyperproperties. JCS, 18:1157–
1210, September 2010.

[11] D. Devriese and F. Piessens. Noninterference through secure multi-
execution. In IEEE S&P, pages 109–124, 2010.

[12] U. Erlingsson and F. B. Schneider. Sasi enforcement of security poli-
cies: A retrospective. In 1999 Workshop on New Security Paradigms,
pages 87–95, 2000.

[13] Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier. Runtime
enforcement monitors: composition, synthesis, and enforcement abil-
ities. Formal Methods in System Design, 38(3):223–262, 2011.

[14] P. W. L. Fong. Access control by tracking shallow execution history.
In IEEE S&P, pages 43–55, 2004.

[15] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability
classes for enforcement mechanisms. TOPLAS, 28(1):175–205, 2006.

[16] T. Khatiwala, R. Swaminathan, and V. N. Venkatakrishnan. Data
sandboxing: A technique for enforcing confidentiality policies. In
ACSAC, pages 223–234, 2006.

[17] G. Le Guernic. Confidentiality Enforcement Using Dynamic Informa-
tion Flow Analyses. PhD thesis, Kansas State University, 2007.

[18] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement
mechanisms for run-time security policies. Int. J. of Inf. Sec., 4(1–
2):2–16, February 2005.

[19] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of non-
safety policies. TISSEC, 12(3):1–41, 2009.

[20] J. Ligatti and S. Reddy. A theory of runtime enforcement, with results.
In ESORICS, pages 87–100, 2010.

[21] R. McNaughton and S. A. Papert. Counter-Free Automata (M.I.T.
Research Monograph No. 65). The MIT Press, 1971.

[22] W. Rafnsson and A. Sabelfeld. Secure multi-execution: fine-grained,
declassification-aware, and transparent. In CSF, pages 33–48, 2013.

[23] A. Russo and A. Sabelfeld. Securing timeout instructions in web
applications. In CSF, pages 92–106, 2009.

[24] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow
in dynamic tree structures. In ESORICS, pages 86–103, 2009.

[25] F. Schneider. Enforceable security policies. TISSEC, 3(1):30–50,
2000.

[26] C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring en-
forcement under memory-limitation constraints. Inf. Comput., 206(2-
4):158–184, Feb. 2008.

[27] M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk.
Stateful declassification policies for event-driven programs. In CSF,
2014.

[28] M. Viswanathan. Foundations for the Run-time Analysis of Software
Systems. PhD thesis, University of Pennsylvania, 2000.

[29] A. R. Yumerefendi, B. Mickle, and L. P. Cox. Tightlip: Keeping
applications from spilling the beans. In 4th USENIX Conference on
Networked Systems Design & Implementation, pages 12–12, 2007.

[30] D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement of
confidentiality for reactive systems. In CSF, pages 18–32, 2013.

