
MAP-REDUCE Enforcement Framework of
Information Flow Policies

Minh Ngo, Fabio Massacci, and Olga Gadyatskaya

University of Trento, Italy
{surname}@disi.unitn.it

Abstract. We propose a flexible framework that can be easily cus-
tomized to enforce a large variety of information flow properties. Our
framework combines the ideas of secure multi-execution and map-reduce
computations. The information flow property of choice can be obtained
by simply changes to a map (or reduce) program that control parallel
executions.
We present the architecture of the enforcement mechanism and its cus-
tomizations for non-interference (NI) (from Devriese and Piessens) and
some properties proposed by Mantel, such as removal of inputs (RI) and
deletion of inputs (DI), and demonstrate formally soundness and preci-
sion of enforcement for these properties.

Keywords: Runtime enforcement, information flow, secure multi-execution

1 Introduction

Information flow properties define the acceptable behaviours of computer pro-
grams with respect to allowed and forbidden flows of information. The most
well-known information flow property is non-interference (NI), which roughly
requires that the input data classified as confidential (also called secret, or high)
should not influence the public (low) outputs [8, 7].

By weakening or strengthening the definition of NI, security researchers have
proposed different information flow properties [15–17, 23]. For instance, the def-
inition of NI in [8] assumes that if there is no high input, then there is no high
output. Yet, this assumption does not always hold. In [17], the generalized non-
inference (GNF) property is defined for systems that generate high outputs even
if there are no high inputs.

To the best of our knowledge, there is no proposal in the literature with
a unified approach to the enforcement of multiple information flow properties.
The existing enforcement mechanisms (e.g. [2, 5, 7, 14, 22]) can be configured to
accommodate different information flow policies that identify what is confidential
and what is public, and what are the authorized flows in the security lattice [7,
20], and, sometimes, they can as well enforce declassification policies 1 (e.g. [1]).

1 These policies are required when one needs to disclose information that depends on
confidential data in some way, see e.g. [21] for details.

I0 π[0] O0

Ii π[i] Oi

ITOP π[TOP] OTOP

REDUCEMAP

Input Queue Output Queue

Local Executions

Local Input Queue Local Output Queue
TRTM

Fig. 1: Architecture of enforcement mechanisms

Yet, the adaptation of an existing enforcement mechanism (for example, for NI)
to enforce another property (for instance, GNF) is not straight-forward.

We aim to fill this gap by providing an enforcement framework that can be
extended by different information flow properties. The framework is inspired
by the MAP-REDUCE approach from Google [12]; and generalizes the secure
multi-execution (SME) technique proposed by Devriese and Piessens in [7] so
that it can enforce other information flow properties, e.g. properties from [15].
The main idea is to execute multiple “local” instances of the original program,
feeding different inputs to each instance of the program. The local inputs are
produced from the original program inputs by the MAP component, depending
on the security levels and the input channels. Upon receiving the necessary data
(for instance, after each individual program instance is terminated), the REDUCE
component collects the local outputs and generates the common output, thus
ensuring that the overall execution is secure. MAP and REDUCE are customizable
and by changing their programs the user can easily change the enforced property.
Two simple tables (TM and TR) tell MAP and REDUCE what they should do
when receiving respectively input and output requests from local executions on
a channel. Table 1 summarizes the configurations for some sample properties.

Tab. 1: Enforcement mechanisms for the selected infor-
mation flow properties

Property Section
Components

MAP REDUCE TM/TR

Removal of inputs [15] §5.1 Fig.9c Fig.9d Fig.9a,9b
Deletion of inputs [15] §5.2 Fig.12c Fig.9d Fig.12a,12b
Termination
(in)sensitive

§5.3 Fig.13 Fig.9d Fig.9a,9b

non-interference [7]

The rest of the paper is or-
ganized as follows. §2 overviews
the idea of our approach and the
architecture of the enforcement
framework; §3 introduces the se-
mantics of controlled programs.
§4 presents the formalization of
the framework; §5 describes the
enforcement mechanisms for the chosen information flow properties. Soundness
and precision of the constructed enforcement mechanisms are postulated in §6.
We discuss future extensions of the framework in §7 and its limitations in §8.
Then we discuss the related work in §9 and conclude in §10.

2 Overview

Fig. 1 depicts the general architecture of the enforcement mechanism for an
information flow property on a program π. It is composed by a stack EX of
local executions (π[0], . . . , π[TOP], where TOP is the index of the top of the
stack), global input and output queues, the MAP and REDUCE components, and
the tables TM and TR.

Local executions (instances of the original program that are executed in
parallel and are unaware of each other) are separated from the environment

input and output actions by the enforcement mechanism. A local execution has
its own input and output queues. The local input (resp. output) queue of a local
execution contains the input (resp. output) items that can be freely consumed
(resp. generated) by this local execution. MAP and REDUCE are responsible for
respectively the global input queue containing the input items from the external
environment (received from the user or other input channels), and the global
output queue containing the output items filtered by the enforcement mechanism
to the environment.

When a local execution needs an input item that is not yet ready in its local
input queue, it will request the help of MAP by emitting an interrupt signal
(or just signal for short). When different local executions request values from
the same channel, there will be only one actual input action performed by the
enforcement mechanism. After the value is read, MAP will distribute it to local
executions, replacing the actual value by the default (fake) one, if necessary.
Similarly, when a local execution generates an output item, the output item will
be handled by REDUCE.

MAP and REDUCE can also autonomously send and, respectively, collect
items from local queues. For example, upon receiving an input item from the
environment, MAP can send it to all local executions that satisfy a predicate.
The parallel broadcast and parallel collection to and from local processors are the
characteristic features of MAP-REDUCE programs [12]; this explains our choice
for the name of the enforcement mechanism.

The actions of MAP (respectively REDUCE) on an input (output) request
from a local execution depend on the configuration information in the table TM
(TR). These components of the enforcement mechanism are customized depend-
ing on the desired information flow property. The framework components con-
figured to implement the chosen information flow properties are listed in Tab. 1
(for each selected property the table contains pointers to the actual component
configurations).

The configuration of input and output actions of local executions is based on
two privileges: ask (a) and tell (t). If a local execution has the ask privilege on
the input channel c, then MAP can fetch the input item from the environment
upon receiving the interrupt signal from a local execution. If a local execution
has the tell privilege on the input channel c, then this local execution can get
the real value from the channel c when MAP broadcasts the input item to local
executions, otherwise it will get a default value. If a local execution has the ask
privilege on the output channel c, then REDUCE will actually ask the execution
for the real value that it wished to send to c. Otherwise, REDUCE will just
replace it with a default value. If a local execution has the tell privilege on the
output channel c, it can invoke REDUCE to send the values generated by itself
to c.

Notice that an execution may have only one privilege. For example, an exe-
cution with the ask but not the tell privilege in TR will provide the real value
to REDUCE, but will not be able to invoke REDUCE to put the value in the
external output. It will have to wait for somebody else with the tell privilege on
the channel to produce an output.

INP

π = input x from c
I = ~v.I

′
~v[c] 6= ⊥

∆, prg:π,mem:m, in:I
_ ∆, prg:skip,mem:m[x 7→ ~v[c]], in:I′

OUTP

π = output e to c

~v = ~⊥[c 7→ m(e)]

∆, prg:π, out:O
_ ∆, prg:skip, out:O.~v

Fig. 3: Semantics of the input and output instructions of controlled programs

3 Semantics of Controlled Programs

π ::= instructions :

|x := e assignment

|π;π sequence

|if e then π else π if

|while e do π while

|skip skip

|input x from c input

|output e to c output

Fig. 2: Language instructions

Our model programming language is close to the
one used in the SME paper [7]. Valid values in
this language are boolean values (T and F) or
non-negative integers. A program π is an in-
struction composed from the terms described in
Fig. 2. In this figure π, e, x, and c are meta-
variables for instructions, expressions, variables,
and input/output channels respectively.

We model an input (output) item as a vector
and define input (output) of program instances as queues. We use vectors of chan-
nel to accommodate forms in which multiple fields are submitted simultaneously
but are classified differently (e.g. credit card numbers vs. user names). An input
vector ~v is a mapping from input channels to their values, ~v : Cin → Σ ∪ {⊥},
where Σ is the set of all non-negative integer and boolean values, and the value
⊥ is the special undefined value. An output vector ~v is a mapping from output
channels to their values, ~v : Cout → Σ ∪ {⊥}.

Given a vector ~v and a channel c, the value of the channel is denoted by

~v[c]. The symbol ~⊥ denotes a vector mapping all channels to ⊥. To simplify the
formal presentation, in the sequel w.l.o.g. we assume that each input and output
operation only affect one channel at a time. Thus, for each vector, there is only
one channel c such that ~v[c] 6= ⊥.

Let queue Q be a sequence of elements q1 . . . qn. We denote the addition of a
new element to the queue Q as Q.q, or q1 . . . qn.q; the removal of the first element
from the queue Q is denoted by q2 . . . qn. By ε we denote an empty queue.

To define an execution configuration, we use a set of labelled pairs. A labelled
pair is composed by a label and an object and is written in the form of label:
object. The label is attached to the object to differentiate this object from the
others, so each label occurs only once.

An execution configuration of a program is a set {prg:π,mem:m, in:I, out:O},
where π is the instruction to be executed, m is the memory (a function mapping
variables to values), I (O, respectively) is the queue of input (output) vectors.

The operational semantics of the input and output instructions of the model
language, as the most interesting, is described in Fig. 3. The conclusion part of
each semantic rule is written as ∆,Γ ⇒ ∆,Γ ′, where ∆ denotes the elements of
the execution configuration that are unchanged upon the transition. The seman-
tics of the comma “,” in the expression ∆,Γ is the disjoint union of ∆ and Γ .
We abuse the notation of the memory function m(.) and use it to evaluate ex-
pressions to values. When an output command sends a value of e to the channel

c, an output vector ~v = ~⊥[c 7→ m(e)] is inserted into the output queue, where
~v is the vector with all undefined channels, except c that is mapped to m(e), so
~v[c′] = ⊥ for all c′ 6= c and ~v[c] = m(e). For the lack of space we do not provide

LINP1
EX[i].st = E π = input x from c dequeue(I, c) = (val, I

′
) val 6= ⊥

∆,EX[i].prg:π,EX[i].mem:m,EX[i].in:I ⇒ ∆,EX[i].prg:skip, EX[i].mem:m[x 7→ val], EX[i].in:I′

LINP2
EX[i].st = E π = input x from c dequeue(I, c) = (⊥, I′)

∆,EX[i].stt:E, EX[i].int:⊥ ⇒ ∆,EX[i].stt:S, EX[i].int:c

Fig. 4: Semantics of the input instruction of π[i]

the other rules; the interested reader can find the semantics of the controlled
programs and the framework components in the full version of this paper [18].

An execution of the program π is a finite sequence of configuration transitions
γ0 _ γ1 _ . . . _ γk, where γ0 = {prg :π,mem :m0, in :I, out :ε} is the initial
configuration, m0 is the function mapping every variable to the initial value,
and k is the number of transitions. The transition sequence can be also written
as γ0 _∗ γ if the exact number of transitions does not matter. The program
terminates if there exists a configuration γf = {prg:skip,mem:m, in:ε, out:O}
such that γ0 _∗ γf . We denote the whole derivation sequence by (π, I) ⇓ O
using the big step notation.

4 Semantics of the Enforcement Mechanism

We now specify the semantics of the enforcement mechanism components: local
executions, the programs of MAP and REDUCE. The general approach is that ex-
ecution of parallel programs is modeled by the interleaving of concurrent atomic
instructions [13] so each transition rule either by a local execution, by MAP, or
by REDUCE is a step of the enforcement mechanism as a whole.

Local executions. Each local execution is associated with a unique identifier i,
that is its number on the stack EX. A local execution can be in one of the two
states: E (Executing) or S (Sleeping). Initially, the state of all local executions
is E. A local execution moves from E to S when it has sent an interrupt signal
to require an input item that is not ready in its local input queue, or to signal
that it has generated an output item. A local execution moves from S to E when
it is awoken by the MAP component (the input item it required is ready) or by
the REDUCE component (its output item is consumed). The semantics for the
local execution instructions is the direct adaptation of the controlled programs
semantics with catering for the switch to and from the S state when doing inputs.

We provide the rules for input instruction in Fig. 4, where dequeue(Q, c)
returns the first value from the channel c in the queue Q and the rest of the
queue. When the input instruction is executed and the input item required is in
the local input queue, this item will be consumed (rule LINP1). Otherwise, the
local execution emits an input interrupt signal c and moves to the sleep state
(rule LINP2).

An execution configuration of a local execution π[i] is a set LECSi , {EX[i].stt:
st, EX[i].int:signal, EX[i].prg:π,EX[i].mem:m,EX[i].in:I, EX[i].out:O}, where
EX is the global stack of local execution, i denotes the i-th execution, st is
the state of the local execution, signal is the interrupt signal sent by the local
execution, π is an instruction to be executed, m is the memory, and I and O are
queues of input and output vectors respectively.

MAP

πM = map(e, c, PRED[]) S = {i ∈ {0, . . . , TOP} : PRED[i]}
LECS =

⋃
i∈S
{EX[i].in:I} ~v = ~⊥[c 7→ m(e)] LECS′ =

⋃
i∈S
{EX[i].in:I.~v}

∆,map:prg:πM , LECS⇒ ∆,map:prg:skip, LECS′

CLNE

πM = clone(PRED[], PRIVTM
, PRIVTR

) S = {i ∈ {0, . . . , TOP} : PRED[i]}
LECS =

⋃
i

LECSi LECS′ = LECS ∪
⋃
i∈S

fork(LECSi, TOP + assignIndex(i))

TOP
′

= TOP + |S| (T
′
M , T

′
R) = assign(TM , TR, TOP, TOP

′
, PRIVTM

, PRIVTR
)

∆, tm:TM , tr:TR, top:TOP,map:prg:πM , LECS⇒ ∆, tm:T
′
M , tr:T

′
R, top:TOP

′
,map:prg:skip, LECS′

Fig. 6: Semantics of the MAP instructions map and clone

MAP. A MAP program is normally composed of three steps: the input retrieval
step, the value distribution step and the wake up step. In the first step, an input
item is fetched by performing an actual input action from the specified channel,
or by using the default value (valdef). In the second step, a real input item
or the default item is sent to local executions. These two steps depend on the
configuration in TM . In the third step, local executions are awoken if a certain
condition is satisfied, e.g., these local executions were waiting for input items
and they have received the input items they required.

πM ::= . . . instructions :

|map(e, c, PRED[]) map

|wake(PRED[]) wake

|clone(PRED[], PRIVTM
, PRIVTR

) clone

Fig. 5: The MAP instructions

In addition to the instructions
in Fig. 2 (except for the out-
put instruction replaced by the
map instruction), πM may also
contain the instructions described
in Fig. 5, where PRED[] ,
λx.Pred(x) is a meta-variable for predicates. Evaluation of the predicate
PRED[] on the configuration of the local execution π[i] is denoted as PRED[i].

The execution of map, wake, or clone instruction is applied simultaneously to
all local executions π[i] such that PRED[i] is true as follows. The execution of
the map instruction sends the value of the expression e to the input queues of all
local executions. The value sent is considered as a value from the channel c. The
execution of the wake instruction wakes all local executions π[i] up and removes
the interrupt signals generated by those local executions (if there were some).
The execution of the clone instruction clones the configuration of each local
execution π[i]. The new executions will be appended to the local executions stack.
The state of the new executions is S. The privileges of the new local executions
are copied from the lists of privileges PRIVTM

and PRIVTR
. PRIVTM

(PRIVTR
,

respectively) is an input (output, respectively) privilege configuration template
which varies depending on the enforced property. We give an example of such
templates in §5.2, where the enforced property requires cloning.

A configuration of the MAP component is a set {map:prg:πM ,map:mem:m},
where πM is the instruction to be executed, and m is the memory.

The semantics of instructions of assignment, sequence, if, while, and skip of
MAP is quite similar to the semantics of corresponding instructions of controlled
programs. The output instruction is not used in πM . The semantics of the two
most interesting instructions map and clone is described in Fig. 6. For the map,
wake, and clone instructions, if there is no i such that PRED[i] holds, then the
execution of these instructions makes all local executions to move from their
current configurations to themselves.

OUTR
πR = output e to c red.mem = m ~v = ~⊥[c 7→ m(e)]

∆, red:prg:πR, out:O ⇒ ∆, red:prg:skip, out:O.~v

WAKR

πR = wake(PRED[]) S = {i ∈ {0, . . . , TOP} : PRED[i]}
LECS =

⋃
i∈S
{EX[i].int:signal, EX[i].stt:S} LECS′ =

⋃
i∈S
{EX[i].int:⊥, EX[i].stt:E}

∆, red:prg:πR, LECS⇒ ∆, red:prg:skip, LECS′

Fig. 8: Semantics of the REDUCE instructions output and wake

The bijective function assignIndex : S → {1, . . . , |S|} assigns and returns a
unique index of the element i in the set S (the index starts from 1). The function
fork(LECSi, j) makes a copy of the local execution π[i]; the new execution can be
referred as EX[j]. The function assign(TM , TR, TOP, TOP

′, PRIVTM
, PRIVTR

)
modifies tables TM and TR by adding new columns for the newly cloned processes
and the corresponding values for the privileges from PRIVTM

and PRIVTR
for

the input and output channels for these processes.

REDUCE. The REDUCE component controls the output actually generated by
the enforcement mechanism. A REDUCE program πR can ask an item from a
local execution, send an item to the external output, clean local output queues
of local executions and wake local executions up.

Except for the input instruction, that is replaced by the retrieve instruction,
in addition to the instructions in Fig. 3 and the wake instruction, the REDUCE
program may contain instructions described in Fig. 7. The execution of the
retrieve instruction reads the value from the output queue of π[i] and stores it
into x. The execution of the clean instruction is applied to all local executions
π[i] such that PRED[i] is true. This instruction removes the first vector ~v of the
output queue O of π[i], where the value of ~v[c] is different from ⊥.

πR ::= . . . instructions :

|retrieve x from (i, c) retrieve

|clean(c, PRED[]) clean

Fig. 7: The REDUCE instructions

A configuration of the REDUCE com-
ponent is a set {red:prg:πR, red:mem:m},
where πR is the instruction to be exe-
cuted, and m is the memory.

The semantics of the output and wake
instructions, as the most interesting ones, is described in Fig. 8.

The enforcement mechanism. A configuration of an enforcement mechanism is
a set {tm :TM , tr :TR, top:TOP,map:M, red:R, in:I, out:O,

⋃
i LECSi}, where TM

and TR are configuration tables for respectively MAP and REDUCE, TOP is the
index of the top of the stack of configurations of local executions EX, M and R
are configurations of respectively MAP and REDUCE components, I and O are
respectively the input and output queues of the enforcement mechanism, and
LECSi is the configuration of the i-th local execution.

The program of MAP (REDUCE respectively) is activated only when the
previous execution of MAP (REDUCE) terminated, there is an interrupt signal c
from the local execution π[i], the state of this local execution is sleeping (S), and
the instruction to be executed is an input (output) instruction. The activation
of the MAP program or the REDUCE program on a signal on channel c from π[i]
will remove the signal from π[i].

We denote the enforcement mechanism on π by EM(π). For the initial con-
figuration, all local input and output queues will be empty, all local executions
will be in the executing state, and skip is the only instruction in MAP and
REDUCE programs. The enforcement mechanism terminates when all local exe-
cutions, MAP and REDUCE programs are terminated, and the global input queue
is consumed completely.

The enforcement mechanism terminates if there exists a configuration γf =
{tm:TM , tr:TR, top:TOP,map:M, red:R, in:ε, out:O,

⋃
i LECSi} such that γ0 _∗ γf ,

where EX[i].prg:skip for all i, map.prg:skip, and red.prg:skip. We denote this
whole derivation sequence by (EM(π), I) ⇓ O using the big step notation.

5 Configurations for the Selected Properties

In [15], Mantel proposes a uniform framework to define possibilistic informa-
tion flow properties and he proves that existing possibilistic information flow
properties can be expressed as a predefined basic security predicate (BSP) or
conjunction of these BSPs. A BSP is generally defined in the framework of Man-
tel based on removal of some high inputs and events.

In the next sections, we will demonstrate configurations of our framework for
enforcement of two BSPs, RI and DI, and the SME-style NI. It might not be
obvious whether these properties are actually different in our model. We resolve
possible doubts of the attentive reader in [18].

Let COND[] , λ~v.Cond() be a predicate and COND[~v] be the result of the
evaluation of COND[] on ~v. We define the restriction operator on the queue Q
with COND[], Q|COND[], that returns all ~v in Q such that COND[~v] is true.

We will use the notation Q|l, the restriction on security level l, if Cond(l) ,
λ~v.∃c : ~v[c] 6= ⊥ ∧ LV L[c] = l; and the notation Q|c, the restriction on channel

c, if Cond(c) , λ~v.~v[c] 6= ⊥.

5.1 Removal of Inputs

The removal of inputs (RI) property [15] requires that if a possible trace is
perturbed by removing all high input items, then the result can be corrected
into a possible trace. In our notation if all high input items are replaced by the
default values or removed, the input queue can be sanitized so that the program
will terminate when executing on this input and the generated output will be
equivalent at the low level to the original output.

Definition 1. A program π satisfies the property of removal of inputs iff for
any potential value chosen as a default value,

∀I : (π, I) ⇓ O =⇒ ∃I′ : I
′|L = I|L ∧ I′|H = (~df)

∗∧

∧ ∀c ∈ Cin, ‖ I′|c ‖≤‖ I|c ‖ ∧(π, I
′
) ⇓ O′ ∧O′|L = O|L,

where ~df is a vector containing the default value, and ‖ Q ‖ is the length of Q.

π[0] π[1]
LV L[c] = H at a
LV L[c] = L t at

(a) TM for RI

π[0] π[1]
LV L[c] = H at −
LV L[c] = L − at

(b) TR for RI

1: if a ∈ TM [i][c] then
2: input x from c
3: map(x, c, canTell(c))
4: map(valdef , c,¬canTell(c))
5: wake(isReady(c))
6: else
7: skip

(c) MAP for RI for an input from c from π[i]

1: x := valdef
2: if a ∈ TR[i][c] then
3: retrieve x from (i, c)
4: if t ∈ TR[i][c] then
5: output x to c
6: clean(c, identical(i))
7: wake(identical(i))

(d) REDUCE for RI for an output to c from π[i]

Fig. 9: Configuration of the enforcement mech-
anism for RI

The enforcement mechanism of the
RI property on the program π only
needs two parallel programs: the high
(π[0]) and the low (π[1]). We specify
the full configuration of the local execu-
tions in Fig. 9. The high execution can
receive (real) input values from L and
H channels, while the low execution can
receive only (real) input values from L
channels. The high execution can write
output values only to H channels, the
low execution can write values only to L
channels. If the interrupt signal is from
π[1], or the interrupt signal is from π[0]
and the level of channel c is H, then the
input action will be performed. Other-
wise, the local execution keeps sleeping.

The MAP program is described in
Fig. 9c. The function canTell(c) indi-
cates whether the local execution π[x]

can receive real values from MAP: canTell(c) , λx.t ∈ TM [x][c]. If a local
execution that is sleeping and waiting for an input item from a channel has
received the input item required, this local execution is ready to be awoken:
isReady(c) , λx.EX[x].stt = S ∧ EX[x].prg = input y from c;π∧
EX[x].in = I ∧ dequeue(I, c) = (val, I ′) ∧ val 6= ⊥.

When there is an interrupt signal c from π[i] on an output instruction, the
REDUCE program provided in Fig. 9d is activated. If the local execution π[i] can
send items to the c channel, the output action is performed. Otherwise, there is
no output action. After that the output queue of π[i] is cleaned and only π[i]
is waken. Since the execution of the wake instruction wakes up only π[i], the

function identical() is defined as identical(i) , λx.x = i.

1 input h1 from cH1
2 input l1 from cL1
3 if !h1 then
4 l1 := !l1
5 input l2 from cL2
6 h2 := 0
7 if l1 then
8 input h2 from cH2
9 output l2 + h2 to cH3

10 output l2 + h2 to cL3

Fig. 10: Running Exam-
ple Program

Example. We illustrate the enforcement mechanism of RI
with the program in Fig. 10. The program has two high in-
put channels cH1, cH2, and one high output channel cH3. It
is not secure: with the execution of instructions at lines 3,
4, 7, and 8, the secret values from cH1 (line 1) and cH2

(line 8) can influence the value sent to the low output
channel cL3 (line 10). In addition, the sequences of high
input items are affected by the low input (line 7 and 8);
for example, if the value of l1 is T, an input item from
cH2 will be consumed. We consider the execution of the program with the input
sequence (cH1 = T) (cL1 = F) (cL2 = m) (cH2 = M).

The high execution in our framework executes the instructions at lines 1, 2,
3, 5, 6, 7, 9, and 10. The output generated at line 10 is ignored by REDUCE.
The low execution executes the instructions from line 1 to 10. MAP reads an

input from cH3 for the input instruction at line 8. The output generated by the
output instruction at line 9 is ignored by REDUCE.

Input to MAP:
0 1 2 3

cH1 T ⊥ ⊥ ⊥
cH2 ⊥ ⊥ ⊥ M
cL1 ⊥ F ⊥ ⊥
cL2 ⊥ ⊥ m ⊥

Output by REDUCE:
0 1 2 3 4 5

cH3 ⊥ ⊥ ⊥ ⊥ m ⊥
cL3 ⊥ ⊥ ⊥ ⊥ ⊥ ∗+m

Local Executions:
The high execution π[0]:
The local input: The local output:
cH1 T ⊥ ⊥ ⊥
cH2 ⊥ ⊥ ⊥ M
cL1 ⊥ F ⊥ ⊥
cL2 ⊥ ⊥ m ⊥

cH3 ⊥ ⊥ ⊥ ⊥ m ⊥
cL3 ⊥ ⊥ ⊥ ⊥ ⊥ m

The low execution π[1]:
The local input: The local output:
cH1 F ⊥ ⊥ ⊥
cH2 ⊥ ⊥ ⊥ ∗
cL1 ⊥ F ⊥ ⊥
cL2 ⊥ ⊥ m ⊥

cH3 ⊥ ⊥ ⊥ ⊥ ∗+m ⊥
cL3 ⊥ ⊥ ⊥ ⊥ ⊥ ∗+m

Fig. 11: Example of input and output queues
for RI

We describe the global input, output
queues, and local input, output queues in
Fig. 11. The values sent to cH3 and cL3

are respectivelym and ∗+m. Each column
in the tables corresponds to an input/out-
put operation. Input and output tables
should be read from left to right; columns
describe the input/output to each channel
at time t = 0, t = 1, etc.

5.2 Deletion of Inputs

The property of deletion of inputs (DI)
[15] requires that if we perturb a possible
trace t (where t = β.e.α and there is no
high input event in α) by deleting the high
input event e, then the result can be cor-
rected into a possible trace t′ (t′ = β′.α′).
The parts β and β′ are equivalent on the low input events and the high input
events. In other words, the low input events and the high input events in β and
β′ must be the same. The parts α and α′ are also equivalent on the low events
and the high input events. Since there is no high input events in α, there is also
no high input events in α′.

π[0] π[1] π[i] > 1
LV L[c] = H at a a
LV L[c] = L t at t

(a) TM for DI

π[0] π[1] π[i] > 1
LV L[c] = H at − −
LV L[c] = L − at −

(b) TR for DI

1: if LV L[c] == H and i == 0 then
2: clone(identical(i), PRIVTM

, PRIVTR
)

3: if a ∈ TM [i][c] then
4: input x from c
5: map(x, c, canTell(c))
6: map(valdef , c,¬canTell(c))
7: wake(isReady(c))
8: else
9: if t 6∈ TM [i][c] then

10: map(valdef , c, identical(i))
11: wake(identical(i))
12: else
13: skip

(c) MAP for DI for an input from c from π[i]

Fig. 12: Configuration of the enforcement mech-
anism for DI. REDUCE is in Fig. 9d.

In our notation, if we have an in-
put queue I = I1.~v.I2, where ~v con-
tains a value from a high channel and in
I2 there are either no high input items
or only high input items with default
values, then this input queue can be
changed by replacing ~v by the default
vector. The obtained input queue can
be sanitized by removing existing de-
fault high input items in I2 or adding
other default high input items to I2.
The sanitized queue can be consumed
completely by a clone of the original
program and the output should still be
equivalent at the low level to the origi-
nal output generated with the input I.

Definition 2. A program π satisfies
the property of deletion of inputs DI
iff for any potential value chosen as a
default value,

∀I : I = I1.~v.I2 ∧ LV L[c] = H ∧ I2|H = (~df)
∗ ∧ (π, I) ⇓ O =⇒

∃I′ : I
′

= I
′
1.I
′
2 ∧ I

′|L = I|L ∧ I′2|H = (~df)
∗ ∧ (π, I

′
) ⇓ O′ ∧O′|L = O|L,

where ~v[c] 6= ⊥ and ~df is a vector containing the default value.

DI is enforced with the idea that whenever the high execution requests a high
input item, this execution will be cloned and the clone cannot receive real values
from high channels. The enforcement mechanism for DI (presented in Fig. 12,
REDUCE is presented in Fig. 9d) requires more than two local executions. Only
the high execution π[0] can ask for and get the high input items, other local
executions will only use the default values. When the high execution is cloned
the new execution is inserted into the stack of local executions. The configuration
of the clones for input (respectively, output) is presented in Fig. 12a (respectively,
12b) in the column π[i] > 1; this is the privilege configuration template PRIVTM

(PRIVTR
, respectively). In addition, only the low execution π[1] can ask for low

input items and generate low output items; other local executions will reuse the
low input items retrieved by the low execution.

5.3 Non-Interference
1: if a ∈ TM [i][c] then
2: input x from c
3: map(x, c, canTell(c))
4: map(valdef , c,¬canTell(c))
5: wake(isReady(c))
6: else
7: if t 6∈ TM [i][c] then
8: map(valdef , c, identical(i))
9: wake(identical(i))

10: else
11: skip

Fig. 13: MAP for SME for input from
c requested from π[i]

The enforcement mechanism configured in
this section mimics the SME-style enforce-
ment of non-interference [7] from Devriese and
Piessens, and therefore inherits also the limi-
tations of SME formal guarantees.

Informally, a program satisfies the termination-
insensitive non-interference (TINI) property if
given two arbitrary inputs that are equivalent
at the low level and the executions of the pro-
gram on these two inputs are terminated, then the outputs generated are indis-
tinguishable to the users at the low level. In other words, the high input items
in these two inputs have no effect on what observable is to users at the low
level. Termination-sensitive non-interference (TSNI) additionally requires that
the secret input items do not influence the termination of the program [2].

Definition 3. A program π satisfies the property of termination-insensitive
non-interference, denoted as π |= TINI, with respect to the given semantics iff

∀I, I′ : I
′|L = I|L =⇒ O

′|L = O|L,

where (π, I) ⇓ O and (π, I ′) ⇓ O′.

Definition 4. A program π satisfies the property of termination-sensitive non-
interference, denoted as π |= TSNI, with respect to the given semantics iff

∀I, I′ : I
′|L = I|L ∧ (π, I) ⇓ O =⇒ (π, I

′
) ⇓ O′ ∧O′|L = O|L.

To implement the SME approach [7], we use the following configuration. The
high execution π[0] can only ask high input items, while for low input items it
needs to wait for the values ask by the low execution π[1]. The low execution
π[1] can ask and consume only low items. If the low execution requires a high
input item, the default value will be used.

The configuration tables TM and TR and the program for REDUCE to enforce
the SME-style NI are presented in Fig. 9. However, the program for MAP is dif-
ferent, as shown in Fig. 13. The functions canTell(i), isReady() and identical(i)
are defined in Sec. 5.1.

6 Formal Properties

We formalize the soundness and precision properties of an enforcement mecha-
nism and prove the theorems on the security guarantees that the shown enforce-
ment mechanisms ensure with respect to the corresponding properties. Table 1
summarizes the properties and enforcement mechanisms.

Definition 5. An enforcement mechanism is sound with respect to a property
P if for all programs π the enforcement mechanism executed on π satisfies P .

Theorem 1. Each enforcement mechanism in Tab. 1 is sound with respect to
the corresponding property, except for TSNI.

Proof sketch: the low input items consumed and the low output items generated
by the enforcement mechanism are always produced by the low execution; the
high output items are always generated by the high execution. The differences
among different properties come from the constraints on high input items. By
using the induction technique on the length of the derivation sequence of the
enforcement mechanism, we can prove that the high input items consumed by
the enforcement mechanism satisfy the constraints of the enforced property. �

The notion of precision for enforcement of a property is taken from [7, 9].
The intuition is that the enforcement mechanism does not change the visible
behavior of a program that is already secure with respect to the chosen property
(and in particular each I/O on specific channels). Devriese and Piessens sepa-
rated by construction the input queues of each channel. Since in our formulation
the channels are merged into a global stream, our definition of precision must
make explicit that the partial order of input items on a channel is preserved.
This observation applies also to the order of output items in output queues.
In our framework, the local executions are executed in parallel with no specific
order. Therefore, the total order of input items consumed by the enforcement
mechanism can be different from the total order of input items in the input
queue consumed by the controlled program that already obeys the desired prop-
erty. However, the partial order of input items on a channel is preserved. This
observation applies also to the order of output items in output queues.

Definition 6. An enforcement mechanism is precise with respect to a property,
if for any program π that satisfies the property, and for every input I, where
(π, I) ⇓ O, the actually consumed input I∗ and the actual output O∗ of the
enforcement mechanism regardless of the order of executing local executions will
be such that I∗|c = I|c and O∗|c = O|c for every channel c, and (EM(π), I∗) ⇓
O∗.

Theorem 2. Each enforcement mechanism in Tab. 1 is precise with respect to
the corresponding property, except for TINI.

Proof sketch: let π be a program satisfying the enforced property and (π, I) ⇓
O. Regardless of the order of executing local executions, if the low execution
consumes the same low input items as in I and the high execution consumes high
input items as in I, then the input consumed by the enforcement mechanism is
I∗, where I|c = I∗|c for all c (if not, then contradictions will occur). �

We prove Th. 1 and Th. 2 in the full version of this paper [18].

7 Further Properties

Our framework can capture other properties. Other BSPs from [15] can also be
enforced. Removal of events (RE) requires that if there is no high input, there
is no high output. To enforce RE, when receiving an output request for a high
channel from the high execution, REDUCE needs to check whether there are any
other high input items different from the default values and affecting the output
generated by the high execution. Enforcement of strict removal of inputs (SRI) is
similar to the enforcement of RI, but only the low execution can generate output
items for both high and low channels. Strict deletion of inputs, deletion of events,
and backward strict deletion can be enforced by using the clone instruction and
the REDUCE check mentioned above.

π[0] π[1]
LV L[c] = H at −
LV L[c] = L t at

π[1] waits for high in-
put events from π[0]

Fig. 14: SubDI

By modifying the privileges of local executions we can
enforce new properties. A possible configuration is shown
in Fig. 14, where the low execution needs to wait for high
input items requested by the high execution even though
the low execution can only consume default values. This option leads to a novel
strict property, which we have called substitution-deletion of inputs (SubDI).
The configuration of TR also leads to discovery of new properties. For the lack
of space we provide examples of SubDI and the properties by the modification
of TR in the full version of this paper [18].

Our framework can be extended to accommodate information flow policies
represented as a complete lattice [6]. For a complete lattice with n elements,
the enforcement mechanisms of RI and NI require n local executions, one for
each element of the lattice. The enforcement mechanism of DI requires n local
executions at initialization; it will spawn a new local execution every time a local
execution at the level l (where l is not the level at the bottom of the lattice)
requests an input item at the level l.

8 Limitations

Currently, the enforcement mechanism is not independent from the choice of the
default values (valdef). We prove soundness and precision of enforcement with
respect to all possible choices of the default values, and we assume that for each
channel it is possible to determine a suitable (“non-leaking”) default value.

Our mechanism in §5.3 inherits the limitations of SME [7]. SME can soundly
enforce TINI, but not TSNI because the low execution may terminate while the
high execution may not terminate, and thus the whole enforcement mechanism
does not terminate. SME (and our enforcement mechanism for NI) can precisely
enforce TSNI, but not TINI.

In [11] Kashyap, Wiedermann and Hardekopf evaluate the security guaran-
tees of SME for the termination covert channel; they have proposed to mediate
the security problems of SME related to this channel with more sophisticated
schedulers. In our approach we do not schedule the order of local executions,
therefore, we cannot immediately adapt their suggestions. However, our frame-
work can be extended to control the order of executing local executions by spec-
ifying a new rule to control the start of local executions, and the predicate
isReady() used in the wake instruction.

We see one of the main limitations of our current proposal in the absence
of a practical implementation. It is still an open question, whether the memory
and performance overhead will be acceptable, especially for complex properties,
such as DI. In addition, the fact that MAP and REDUCE are responsible for all
respectively input and output operations may have influence on the performance
of the enforcement mechanism. Devriese and Piessens in the original SME paper
[7], as well as Bielova et al. in [4] and De Groef et al. in [9] report on complications
while instrumenting SME for real browsers, which we will have to address. A
working implementation is our next target.

9 Related Work

The information flow policies enforcement is a deeply investigated field. We will
briefly recall the developed approaches for information flow policies enforcement
and discuss the most relevant techniques in more details.

Static analysis techniques for information flow security inspect the program
code in order to check whether there is any unwanted information flow. We refer
the interested reader to the survey by Sabelfeld and Myers [20] with an excellent
overview of static language-based approaches for information flow security.

In contrast to the static verification techniques, dynamic analysis for infor-
mation flow enforcement tracks propagation of confidential information when
a program is executed; an extensive review on the dynamic approach can be
found in [14]. The trade-offs between static and dynamic analysis approaches
are evaluated by Russo and Sabelfeld in [19].

Our choice of the multi-execution approach, despite its performance overhead
which is negligible with multicoress, was dictated by its advantages over the static
and dynamic information flow analysis techniques. Static analysis can fall short
in scenarios when the program can be composed dynamically (e.g. JavaScript);
dynamic runtime monitoring can suffer from impossibility to account for the
branch of execution that was not taken, and can leak control flow details [20]
through the halting behaviour of the program.

Secure multi-execution [7] has inspired many researchers to push further in-
vestigation of this technique. Jaskelioff and Russo in [10] describe their adapta-
tion of SME to Haskell and provide an SME implementation in a handy library.
SME is applied to a reactive model of a browser in [4], and is implemented as a
fully functional web browser FlowFox that embeds an SME-based runtime en-
forcement mechanism in [9]. FlowFox is a modification of Firefox, it introduces
a noticeable memory and performance overhead, but works with most of the
existing web sites. We plan to learn from [9] how to implement a fully working
solution and how to evaluate the usability.

Barthe et al. [3] provides sound and precis enforcement of non interference
through static program transformation instead of modifying the runtime environ-
ment. The transformation technique is based on the main SME idea: a program
is transformed into the sequential composition of the same code, first at the low
level and then at the high level. The high instance reuses the inputs of the low
instance through global input buffers.

Instead of having multiple different executions, in [1] non-interference is
achieved by using faceted values (pairs of two values containing low and high
information). This allows to simulate multiple executions on different security
levels while in fact running a single-process execution. The authors also introduce
enforcement of declassification policies with their technique.

Capizzi et al. in [5] propose a shadow execution technique that is similar
to SME. Shadow execution consists of replacing the original program with two
copies. The private copy (the high execution) receives the confidential data, but
is prevented from accessing the network. The public copy (the low execution)
receives fake data, but can access the network; the results from the network are
supplied also to the private copy. In this way the private copy can avail any
network related functionality without leaking the confidential data.

10 Conclusion

We have presented the architecture of an extensible framework for enforcement
of information flow properties. To the best of our knowledge, this is the first
enforcement mechanism capable to accommodate more than one property. The
main idea behind our approach is to run several local instances of a program in
parallel, as in secure multi-execution [7], and carefully orchestrate processing of
input and output operations of the enforced program through two components
(MAP and REDUCE), and two tables (TM and TR).

To support our claims on the extensibility of the framework we have pro-
vided a set of configurations of the enforcement framework for enforcement of
non-interference and several properties from the framework of Mantel [15]. The
framework components programs for each of these properties are simple and easy
to write. As for software, the correctness proof maybe complicated but writing
programs that work should be easy.

Our next steps include the investigation the patterns of TM , TR, πM , πR and
the property to be enforced; a proof-of-concept implementation (we have chosen
to implement our framework for a web browser; however, our approach can be
suitable to any platform), and extension of the framework with more properties
and options for declassification.

Acknowledgements We thank the anonymous reviewers of FCS’2013 for their
feedback and suggestions which greatly helped to improve the paper. This work
is partly supported by the projects EU-IST-NOE-NESSOS and EU-IST-IP-
ANIKETOS.

References

1. T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow.
SIGPLAN Not., 47(1):165–178, Jan. 2012.

2. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. Math. Structures in Computer Science, 21(6):1207–1252, 2011.

3. G. Barthe, et al. Secure multi-execution through static program transformation. In
Formal Techniques for Distributed Systems, volume 7273 of LNCS, pages 186–202,
2012.

4. N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference
for a browser model. In Proc. of NSS 2011, pages 97–104, 2011.

5. R. Capizzi, et al. Preventing information leaks through shadow executions. In
Proc. of ACSAC 2008, pages 322–331, 2008.

6. D. E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, May 1976.

7. D. Devriese and F. Piessens. Noninterference through secure multi-execution. In
Proc. of IEEE S&P 2010, pages 109–124, 2010.

8. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. of
IEEE S&P 1982, pages 11–20, 1982.

9. W. D. Groef, et al. Flowfox: a web browser with flexible and precise information
flow control. In Proc. of CCS 2012, pages 748–759, 2012.

10. M. Jaskelioff and A. Russo. Secure multi-execution in Haskell. In Perspectives of
Systems Informatics, volume 7162 of LNCS, pages 170–178, 2012.

11. V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-sensitive
secure information flow: Exploring a new approach. In Proc. of IEEE S&P 2011,
pages 413–428, 2011.

12. R. Lämmel. Google’s MapReduce programming model - revisited. Sci. Comput.
Program., 68:208–237, October 2007.

13. L. Lamport. Specifying concurrent program modules. ACM Transactions on Pro-
gramming Languages and Systems, 5(2):190–222, Apr. 1983.

14. G. Le Guernic. Confidentiality enforcement using dynamic information flow anal-
yses. PhD thesis, Kansas State University, Manhattan, KS, USA, 2007.

15. H. Mantel. Possibilistic definitions of security - an assembly kit. In Proc. of CSFW
2000, pages 185–199. IEEE Computer Society, 2000.

16. D. McCullough. Specifications for multi-level security and a hook-up property. In
Proc. of IEEE S&P 1987, pages 161–166, 1987.

17. J. McLean. A general theory of composition for trace sets closed under selective
interleaving functions. In Proc. of IEEE S&P 1994, pages 79 –93, May 1994.

18. M. Ngo, F. Massacci, and O. Gadyatskaya. MAP-REDUCE runtime enforcement of
information flow policies. Available as the Arxiv report 1305.2136. http://arxiv.
org/abs/1305.2136. Technical Report DISI-13-019, University of Trento, 2013.

19. A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In
Proc. of CSF 2010, pages 186 –199, july 2010.

20. A. Sabelfeld and A. Myers. Language-based information-flow security. J. on Se-
lected Areas in Communications, 21(1):5 – 19, 2003.

21. A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. J. on
Comput. Secur., 17(5):517–548, Oct. 2009.

22. D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow analysis.
J. Comput. Secur., 4(2-3):167–187, Jan. 1996.

23. A. Zakinthinos and E. Lee. A general theory of security properties. In Proc. of
IEEE S&P 1997, pages 94 –102, May 1997.

