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Abstract—The basic tenet of security management when
actions violate policies is that the former must be forbidden
or amended. This requires to specify precisely all possible
exceptions and corrections to the default workflow.

In many practical e-health business processes this is not
feasible: the default clinical or administrative protocol is simple
and well understood by clinicians but the precise codification of
all possible amendable errors into the policy would transform
it from a straight-line to an unreadable spaghetti-graph.

In this paper we propose a more practical alternative: the
clinician only specifies the default protocol and marks for each
protocol step the venial errors and their possible corrections.
Given a global bound on the amount of errors in a trace
that can be tolerated for each workflow execution, we can
automatically generate an edit-automata that can provably
enforce the policy with a sufficient degree of predictability (a
policy metric for error correction).

We illustrate our approach with a concrete e-health work-
flow from the Italian region of Lombardy.

Keywords-security; e-health; error correction; automated
policy generation

I. INTRODUCTION

One of the challenge in policy specification and enforce-
ment is the trade-off between writing simple policies and
enforcing complex run-time behaviors. This is particularly
important for workflows in which human actors must interact
with the policy enforcement mechanism. A paradigmatic
example that we consider in this paper is the (relatively
simple) case of drug dispensation workflows at a hospital.

From the perspective of the run-time monitor in charge
of enforcing the compliance of the actual workflow with the
health and privacy regulations, the richer the policy the bet-
ter. During the executions doctors, nurses, and pharmacists
will not be disturbed in their primary mission (delivering
the right drug to the right patient) because an insignificant
deviation from the default workflow has taken place. Run-
time exceptions and the consequent additional workload
needed to complete the execution distract users and convince
them that “The system doesn’t work” (or, worse, “The
system doesn’t trust us”). If such disruptions occurs too often
users will increasingly try bypass the run-time monitor.

From the perspective of policy management, detailed
policies are difficult to write, are difficult to check for
consistencies and, de facto impossible to communicate to

the end users. So, the simpler the policy the better. Back
to our case, a simple drug dispensation protocol for highly
sensitive drugs (HIV or chronic-related drugs) is, in its
essence, a linear sequence of steps (with few loops for
stock replenishing). This is easily understood by doctors
and nurses. However each and every step might be subject
to a number of exceptions or common minor errors (for
example closing a window instead of pressing the button
done). Detailing and representing all these exceptional steps
in a graphical form would make the protocol unreadable.

In our domain (we discuss more details of the require-
ments of the hospital workflow in [1]) there is a further
difficulty: our users would definitely insist that there is only
one policy, i.e. the “official” protocol workflow. There is
no such a thing as a policy including all exceptions (this
would require validation by the risk manager and a number
of responsible for the pharmacy and dispensation process).
However, the system can (should) be flexible and users could
specify which and how many deviations could be tolerated
by the system or which actions should be amended.

A. Our Contribution

In order to exit from this impasse, we build upon the
works of automatic policy generation and run-time en-
forcement to propose a semi-automatic way to generate
enforcement mechanisms that can tolerate up to k errors
given a ”default” workflow and a specification of a simple
list of errors and possibly their corrections.

As the underlying enforcement mechanism we use edit
automata [2] as they are based on a strong theory for runtime
enforcement, and they effectively enforce all renewable
policies. The edit automata can transform the actions that do
not comply with the policy (bad actions) in many different
ways to produce good actions. We would like to generate
a subclass of edit automata that perform this transformation
in a well-defined way.

This subclass extends the classical default-deny policy,
considering the type and number of deviations from the
policy that the edit automaton can allow or amend. In con-
trast to the classical approach, where the runtime enforcer is
constructed from the given policy, we summarize our idea
in Figure 1.



(a) Mechanism enforces the policy.

(b) Mechanism enforces the policy and tolerates up to k errors.

Figure 1: Original idea and our idea of constructing an
enforcement mechanism.

Later in the paper we will propose a class of errors
called venial errors. They are actions that are not explicitly
“allowed” in the security policy, however, they are not
harmful.

Given a policy P and a maximum number of er-
rors/deviations k, we construct a subclass of edit automata
that can provably enforce the given policy by tolerating up
to k errors and whose behavior is predictable (i.e. deviates
minimally from the intended behavior of the users as we
defined it in our previous work [1]).

Section II describes a concrete case study from the
Hospital S. Raffaele of Milano (HSR) that shows an example
of an application and presents the intuitive notion of venial
errors. Then, we introduce the basic notions of enforcement
monitors, provide the formal definition of venial errors
and present the properties of enforcement mechanism that
can tolerate them in Sections III- IV. Section V presents
an automatic construction of enforcement mechanism. We
conclude the paper in Section VI.

II. RUNNING EXAMPLE

The drug dispensation process is a high level business
process for a hospital. As one example, there is a process
called File F that allows refunding of the drugs for spe-
cific critical and chronic diseases that should be done by
the public authority. As another example, if the doctor is
prescribing a specific drug for the research program purposes
(i.e. the patient has been enrolled for the clinical trial for the
testing of that drug), the reimbursement should be done by
the clinical trial funds.

Drug dispensation process involves human participants as
well as IT technologies. Some tasks are human activities
without any interaction with IT system (e.g. all patients
tasks, or delivering drugs from stock to patient (physically)
by doctor or nurse). Hence, some of the activities may be
done in a different way than described in the default process,
and we will make a precise distinction between the actual
execution of the process and the official default process. The
described model of drug dispensation assures that if all the

activities adhere to it, they comply with the encoded rules
(e.g. File F process).

The fragment of the drug dispensation process that we
consider in this paper is the drug selection. The main steps of
this subprocess are listed below (in brackets the abbreviation
used in the rest of the paper):

1) The doctor fills list of drugs for his patient and selects
one drug (Dis).

2) If the drug is highly sensitive, reviewing therapeutical
notes is needed. They will be shown to the doctor that
has to review them (Tnn; Rtn). Otherwise therapeutical
notes can be emitted (TnNn).

3) The system checks drug’s submission to Research pro-
gram and in case the drug is registered (Dr) shows the
notification to the doctor. Then the doctor should insert
the research protocol number (Irpn), a number of the
protocol according to which the drug can be given to
the patient. If the drug is not registered to Research
program, then the doctor skips this step (DNr).

4) The doctor performs other actions needed for the drug
prescription (Dpres).

The part of process we present has been simplified with
respect to its real description but it can happen that the
actions of the process execution do not correspond to the
policy. In any practical environment there is always a trade-
off between the needs of the users and actual executions
they are allowed to perform. Strict enforcement might be
too costly from an organizational perspective.

We have an aside but important note on the terminology
used in this paper. Most papers on enforcement mechanisms
use the words “violation” rather than “error”. We will use
them interchangeably. In the course of our many interactions
with HSR, it has become apparent that the word “error” is
preferred for psychological reasons. The term “violation”
implies that a doctor would deliberately ignore the steps of
the protocol and this implies for the end users a deliberate
mistrust in their behavior by the evil security department. Of
course doctors (as any user) could misbehave but in order to
gain acceptance of the mechanisms it is preferable to present
enforcement as a way to support honest users rather than to
deter malicious users.

A. Venial and Amendable Errors

Coming back to our example of drug selection process,
consider the action of reviewing the therapeutical notes by
the doctor. While such notes are important (as they contain
information about allergies, unwanted interactions etc.) they
are normally updated very rarely and for frequently used
drugs doctors might “forget” to actually review them and
just skip them by closing the window of drug prescription
instead of clicking on the “Done” button. In this scenario,
therapeutical notes play the same role of click-through soft-
ware installation agreements: which system administrator
reads the n-th Microsoft software installation agreement?



Table I: A policy and possible errors

Policy Error No. of errors Error type Correction
Sequences satisfying the descrip-
tion of the process from running
example

Instead of reviewing therapeutical notes
close the window

k errors per day Venial No correction

Research protocol number is not inserted Can be corrected Insert special
number for audit

From the point of view of the medical process this can be
considered a venial error: we can tolerate few deviations in
which the logs showed that the doctor clicked ignore rather
than reviewed some of the most commonly prescribed drugs.

On the other hand, the doctor should not be allowed
to violate the policy systematically, nor we want to over-
complicate the definition of the policy with all possible
ways to treat venial errors. From a usability perspective
we would just like to have a high level view, for example
allowing to close the window (Ctw) instead of reviewing the
therapeutical notes (Rtn) k times per day.

The enforcement mechanism should do the rest automat-
ically. It should allow the user to make ”almost” correct
actions only this limited number of times and only if his
errors are venial. We show Table I that can be made by an
expert in the application domain saying which errors can be
allowed and what number of times.

The second example is inserting the research protocol
number in the protocol window. A doctor has to complete
this step in order to proceed with the drug selection. After
she fills in this number, the reimbursement of the drug will
be done by the clinical trial funds. For all the drugs that
are not for research the reimbursement later on is done by
the public authority as described in the File F procedure.
However, it might happen that the doctor skips the insertion
of this number. In this case the drug reimbursement process
will be done by the public authority which can not be
considered a venial error since the whole reimbursement
process for this drug will be wrong (reimbursement will be
done by a wrong party). The enforcement mechanism would
therefore need to generate an alert and “correct” the wrong
step i.e. inserting another special number that later will be
used during the audit1.

In practice, different doctors can prescribe different drugs
to different patients and we would like to avoid that a local
infringement of the policy (e.g. a doctor forgot to click “I
have reviewed the therapeutical notes”) does not hang the
entire process while keeping the overall policy as a whole.

Notice that we need the concept of a global policy and
we cannot spawn an enforcement monitor for each doctor
and patient pair. At first the notion of venial errors would
be trivial: in the individual prescription process there is
at most one venial error that could be made. Second and

1In the real implementation systems are not allowed to automatically
perform certain actions as the final liability must stay with a human,
however they can support the human by suggesting the relevant correction.

foremost, the hospital is liable as a whole if too many errors
are present. If all doctors are allowed one venial error in
the individual prescription the hospital might end up with
all process without therapeutic notes checklist and thus the
venial error would become a systematic error leading to
potential lawsuits.

So we want to define how the executions where “some-
thing locally bad may happen” can be enforced by tolerating
errors. The actions, which are neither venial, nor amendable,
are always present and cannot be fixed in practice. For
example, when the process involves the interactions of an
organization with another one; for instance we can refer to
the cases of outsourcing services or to the cases in which
some actions are done by external parties.

III. BACKGROUND AND NOTATION

The set of observable process actions is denoted by Σ
and a set of possible actions to be executed is T. A trace
is a finite or infinite sequence of actions; the set of all
finite sequences over Σ is denoted by Σ∗, the set of infinite
sequences is Σω , and the set of all sequences is Σ∞. By σ
we refer to a trace and by · we refer to an empty trace. We
write σ; τ to denote concatenation of two sequences, where
σ must be finite. We denote the length of the trace σ by |σ|.

A trace consisting of actions requested for execution is
a tentative execution. A runtime monitor E : Σ∞ → T∞

transforms tentative executions into sequences of actions that
will be finally executed.

A security policy is a set of traces P ⊆ Σ∞. A policy
P is a security property if there exists a predicate P̂ over
the traces, such that ∀σ ∈ Σ∞ : P̂ (σ) ⇔ σ ∈ P . So we
will use interchangeably the policy P with its corresponding
predicate P̂ . The trace σ that satisfies the property P̂ is
called good, and the trace that does not satisfy the property
is called bad.

In practice the policy is given implicitly by describing the
workflow corresponding to good executions.

Example 1: The security policy P is made by the traces
• SimpleRun = Dis; TnNn; DNr; Dpres,
• NoteRun = Dis; Tnn; Rtn; DNr; Dpres,
• ResearchRun = Dis; TnNn; Dr; Irpn; Dpres,
• NoteResearchRun = Dis; Tnn; Rtn; Dr; Irpn; Dpres

and their closure under concatenation: for every σ, σ′ ∈ P :
σ;σ′ ∈ P . An empty trace NoRun also satisfies the policy.

Example 2: Let us now make some examples of bad
traces with respect to the policy P . The doctors might forget



Abbreviations

Dis = Drug is selected
Tnn = Therapeutical notes needed
Rtn = Review therapeutical notes
TnNn = therapeutical notes not needed
Dr = Drug is for research
Irpn = Insert research protocol number
DNr = Drug is not for research
Dpres = Other drug selection actions

Figure 2: Finite state automaton representing a policy of drug selection subprocess

to click the “I have read the Therapeutical Note” button
and rather close the window (Ctw). A similar event could
happen for the step in which research protocol number is
not inserted (Cpw) but the protocol window is closed. We
list them below:
• CloseNote = Dis; Tnn; Ctw; Dr; Irpn; Dpres,
• CloseProt = Dis; Tnn; Rtn; Dr; Cpw; Dpres,
• CloseNoteProt = Dis; Tnn; Ctw; Dr; Cpw; Dpres
Figure 2 presents the security policy as a usual finite-

state automaton, that we call a Policy automaton AP =
〈Σ, Q, q0, δ, F 〉. Σ is finite nonempty set of security-relevant
actions, Q is a finite set of states, q0 ∈ Q is an initial state,
δ : Q × Σ → Q is a labeled partial transition function,
F ⊆ Q is a set of accepting states. We will write q a−→ q′

whenever δP (q, a) = q′. A finite run is accepting if the first
state of the run is an initial state and the last state of the run
is an accepting state. Good executions of the workflow are
all the accepting runs of the Policy automaton.

An enforcement mechanism E : Σ∞ → T∞ is a sequence
transformer, in this paper we consider a particular model of
it, called edit automaton [3], [2]. Edit automata have a power
of transforming sequences of actions by inserting actions
and suppressing them. We present our own definition of this
automaton. Intuitively, we have just simplified the original
notions by enucleating the notions of output and memory
and always forced the enforcement mechanism to progress
in the processing of the input. Our actions can then be shown
to be identical to a combinations of the atomic actions (read
symbol but no output, output symbol but don’t read input)
from [2] on every non-diverging computation2.

Definition 3.1 (Edit automata): An edit automaton E is
a 5-tuple of the form 〈Q, q0, δ, γo, γk〉 with respect to some

2A diverging computation is a computation where the edit automaton
will run forever without reading any input while keeping outputting data.
While it was theoretically useful in [2] the very idea that an enforcement
mechanism could possibly produce output without any input stimulus turned
out a difficult sell to normal users. In contrast, the idea that the enforcement
mechanism could spend a lot of time in order to process an input and
eventually report a long sequence of follow-up actions was considered
impractical but understandable.

system with actions set Σ. Q specifies the possible states,
and q0 ∈ Q is the initial state. The total function δ : (Q ×
Σ)→ Q specifies the transition function; the total function
γo : (Q×Σ∗×Σ)→ Σ∗ defines the output of the transition
according to the current state, the current input action and
the memory; the total function γk : (Q × Σ∗ × Σ) → Σ∗

defines the updated memory after committing the transition.
In order for the enforcement mechanism to be effective

all functions δ, γk and γo should be computable. In practice
they should require polynomial if not constant time.

The function γo defines an output of the automaton
produced at one transition and the function γk defines the
memory containing the actions that are proceeded by the
automaton but not output yet.

Definition 3.2 (Run of an Edit automaton): Let A =
〈Q, q0, δ, γo, γk〉 be an edit automaton. A run of A on an
input sequence of actions σ = a1; a2; . . . is a sequence
of pairs

〈
(q0, ε), (q1, σ

k
1 ), (q2, σ

k
2 ), . . .

〉
such that qi+1 =

δ(qi, ai+1) and σki+1 = γk(qi, σ
k
i , ai+1). The output of A

on input σ is sequence of actions σo = σo1;σo2; . . . such that
σoi+1 = γo(qi, σ

k
i , ai+1).

We use a notation q, σ
a|σo

 q′, σ′ to represent one
transition in the edit automaton from the state q with current
memory σ on input action a. As a result, a new state is
q′ = δ(q, a), an output is σo = γo(q, σ, a) and the updated
memory is σ′ = γk(q, σ, a).

We will have several types of transitions in our automata:

a) q, σ
a|σ;b
 q′, · outputs the memory followed by some

action b and empties it afterwards;
b) q, σ

a|·
 q′, σ; b adds some action b to the memory and

does not output anything.

We use action b different from an input action a because
a can potentially be a deviation and b can be its correstion.

Soundness and transparency are two basic properties that
were originally proposed in [3]. Soundness means that
output of enforcement mechanism should be always good.

Definition 3.3: An enforcement mechanism E is sound



for a policy P̂ over action set Σ iff

∀σ ∈ Σ∗. P̂ (E(σ))

Transparency means that good executions should not be
changed by the enforcement mechanism.

Definition 3.4: An enforcement mechanism E is trans-
parent for a policy P̂ over the action set Σ iff

∀σ ∈ Σ∗. P̂ (σ)⇒ E(σ) = σ

We also use an additional evaluation of an enforcement
mechanism called predictability. This notion was proposed
in [1] and means that every trace that is close to a good trace
is mapped by an enforcement mechanism into a trace close
to the same good trace. This notion is based on metrics and,
among the possible metrics discussed in [1], we will use one
which has been used for dictionary searches. However, we
first formally introduce the concept of predictability.

Definition 3.5: An enforcement mechanism E is pre-
dictable within ε if for every trace σP ∈ P and every ν ≥ ε,
there exists a ∃δ > 0 such that for all σ ∈ Σ∗ the following
holds:

d(σ, σP ) ≤ δ ⇒ d′(E(σ), E(σP )) ≤ ν

Informally, it says that for every good trace there always
exists a radius δ, such that all the traces within this radius
are mapped into the circle with radius ε from this trace. In
this definition d and d′ are some metrics.

Definition 3.6: A metric3 on a set S is a function d :
S × S → R ∪ {∞} such that

a) d(σ, τ) ≥ 0,
b) d(σ, τ) = 0 if and only if σ = τ ,
c) symmetry: d(σ, τ) = d(τ, σ),
d) triangular inequality: d(σ, τ) ≤ d(σ, σ′) + d(σ′, τ).

We have already argued in [1] that the metric that counts
the number of replaced actions is more palatable for the end
users than, for example, the metric that counts insertions.

Our end users insist that there is only one official policy
(the simple default one). An enforcement mechanism could
be entitled only to correcte small errors without changing
the protocol used by the operators (such as patient identi-
fication, patient consent and blood sampling before blood
transfusion). If the doctor forgot to fill one field in the form,
the mechanism can help her by inserting a default value. On
the other hand, insertions of new steps by the monitor to
compensate a bad event are guarded with suspicion because
a different protocol might have different medical or legal
consequences and those can only be inserted by human who
will be held accountable for unexpected consequences.

3Notions of metrics and metric spaces are adapted from [4], [5], [6].

Table III: Examples of errors and their characteristics

Deviation e Expected action ex(e) Correction c(e)
e a e
e a a
e a b

Definition 3.7: The replacing distance between two finite
traces is a total function dR : Σ∗ × Σ∗ → N ∪ {∞}, s.t.

dR(aσ, bσ′) =


0 if aσ = · and bσ′ = ·
∞ if aσ = · xor bσ′ = ·
dR(σ, σ′) if a = b
1 + dR(σ, σ′) if a 6= b

Distance dR counts the number of replacements to tell
traces apart. If the traces have different length, the distance
is ∞ (as they should belong to different protocols).

IV. ENFORCEMENT FOR ERROR-TOLERANT POLICIES

We propose to distinguish between several types of errors:
venial errors, some other group of errors that are possible
to fix and fatal errors. An enforcement mechanism is able
to fix or tolerate errors that are not fatal.

For every possible deviation/error from the legal behavior
we propose the following table with the following functions.
A function ex(e) defines an expected action in the legal
trace when an error e occurred and a function c(e) defines a
correction for an error e. Assuming that action e is an error
and action a is an expected action of the policy, there are
few alternatives summarized in Table III.

Correction c(e) = e (line 1) means that e is a venial error
and can be tolerated by the enforcement mechanism. A case
when action a is an expected action and c(e) = a (line 2)
means that e is not a venial error, but it is possible to fix
it to a legal action. The third case c(e) = b (where a 6= b)
means that e is not a venial error, but there is a possible
correction that is by itself a venial error.

Let us come back to the running example from Section II.
Table II contains traces that can be slightly changed and then
be accepted by the end users as good traces. It can be done
in two ways: by allowing a venial error to occur (meaning
c(a) = a) and by correcting it (c(a) 6= a). Venial errors can
occur instead of the action defined by the policy and are
“harmless”, so in our example venial error is to close the
therapeutical notes window (Ctw) instead of reviewing the
notes (Rtn), formally ex(Ctw) = Rtn and c(Ctw) = Ctw. In
sequence 1 of Table II the user makes this venial error and
so our tolerant enforcement mechanism does not change the
tentative execution of the user.

If an error is not venial, it should be corrected. We show
such an example in sequence 2. Closing the protocol number
window (Cpw) instead of inserting the research protocol
number (Irpn) is an error that should be corrected, so we can
replace this action by inserting the special number for the



Table II: Almost bad traces that can be corrected

No Trace Expected enforcement
1 Dis; Tnn; Ctw; Dr; Irpn; Dpres Dis; Tnn; Ctw; Dr; Irpn; Dpres
2 Dis; Tnn; Rtn; Dr; Cpw; Dpres Dis; Tnn; Rtn; Dr; InA; Dpres
3 Dis; Tnn; Ctw; Dr; Cpw; Dpres Dis; Tnn; Ctw; Dr; InA; Dpres

audit (InA), formally ex(Cpw) = Irpn, c(Cpw) = InA and
InA is a venial error. When performing the reimbursement of
the drug, this number will mean that the drug is for research
but the protocol number inserted will be some default num-
ber. By doing so we assure that the drug reimbursement will
be done by a correct party (clinical trial funds). Sequence 3
contains both types of errors: a venial error of closing the
therapeutical notes window (Ctw) instead of reviewing these
notes (Rtn) and an error of closing the protocol number
window (Cpw) instead of inserting the research protocol
number (Irpn). Both of the errors should be corrected.

We propose a metric based on the replacing distance that
counts a number of venial errors.

Definition 4.1: The replacing distance with venial errors
between two finite traces is a total function dvR : Σ∗×Σ∗ →
N ∪ {∞}, such that

dvR(aσ, bσ′) =


0 if aσ = · and bσ′ = ·
dvR(σ, σ′) if a = b
1 + dvR(σ, σ′) if a 6= b and ex(a) = b
∞ otherwise

Except for venial errors, and errors that can be corrected,
there are other errors that we call fatal.

V. CONSTRUCTION

In this section we present a construction of an enforce-
ment mechanism in a form of edit automaton. The input is
a default security policy P , a maximum number of venial
errors k and two functions: function ex that defines an
expected action for a given bad action and function c that
defines a correction of this action. In the rest of the paper
we will denote the input by I = 〈P, k, c, ex〉. The output is
an edit automaton that transforms the bad executions of the
system by tolerating up to k errors.

Assuming that a given policy P is represented as a Policy
automaton AP =

〈
Σ, QP , qP0 , δ

P , FP
〉
, we construct an edit

automaton E = 〈Q, q0, δ, γo, γk〉. Its states have the form
(q, qF )]s,p, where q is a state of a Policy automaton, qF
is the last accepting state before reaching q in some run, s
is a number of venial errors so far (we write s to denote
the measure of soundness) and p is a number of corrections
made to the original execution (we write p to denote the
measure of precision).

The idea behind the following construction is that all the
good executions are not changed and all the bad executions
are corrected if they contain up to k venial errors. Executions
that have more than k venial errors are not amendable, so
they are halted as soon as (k + 1)st error arrives.

The set of states of edit automaton is Q = {(q, qF )]s,p|q ∈
QP , qF ∈ FP , 0 ≤ s ≤ k}∪{(q⊥, qF )]k,0|qF ∈ FP } and an
initial state is q0 = (qP0 , q

P
0 )]0,0. We define the semantics of

the enforcement mechanism in Figure 3. The transition of a
Policy automaton is represented by q a−→ q′, and a transition
of edit automaton is represented by q, σ

a|σo

 q′, σ′ (defined
above). If a tentative execution corresponds to the policy
the edit automaton “copies” the Policy automaton. If the
sequence is accepted, it resets the counter of errors [GOOD-
OUT]. If the sequence is not accepted, the automaton keeps
counting the errors [GOOD-WAIT].

Otherwise a tentative execution does not correspond to
the policy. So, we check whether more venial errors are
allowed (s < k) and whether there exists a transition starting
at the state q on the expected action ex(a) that does not
have to be corrected (c(a) = a in [VENIAL-OUT] and
[VENIAL-WAIT]). If such action has to be corrected, we
use the c(a) function to define an appropriate correction
(rules [CORRECT-OUT] and [CORRECT-WAIT]). If none of
the previous cases holds, we check whether this action can
initiate a new good iteration from the last visited accepting
state qF (rules [ITERATION-OUT] and [ITERATION-WAIT]).
If there is no new iteration, we reach an error state [ERROR].

Even though this construction seems to be standard, it
automatically generates an enforcement mechanism from
the policy P , number of errors k and functions that define
expected actions and corrections.

Lemma 5.1: Given inputs I = 〈P, k, c, ex〉, an enforce-
ment mechanism E with the semantics from Figure 3 is
transparent: ∀σ ∈ Σ∗ : P̂ (σ)⇒ E(σ) = σ

Proof: A sequence σ satisfies the policy, hence there
is an accepting run in the policy automaton AP . Therefore,
only rules [GOOD-WAIT] and [GOOD-OUT] are used and
the whole sequence σ is kept in the memory and is output
upon reaching an accepting state of the Policy automaton.
Hence, E is transparent.

Lemma 5.2: Given inputs I = 〈P, k, c, ex〉, an enforce-
ment mechanism E with the semantics from Figure 3 for
every iteration σP ∈ P is such that

∀σ ∈ Σ∗ : (dvR(σ, σP ) ≤ k ⇒ dvR(E(σ), E(σP )) ≤ k)

Proof: From the definition of replacing distance with
venial errors we have that dvR(σ, σP ) ≤ k means |σ| = |σP |
and among all indices 0 < i ≤ |σ| there are up to k indices
i1, ...in (n ≤ k) such that for all 0 < j ≤ n: σ[ij ] 6= σP [ij ]
and ex(σ[ij ]) = σP [ij ]. For all the other indices l we have
σ[l] = σP [l].



GOOD-OUT
q
a−→ q′ q′ ∈ FP

(q, qF )]s,p, σ
a|σ;a
 (qP , qP )]0,0 , ·

GOOD-WAIT
q
a−→ q′ q′ /∈ FP

(q, qF )]s,p, σ
a|·
 (q′, q′)]s,p, σ; a

VENIAL-OUT
q
e−→ ⊥ q

ex(e)−−−→ q′ q′ ∈ FP c(e) = e s < k

(q, qF )]s,p, σ
e|σ;e
 (q′, q′)]0,0, ·

VENIAL-WAIT
q
e−→ ⊥ q

ex(e)−−−→ q′ q′ /∈ FP c(e) = e s < k

(q, qF )]s,p, σ
e|·
 (q′, q′)]s+1,p, σ; e

CORRECT-OUT
q
e−→ ⊥ q

ex(e)−−−→ q′ q′ ∈ FP c(e) 6= e s < k

(q, qF )]s,p, σ
e|σ;c(e)
 (q′, q′)]0,0, ·

CORRECT-WAIT

if c(e) = ex(e) then s′ = s else s′ = s+ 1

q
e−→ ⊥ q

ex(e)−−−→ q′ q′ /∈ FP c(e) 6= e s < k

(q, qF )]s,p, σ
e|·
 (q′, q′)]s

′,p+1, σ; c(e)

ITERATION-OUT
q
a−→ ⊥ qF

a−→ q′ q′ ∈ FP

(q, qF )]s,p, σ
a|a
 (q′, q′)]0,0, ·

ITERATION-WAIT
q
a−→ ⊥ qF

a−→ q′ q′ /∈ FP

(q, qF )]s,p, σ
a|·
 (q′, q′)]0,0, a

ERROR
Otherwise

(q, qF )]s,p, σ
e|·
 (q⊥, qF )]k,0, ·

Figure 3: Semantics for enforcement mechanism derived from the policy automaton.

Therefore, for the actions σ[i1], ..., σ[in] one of the
rules [VENIAL-OUT], [VENIAL-WAIT], [CORRECT-OUT]
or [CORRECT-WAIT] holds. Since ex(σ[ij ]) = σP [ij ], there
is always a transition on ex(σ[ij ]) in the Policy automaton
and it’s always true that s < k since there are only up to k
actions in σ that are different from σP .

For all the other indices l different from i1, ..., in we have
σ[l] = σP [l]. Hence, only rules [GOOD-OUT] or [GOOD-
WAIT] will be used.

So all the rules, where the action of σ is transformed to
another action, will be applied up to k times. Therefore,
for every iteration σP (that by definition brings a Policy
automaton to an accepting state) every sequence σ such
that dvR(σ, σP ) ≤ k will be transformed to a sequence
E(σ), such that dvR(σ,E(σP )) ≤ k. Then, according to
Lemma 5.1, E(σP ) = σP , therefore theorem is proven.

Example 3: Suppose k = 2. The sequence σ =
CloseNote = Dis; Tnn; Ctw; Dr; Irpn; Dpres contains
only one venial error: it has a closing window action

Ctw instead of reviewing therapeutical notes Rtn. We
have defined that ex(Ctw) = Rtn and c(Ctw) = Ctw.
Hence when we compare it to the good sequence σP =
NoteResearchRun = Dis; Tnn; Rtn; Dr; Irpn; Dpres, we
have dvR(σ, σP ) = dvR(CloseNote,NoteResearchRun) = 1.
Now since the number of errors is less than k = 2
then by outputting the input sequence without changes we
have E(CloseNote) = CloseNote and dvR(E(σ), E(σP )) =
dR(CloseNote,NoteResearchRun) = 1.

Theorem 5.1: Given inputs I = 〈P, k, c, ex〉, an enforce-
ment mechanism E with the semantics from Figure 3

• is transparent: ∀σ ∈ Σ∗ : P̂ (σ)⇒ E(σ) = σ,
• is predictable within k – for every iteration σP ∈ P :
∀ν ≥ k : ∃δ > 0 : ∀σ ∈ Σ∗ : (dvR(σ, σP ) ≤ δ ⇒
dvR(E(σ), E(σP )) ≤ ν)

Proof: The given mechanism is transparent according
to Lemma 5.1, it is predictable since for every ν ≥ k there
exists δ = k such that ∀σ ∈ Σ∗ : (dvR(σ, σP ) ≤ k ⇒
dvR(E(σ), E(σP )) ≤ k ≤ ν) according to Lemma 5.2



VI. CONCLUSIONS

Runtime enforcement is a common mechanism for en-
suring that executions adhere to constraints specified by a
security policy. It is based on two simple ideas: the en-
forcement mechanism should leave good executions without
changes and make sure that the bad ones got amended.
From the theory side, the characterization of enforcement
mechanisms like security automata or edit automata has
been provided [2], [7], [8]. However, most of the theories
do not distinguish what happens when an execution is
actually bad (the practical case). In our previous work [9]
we proposed to suppress the bad parts of execution, however
even this is not enough. From the practical side, as a rule
the users mostly concerned about achieving their goals:
successfully executing their processes with the least amount
of interruptions possible.

To the best of our knowledge, the only automatic con-
structions of the enforcement mechanisms from the given
policies provide the mechanisms that either stop the whole
execution [2], [10] or delete a part of it [9], [11]. They can
be too restrictive for the users. We need to deal with errors
in a way that is more flexible than current methods but also
more principled than just hacking the reaction to errors in
the monitor’s implementation. Another alternative would be
automatic generation of the policy, as done in [12], but as
we have explained this would not resonate with our users.

In this paper we proposed to address this problem by em-
phasizing a distinctive type of users’ infringements: venial
errors. These errors are simply tolerated in critical situations.
There are other bad actions that can be fixed in real life,
they are errors that can be corrected. There is always yet
another kind of actions called observable actions, that cannot
be changed but only observed.

In order to avoid what auditors call systematic errors we
limit the number of errors that the enforcement mechanism
can tolerate and automatically constructs a runtime enforcer
for a given security policy that tolerates the given number
of errors.
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