
Predictability of Enforcement?

Nataliia Bielova and Fabio Massacci

University of Trento, Italy, lastname@disi.unitn.it

Abstract. The current theory of runtime enforcement is based on two
properties for evaluating an enforcement mechanism: soundness and trans-
parency. Soundness defines that the output is always good (“no bad
traces slip out”) and transparency defines that good input is not changed
(“no surprises on good traces”). However, in practical applications it is
also important to specify how bad traces are fixed so that the system
exhibits a reasonable behavior. We propose a new notion of predictability
which can be defined in the same spirit of continuity in real-functions
calculus. It defines that there are “no surprises on bad input”. We discuss
this idea based on the feedback of an industrial case study on e-Health.

1 Introduction

Run-time monitoring is a well known technique to control an untrusted applica-
tion that runs in an otherwise secure environment. During its run the application
receives some inputs from the environment and produces some (tentative) out-
puts. If the monitor considers these i/o sequences legal according to some policy
then it will let them pass, otherwise it will block them or somehow change them.
This simple and intuitive description applies for a variety of monitors: from us-
age control and DRM [16], to control of downloaded applications in .NET mobile
code [7], or from Javascript confinements in browsers [17] to Enterprise Service
Bus enforcement for web services [10]. It can be implemented by wrappers as in
Google’s Caja, by inlining hooks with a separate policy decision point as in [7]
or by inlining the monitor code as in Polymer or PSLANG [8].

While many research proposals and tools exist on the market, we have not
found major deployments in the field. A reason may be that the overhead penalty
is still significant but, based on our experience on a concrete case study, we argue
that there is a deeper, more foundational reason.

Italian hospitals must guarantee the compliance of many business processes
involving large amounts of money (reimbursements from public health author-
ities for drugs dispensation), significant privacy concerns (drugs can be related
to HIV or other serious illnesses), major safety considerations (drugs might have
serious side-effects), and compliance with many regulations. These regulations

? We would like to thank Marta Zambetti, Marco Nalin, Andrea Micheletti and Daniela
Marino from the Hospital San Raffaele for many useful discussions that helped to
shape our proposal. This work has been partly supported by the EU under the
projects EU-IP-MASTER, EU-FET-IP-SecureChange and EU-NoE-NESSoS.

can change frequently and a run-time monitor could guarantee the compliance
of each process with minor efforts: no change to processes or ESB architectures,
we deploy an updated policy and we are done.

Unfortunately, a monitor must offer some guarantees to the hospital on what
happens when things are not according to the policy. This is the point where we
found a foundational gap. At present the only offered formal guarantees are

transparency the monitor will never touch a good execution;
soundness the monitor will never output a trace violating the policy.

These properties are currently used in all state-of-the-art papers on runtime en-
forcement [4, 9, 14, 20, 21]. The recently introduced property of completeness [14]
is implied by transparency and soundness. In all practical settings these two
properties are necessary but not sufficient.

Reality Check 1 What the risk manager of the hospital wants to know is
“What the monitor normally does when a doctor’s action does not respect the
policy?” Does it abort the whole transactions if a research protocol number is not
entered (Schneider Security Automata [19])? Does it alert the head of the depart-
ment if we are prescribing a drug out of stock (Pretschner’s usage control [18])?
Does it wait till the doctor opens the therapeutical notes before committing the
transaction to the audit logs (Ligatti’s longest valid prefix automata [13])?

While we can implement a concrete enforcement monitor to give the desired
answer, there is no general, principled guarantee in the same way that we have
for soundness and transparency.

Reality Check 2 In medical terms, the “protocol” in charge of caring for bad
traces is too underspecified (the nurse will somehow deliver a right drug). Tol-
erance of error is accepted in the medical domain. Often drugs cannot be dosed
exactly at the milliliter, yet one must be able to give some indication of the er-
rors (or safety margins) that the protocol might tolerate. Here the only thing we
could say that it depends on the nurse dispensating the drug (i.e. our particular
implementation of the run-time monitor).

1.1 The contribution of this paper

To address this problem we propose a new theoretical notion beside transparency
and soundness to describe the behavior of the run-time monitor when it takes
care of bad traces. To this extent we need two contributions:

– A formal notion of distance to clarify the meaning of “being close” to the
original input or to a legal trace

– The equivalent formal ε − δ notion of boundedness and continuity that we
have in the real Calculus.

Once we have a notion of distance we can generalize the notions of trans-
parency and soundness to weaker notions that apply to bad and good traces

Table 1. Properties of enforcement mechanisms.

Name Brief description

Soundness every trace is mapped into some valid trace

Transparency every valid trace is mapped into itself

Bounded Map every trace is mapped into a trace close to one valid trace

Boundedness every trace is mapped into a trace close to some valid trace

Conditional
Boundedness

every trace that is close to some valid trace is mapped into a trace
close to some (possible other) valid trace

Predictability every trace that is close to some valid trace is mapped into a trace
close to the same valid trace

alike: bounded map, boundedness, conditional boundedness and (our final pro-
posal) predictability. We give their brief descriptions in Table 1.

Boundedness corresponds intuitively to a weakening of soundness: every trace
should be mapped not to some valid trace but to an “almost valid” trace, which
is close to the valid one. Transparency is only defined for valid traces (they
should not be changed) and by weakening it we define conditional boundedness,
which specifies that “almost valid” traces should be mapped to (possibly other)
”almost valid” traces. Both these notions are not sufficient to deal with real life
situations. Predictability is the notion that deals with traces close to valid ones
and maps them to the predictable (closest) output.

The next section presents our running example (§2). Then we introduce some
standard notation (§3) and discuss the applicability of various metrics(§4). The
next steps (§5-6) present and discuss the different notions generalizing soundness
and transparency from Table 1. We conclude the paper by discussing some open
problems (§7).

2 Running example

The case study is based on a healthcare process of drug dispensation. Hospitals
accredited with the Public National Health Service are in charge of administering
drugs and providing diagnostic services to patients. These hospitals are obliged
to claim the cost of drug dispensation or diagnostic services to the Regional
Healthcare Authority.

In the region of Lombardia, the process called “File F” is used by hospitals
to refund the drugs administered and/or supplied by the hospitals’ outpatient
departments to the patients that are not hospitalized (we sketch some steps of the
process in Fig. 1). This process is highly regulated and requirements are often
subject to changes. Regulations span from national or regional health service
legislation related to drug reimbursements to data protection laws, from health
specific standards such as HL7 to ISO-type standards or whose adoption follows
from compliance to best practices.

In order to give an idea of the sheer volume of regulation, the simple process
of authorization and accounting for the dispensation and reimbursement of drugs
is subject to the following (not exhaustive) set of (local) regulations interpreting

Fig. 1. The Top-Level process

national and EU laws: regional directive 17/SAN 3.4.1997, amended by direc-
tive No. 5/SAN 30 1 2004, Circular No. 45/SAN 23 12 2004, Note 30.11.2007
H1.2007.0050480, Note 27.3.2008 H1.2008.0012810, and Note 04.12.2008 H1.-
2008.0044229 etc. Already in this partial sample we have had a quick turn-around
of less than 6 months. In many cases compliance has to be almost immediate.
For this kind of processes run-time monitors could be an effective solution.

Our running example is the drug selection subprocess of the drug dispensa-
tion process (denoted with A4 in Fig. 1). Its main steps are the following ones
(in brackets we write the abbreviation of the step used in the paper):

1. The doctor fills list of drugs for his patient and selects one drug (Dis).
2. If the drug is highly sensitive, reviewing therapeutical notes is needed. They

will be shown to the doctor and he has to review them (Tnn; Rtn). Otherwise
therapeutical notes can be emitted (TnNn).

3. The system checks drug’s submission to Research program and in case the
drug is registered (Dr) shows the notification to the doctor. Then the doctor
should insert the research protocol number (Irpn), a number of the protocol
according to which the drug can be given to the patient. If the drug is not
registered to Research program, then the doctor skips this step (DNr).

4. The doctor performs other actions needed for the drug prescription (Dpres).

3 Standard notations of enforcement

The set of observable process actions is denoted by Σ and a set of possible actions
to be executed is T. A trace is a finite or infinite sequence of actions; the set of
all finite sequences over Σ is denoted by Σ∗, the set of infinite sequences is Σω,
and the set of all sequences is Σ∞. By σ we refer to a trace and by · we refer to
an empty trace. We write σ; τ to denote concatenation of two sequences, where σ
must be finite. A trace consisting of actions requested for execution is a tentative
execution. A runtime monitor E : Σ∞ → T∞ transforms tentative executions
into a sequences of actions that will be actually executed on the system.

A security policy is a set of traces P ⊆ Σ∞. A policy P is a security property
if there exists a predicate P̂ over the traces, such that ∀σ ∈ Σ∞ : P̂ (σ)⇔ σ ∈ P .

Reality Check 3 Information-flow policies cannot be evaluated by looking at a
single trace but must be evaluated by comparing a trace with other possible execu-
tions. This characteristic makes them totally “un-interesting” for stakeholders.
They (or their hospital) can be held financially or penally liable only for what
actually happened, so only actual traces matter.

So in the rest of the paper we use interchangeably the policy P with its corre-
sponding predicate P̂ . The trace σ that satisfies the property P̂ is called valid,
and the trace that does not satisfy the property is called invalid.

Example 1. The security policy P consists of the following traces:

SimpleRun Dis; TnNn; DNr; Dpres,
NoteRun Dis; Tnn; Rtn; DNr; Dpres,
ResearchRun Dis; TnNn; Dr; Irpn; Dpres,
NoteResearchRun Dis; Tnn; Rtn; Dr; Irpn; Dpres,

and their closure under concatenation: for every σ, σ′ ∈ P : σ;σ′ ∈ P . Notice
that an empty trace NoRun also satisfies the policy.

Example 2. Let us now make some examples of invalid traces with respect to the
policy P . The doctors might forgot to click the “I have read the Therapeutical
Note” button and rather close the window (Ctw). A similar event could happen
for the step in which research protocol numbers are not inserted (Cpw), or he
might skip all steps altogether. These alternatives give us the following traces

CloseProt Dis; TnNn; Dr; Cpw; Dpres
SkipAll Dis; Dr; Dpres
CloseNoteProt Dis; Tnn; Ctw; Dr; Cpw; Dpres

Definition 1. An enforcement mechanism E is sound iff ∀σ ∈ Σ∞ : E(σ) ∈ P .
It is transparent iff ∀σ ∈ Σ∞ : (σ ∈ P ⇒ E(σ) = σ).

Fig. 2 graphically shows soundness and transparency, inputs on the left side of
the figure marked with Σ∞ and outputs on the right side marked with T∞. The
gray area denotes invalid sequences and the white area denotes valid ones.

Transparency means that the traces in the white area of the input are mapped
into the same traces (at the same position) in the white area of the output.
Soundness means that all the traces shall be mapped into the white area. How-
ever, it is not specified where exactly the points from gray area are mapped.

The valid traces ResearchRun and NoteResearchRun are mapped into the same
traces in the output, while invalid ones (CloseProt,SkipAll,CloseNoteProt) are
mapped into good traces that are chosen arbitrarily.

In the original definition of Bauer et al. [2] the equal (“≈”) relation is used
in the right part of the last statement. In another recent work Khoury and
Tawbi [11] discussed possible semantics of this relation, however it is not pos-
sible to define a semantics that can be used in all domains. Hence, we use an
equivalence relation in order to compare this definition with the new notions we
propose in this paper. Ligatti and Reddy [14] have proposed the notion of com-
pleteness instead. It can be easily shown that transparency implies completeness
and since transparency is necessary here, we don’t discuss it further.

Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

Fig. 2. Sound and Transparent enforcement mechanism.

4 Metrics and distances

Definition 2. A metric1 on a set S is a function d : S × S → R ∪ {∞} such
that (a) d(σ, τ) ≥ 0, (b) d(σ, τ) = 0 if and only if σ = τ , (c) symmetry: d(σ, τ) =
d(τ, σ), (d) triangular inequality: d(σ, τ) ≤ d(σ, σ′) + d(σ′, τ).

The pair (S, d) is called a metric space and the number d(σ, τ) is called the
distance between the elements σ and τ . If all conditions but symmetry hold,
then d is called a quasi-metric. We propose several concrete metrics that will be
used in the paper. Each of them has passed our reality check.

Reality Check 4 When a distance is a finite number we can compare how far
two situations (some potentially illegal traces) are from the legal situation. For
medical staff these two situations can be perceived as qualitatively similar with
a different degree of gravity. The notion of ∞ can be used to represent distance
between traces perceived so qualitatively different to be incomparable. An example:
a wrong action compromising the health of a patient takes place.

We discuss here some concrete distances between the traces that will be useful
in comparing tentative executions with the output of an enforcement mechanism.

Definition 3. The suppressing distance between two finite traces is a total func-
tion dS : Σ∗ ×Σ∗ → N ∪ {∞}, such that

dS(aσ, bσ′) =

∞ if aσ = · and bσ′ 6= ·
|aσ| if bσ′ = ·
dS(σ, σ′) if a = b
1 + dS(σ, bσ′) if a 6= b

(1)

Distance dS counts number of actions that must be suppressed to obtain the
second trace from the first one. The last rule says that if the first actions of the
two sequences are different then the action in the first sequence is suppressed.

1 The concepts of metrics and metric spaces are adapted from [1, 6, 15].

Reality Check 5 The intuition behind suppression is that a bad trace is close
to a good trace if the actions we have to undo are few. This can be explained to the
operator and can be acceptable for an administrative procedure (albeit annoying
for the operator involved). For example the monitor could block the process if the
number of bad actions exceeds a given threshold or, preferably, it could undo all
bad actions bringing us back to the point where we started the transaction that
has gone awry.

It is obvious that suppressing distance does not satisfy the symmetry property
of metrics. Hence, the suppressing distance is not a metric but a quasi-metric.

Example 3. A doctor is selecting a drug (Dis) for which therapeutical notes are
needed (Tnn). However at the time to review them, he is interrupted (e.g. in
case of an emergency, interruption by another colleague etc.). When he comes
back, he has to start running the process again because it timed out. The second
time the doctor successfully finishes the process. So, the tentative execution is
Dis;Tnn;NoteRun and the distance to the good trace NoteRun is 2. Notice that
the distance from the good trace to the bad one is ∞ because no number of
suppressions can transform the good trace into the bad trace.

This distance already discriminates between different run-time monitors:

Example 4. If the mechanism that is used to enforce this policy is a security
automaton, it will stop executing the process as soon as something wrong hap-
pens (action Dis after Tnn in our case). Then, ESA(Dis;Tnn;NoteRun) = ·. If we
use the suppressing distance to compare the outputs, dS(·, ESA(NoteRun)) =∞.
The iterative suppression automaton [3] would have suppressed the initial prefix:

dS(EIS(Dis;Tnn;NoteRun), EIS(NoteRun)) = dS(NoteRun,NoteRun) = 0 (2)

To compare outputs of more enforcement mechanisms we can use another
metric that counts the number of replaced actions.

Reality Check 6 While enforcing a process in the hospitals, an enforcement
mechanism could be entitled only to correcting small errors without changing the
protocol used by the operators (such as patient identification, patient consent and
blood sampling before blood transfusion). If the doctor forgot to fill one field in the
form, the mechanism can insert a default value. On the other hand, insertions of
new steps by the monitor to compensate a bad event are not be allowed because
a different protocol might have different medical or legal consequences and those
can only be judged by an expert.

Definition 4. The replacing distance between two finite traces is a total func-
tion dR : Σ∗ ×Σ∗ → N ∪ {∞}, such that

dR(aσ, bσ′) =

0 if aσ = · and bσ′ = ·
∞ if aσ = · xor bσ′ = ·
dR(σ, σ′) if a = b
1 + dR(σ, σ′) if a 6= b

(3)

Distance dR counts number of replacements to obtain one trace from another.
If the traces have different length, the distance is∞ (as expected as they clearly
belong to different protocols). The replacing distance is a metric.

A more general definition of distance was originally proposed by Leven-
shtein [12]. This distance counts number of insertions, suppressions and replace-
ments needed to obtain one trace from another.

Definition 5. The Levenshtein distance between two finite traces is a total func-
tion dL : Σ∗ ×Σ∗ → N, such that

dL(aσ, bσ′) =

|bσ′| if aσ = ·
|aσ| if bσ′ = ·
dL(σ, σ′) if a = b
1 + min(dL(σ, σ′), dL(aσ, σ′), dL(σ, bσ′)) if a 6= b

(4)

Let’s make some examples of replacing and Levenshtein distances between
the valid traces (Ex. 1) and the invalid ones (Ex. 2).

Example 5. The replacing distance can be equal to the Levenshtein distance:
dR(NoteResearchRun,CloseNoteProt) = dL(NoteResearchRun,CloseNoteProt) =
2 since action Rtn is replaced with Ctw and action Irpn is replaced with Cpw.
The replacing distance between CloseProt and NoteResearchRun is ∞ because
NoteResearchRun is simply longer than CloseProt. But the Levenshtein distance
counts the inserted and replaced actions and the distance is equal to 3.

5 From Sound to Bounded Monitors

Building on metrics over the sequences we propose to use the notions from
measure theory. In the following definitions (Σ∞ ∪ T∞, d) is a metric space, a
map E : Σ∞ → T∞ is an enforcement mechanism and a security policy is a set
P ⊆ Σ∞ ∩ T∞. As a starting point we assume that all monitors in this paper
are transparent.

Reality Check 7 The actions in the systems corresponds to actions of doctors
and nurses (or administrative staff) who are knowledgeable and accountable for
their actions. Their point of view is that the choice of a legitimate course of
action is due to a contextual knowledge not available to the system. A system
that would change their decisions, when those actions conform to the policy of
the hospital, would be unacceptable.

The next step is generalizing the notion of soundness. We start from a clas-
sical definition of bounded map that Fig. 3 shows graphically. Even though the
division of traces into good and bad is not relevant for the definition of bound-
edness, we keep it in the figure to ease the comparison with other notions.

Definition 6. A function E : Σ∞ → T∞ is bounded if the subset {E(σ) : σ ∈
Σ∞} ⊆ T∞ is bounded. Formally, ∃τ ∈ T∞ : ∃ε > 0 : ∀σ ∈ Σ∞ : d(E(σ), τ) ≤ ε.

Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

6 - NoteRun

Fig. 3. Bounded map.

Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

Fig. 4. Bounded within ε enforcement mechanism.

Let us project this notion to the theory of enforcement mechanisms. We get
a mechanism that transforms all sequences to some sequence close to τ . This
is not what users are expecting. The user’s policy usually contains several good
sequences (see Ex. 1). Hence we should adapt the definition to map bad sequences
to different good sequences in the policy.

Definition 7. An enforcement mechanism E : Σ∞ → T∞ is bounded within ε
iff ∀σ ∈ Σ∞ : ∃σP ∈ P : d(E(σ), E(σP)) ≤ ε.

This notion says that an output of enforcement mechanism is always within the
distance ε from some good execution, for ε > 0 we are weakening the notion of
soundness. Fig. 4 shows the bounded within ε enforcement mechanism.

There is a fundamental difference between boundedness and boundedness
within ε. Boundness means that there is one single trace τ in the possible outputs
such that all the outputs of E are in the radius ε from τ . Boundedness within ε
means that for every possible output there is a valid trace such that the distance
between them is smaller or equal than ε.

Example 6. An enforcement mechanism E enforces the policy from Ex. 1 in the
following way (we also show the distance to NoteResearchRun):

Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

Fig. 5. Conditionally bounded within ε enforcement mechanism.

E(CloseNoteProt) = CloseNoteProt, dL(CloseNoteProt,NoteResearchRun) = 2
E(SkipAll) = CloseNoteProt, dL(CloseNoteProt,NoteResearchRun) = 2
E(CloseProt) = NoteRun, dL(NoteRun,NoteResearchRun) = 2

Since the output of E is always at distance 2 from some good execution NoteRe-
searchRun then E is bounded within ε = 2.

We can refine the notion by imposing also that “almost valid traces” should
be mapped to some “almost valid traces”. We call it conditional boundedness
within ε and show graphically in Fig. 5.

Definition 8. An enforcement mechanism E : Σ∞ → T∞ is conditionally
bounded within ε iff ∃δ > 0 : ∀σ ∈ Σ∞ : (∃σ′P ∈ P : d(σ, σ′P) ≤ δ ⇒ ∃σP ∈ P :
d(E(σ), E(σP)) ≤ ε).

Example 7. An enforcement mechanism E transforms the sequences of actions
in the following way (we also show the distance to some good sequence):

E(CloseNoteProt) = CloseProt, dL(CloseProt,ResearchRun) = 1
E(SkipAll) = NoRun, dL(NoRun,NoRun) = 0
E(CloseProt) = NoteRun, dL(NoteRun,NoteRun) = 0

Obviously, E is bounded within ε = 1. It is conditionally bounded within ε = 1
because there is a δ = 3 such that for every sequence there is a valid trace at most
at distance 3: dL(CloseNoteProt,NoteResearchRun) = 2, dL(SkipAll,NoRun) = 3
and dL(CloseProt,ResearchRun) = 1.

Reality Check 8 Boundedness and conditional boundedness can refine sound-
ness but are still unacceptable: if a doctor skips key steps altogether (SkipAll),
a bounded EM can transform it into a sequence CloseNoteProt. A conditionally
bounded, sound and transparent EM, when the doctor closes the window (Close-
Prot) instead of inserting the protocol (ResearchRun), can transforms this tenta-
tive execution into another, completely different one (NoteRun). The problem is
that some actions in the outcome are not a direct transformation of the actions
of the doctors. Since actions carry liabilities it is important that the actions of
the EM are always linked to corresponding actions by the doctor.

Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

Fig. 6. Predictable within ε enforcement mechanism

6 Predictability

Our notion of predictability within ε is inspired by the classical notion of con-
tinuous functions. Let (Σ∞ ∪ T∞, d) and (Σ∞ ∪ T∞, d′) be metric spaces.

Definition 9. A map E : Σ∞ → T∞ is continuous if at every trace σ ∈ Σ∞ the
following holds: ∀ε > 0 : ∃δ > 0 : ∀σ′ ∈ Σ∞(d(σ, σ′) < δ ⇒ d′(E(σ), E(σ′)) < ε).

In conditional boundedness we proposed to limit an output when an input is
“almost good”. But as a Reality Check 8 shows, an input and its output should
be compared to the same valid trace.

Definition 10. An enforcement mechanism E is predictable within ε if for
every trace σP ∈ P the following holds: ∀ν ≥ ε : ∃δ > 0 : ∀σ ∈ Σ∗ : (d(σ, σP) ≤
δ ⇒ d′(E(σ), E(σP)) ≤ ν).

Informally, it says that for every valid trace there always exists a radius δ,
such that all the traces within this radius are mapped into the circle with radius
ε from this trace. We show it in Fig. 6.

Example 8. The enforcement mechanism E from Ex. 7 is conditionally bounded
within ε = 1, but not predictable within ε = 1 since there exists σP = ResearchRun
such that ∃ν = 2 : ∀δ > 0 : ∃σ ∈ Σ∗ : (d(σ, σP) ≤ δ∧d(E(σ), E(σP)) > ν) where
σ = CloseProt, then d(CloseProt,ResearchRun) = 1 ≤ δ and d(E(CloseProt),
E(ResearchRun)) = dL(NoteRun,ResearchRun) = 3 > 2.

Table 2 shows all the notions so far and the new notion of predictability.

7 Conclusions

In this paper we have discussed how to go beyond the (only) two classical prop-
erties used to evaluate an enforcement mechanism: soundness and transparency.
Soundness specifies that the output is always good and transparency guarantees
that good input is not changed. However those two characteristics alone are not

Table 2. Properties of enforcement mechanism.

Name Pre-Condition Post-Condition

Soundness for every trace the output is always
some valid trace

Transparency if input is a valid trace output is the same valid trace

Bounded Map there is one valid trace such that out-
put is always within ε from that trace

Boundedness output is always within ε from some
valid trace

Conditional
Boundedness

if input is within δ from
some valid trace

output is within ε from some valid
trace

Predictability if input is within δ from
a valid trace

output is within ε from the same valid
trace

sufficient to discriminate between enforcement mechanisms. The key issue is to
specify how bad input is fixed into good output.

We have introduced several notions that could describe predictable behavior
and checked them against the industrial case study on e-Health. The idea behind
predictability is that there are “no surprises on bad inputs”.

An apparent limitation of our work is that we don’t deal with infinite traces.
We have actually considered some mathematical functions over infinite traces
from [5] but we found a practical obstacle:

Reality Check 9 The end of the fiscal year effectively terminates any trace in
the eyes of our stakeholders.

Further, all simple and natural metrics that we considered from [5] were not ade-
quate from one perspective or another (we give some examples in the appendix).

Another open issue is the analysis of existing mechanisms to identify which
one is predictable. The practically interesting question is whether a ε for pre-
dictability can be extracted from a security policy expressed as an automata.

The second issue revolves around edit automata as an enforcement mecha-
nism and the characterization of predictable policies. A key question is whether
policies of a certain form do always (or never) have predictable enforcement
mechanism. Under some definition of convexity we could prove that convex poli-
cies always have predictable enforcement mechanisms within a bound fixed on
the border, but the natural definition, while mathematically sound, is not intu-
itive enough to pass our reality check. More research is needed.

References

1. L.S. Pontryagin (eds.) A.V. Arkhangel’skii. General topology I : basic concepts and
constructions, dimension theory. Springer-Verlag, 1990.

2. L. Bauer, J. Ligatti, and D. Walker. Edit automata: Enforcement mechanisms for
run-time security policies. Int. J. of Inform. Sec., 4(1-2):2–16, 2005.

3. N. Bielova, F. Massacci, and A. Micheletti. Towards practical enforcement theories.
In Proc. of The 14th Nordic Conference on Secure IT Systems, volume 5838 of
LNCS, pages 239–254. Springer-Verlag Heidelberg, 2009.

4. A. Brown and M. Ryan. Synthesising monitors from high-level policies for the
safe execution of untrusted software. In Proc. of the 4th Inf. Security Practice and
Experience Conf., pages 233–247. Springer-Verlag Heidelberg, 2008.

5. K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressiveness and closure proper-
ties for quantitative languages. Comp. Research Repository, abs/1007.4018, 2010.

6. D.L. Cohn. Measure Theory. Birkhauser, 1980.
7. L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan, and

D. Vanoverberghe. Security-by-contract on the .net platform. Information Security
Technical Report, 13(1):25–32, 2008.

8. U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Cornell University, 2003.

9. Y. Falcone, J.-C. Fernandez, and L. Mounier. Enforcement monitoring wrt. the
safety-progress classification of properties. In Proc. of 24th ACM Symp. on Applied
Computing – Software Verif. and Test. Track, pages 593–600. ACM Press, 2009.

10. G. Gheorghe, S. Neuhaus, and B. Crispo. xESB: An enterprise service bus for
access and usage control policy enforcement. In Proc. of the 4th IFIP WG 11.11
Int. Conf. on Trust Management, volume 321, pages 63–78. Springer Boston, 2010.

11. R. Khoury and N. Tawbi. Using Equivalence Relations for Corrective Enforcement
of Security Policies. In Proc. of the 5th Int. Conf. on Math. Methods, Models,
and Architectures for Comp. Network Sec., volume 6258, pages 139–154. Springer
Berlin Heidelberg, 2010.

12. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966. An English translation of
the “Physics Sections” of the Proceedings of the Academy of Sciences of the USSR.

13. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies.
ACM Trans. on Inform. and Sys. Security, 12(3):1–41, 2009.

14. J. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In Proc.
of ESORICS’10, volume 6345, pages 87–100. Springer-Verlag Heidelberg, 2010.

15. S.G. Matthews. Partial metric topology. In Proceedings of the 8th Summer Con-
ference, Queen’s College, volume 728, pages 183–197. Annals of the New York
Academy of Sciences, 1994.

16. J. Park and R. Sandhu. The UCON ABC usage control model. ACM Trans. on
Inform. and Sys. Security, 7(1):128–174, 2004.

17. P.H. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting javascript. In
Proc. of ACM Symp. on Inform. Comp. and Comm. Security, pages 47–60. ACM
Press, 2009.

18. A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Walter. Mechanisms for
usage control. In Proc. of ACM Symp. on Inform. Comp. and Comm. Security,
pages 240–244. ACM Press, 2008.

19. F.B. Schneider. Enforceable security policies. ACM Trans. on Inform. and Sys.
Security, 3(1):30–50, 2000.

20. C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement under
memory-limitation constraints. Inform. and Comp., 206(2-4):158–184, 2007.

21. D. Yun, A. Chander, N. Islam, and I. Serikov. Javascript instrumentation for
browser security. In Proc. of the 34th ACM SIGPLAN-SIGACT Symp. on Princ.
of Prog. Lang., pages 237–249. ACM Press, 2007.

A Examples of Levenshtein distances

Table 3. The Levenshtein distances between some sequences

NoRun ResearchRun CloseProt SkipAll NoteResearchRun CloseNoteProt

NoRun 0 - - - - -

ResearchRun 5 0 - - - -

CloseProt 5 1 0 - - -

SkipAll 3 2 2 0 - -

NoteResearchRun 6 2 3 3 0 -

CloseNoteProt 6 3 2 3 2 0

NoteRun 5 3 3 3 2 3

B Examples of (unsatisfactory) Metrics on Infinite Traces

Here we discuss two natural distances from [5] that have a clear mathematical
intuition for our domain and allow to obtain finite numbers when comparing
infinite traces. The first option is to use an economic approach and consider the
discounted distance that discounts the remote differences in the sequence :

Definition 11. The discounted distance between two infinite traces is a total
function dD : Σω ×Σω → N, such that

dD(aσ, bσ′) =

|aσ| if bσ′ = ·
|bσ′| if aσ = ·
dD(σ, σ′) if a = b
1 + 1

k dD(σ, σ′) if a 6= b

(5)

In this definition k ∈ R, k 6= 0 is a discounting factor.

Reality Check 10 The first function can be acceptable from the perspective
of a risk manager as later events have less risk of being detected or of having
consequences within the year. It is less acceptable for doctors: a wrong drug is a
wrong drug, no matter if delivered at the beginning or the end of the fiscal year.

Another approach that works for replacing-type distances is to attribute a
weight to each replacement and consider the maximum of such weights.

Reality Check 11 The maximum weight determines what can at worst happen
and can be satisfactory from the point of view of an operator: at worst it deviated
so and so from the ideal trace. It is not satisfactory from a risk management
perspective, as it cannot distinguish between a trace where such deviations are
rare from trace where they are frequent.

At the end the only acceptable metrics boils down to considering what happens
during a limited slot and project it to infinity. But then we could simply consider
the finite slot.

Hence, the definition of mathematically simple and meaningful metrics for
infinite traces is still open for us (assuming we should consider them at all).

