
Non-Monotonic Security Protocols and

Failures in Financial Intermediation

Fabio Massacci1, Chan Nam Ngo1, Daniele Venturi2, and Julian
Williams3

1Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy

2Computer Science Department, Sapienza University of Rome,
Rome, Italy

3Durham University Business School, Durham, UK

February 25, 2018

Abstract

Security Protocols as we know them are monotonic: valid security ev-
idence (e.g. commitments, signatures, etc.) accrues over protocol steps
performed by honest parties. Once’s Alice proved she has an authentica-
tion token, got some digital cash, or casted a correct vote, the protocol
can move on to validate Bob’s evidence. Alice’s evidence is never inval-
idated by honest Bob’s actions (as long as she stays honest and is not
compromised). Protocol failures only stems from design failures or wrong
assumptions (such as Alice’s own misbehavior). Security protocol design-
ers can then focus on preventing or detecting misbehavior (e.g. double
spending or double voting).

We argue that general financial intermediation (e.g. Market Exchanges)
requires us to consider new form of failures where honest Bob’s actions
can make honest Alice bankrupt and therefore invalidate Alice’s security
credential of good standing. Security protocols must be able to deal with
non-monotonic security and new types of failures that stems from rational
behavior of honest agents finding themselves on the wrong side.

This has deep implications for the efficient design of security protocols
for general financial intermediation, in particular if we need to guarantee
a proportional burden of computation to the various parties.

1 Introduction

Thirty years ago, popular security protocols were essentially authentication pro-
tocols. A protocol could have various degree of complexity (e.g. Kerberos [18]

1



vs TLS [7] vs IKE [9]) but essentially two parties tried to authenticate each
other (possibly with the help of a trusted third one). There was no question
that an honest party could invalidate the evidence of the other honest party and
there was no issue of computational load because i) each party’s main goal was
actually receiving the other party security evidence and ii) they participated
equally to the protocol1.

In the past decade, with the emergence and practical deployment of multi-
party-computation the number of parties participating to a protocol has mas-
sively increased2. These parties do not talk to each other, they talk to the
ensemble and some parties might be far more active than others. Yet they
potentially share the same burden in computational effort in generic MPC.

At this point there are some interesting questions to make:

• Is security evidence always monotonic as the number of honest parties
increases? What type of failures can materialize if this is not the case?

• If some application requires non-monotonic security are there design im-
plications if some parties are more active than others?

As an example e-cash or voting protocols are essentially monotonic in terms
of legitimacy of digital assets: valid security evidence (e.g. commitments, blinded
signatures, etc.) accrues over protocol steps performed by honest parties. Alice’s
security evidence for a correctly casted vote is not impacted by Bob’s correctly
casted vote, no matter how many Bobs join, and what they votes. Bobs may tip
the balance of the election but not make Alice’s vote invalid. This monotonic
accumuation of the security legitimacy of digital assets is visible in the security
proofs for cash fungibility in ZeroCash [3], or vote’s eligibility in E2E [10]. We
illustrate this technically in Section 2.

In contrast, general financial intermediation is not monotonic: Alice’s asset
might be proven cryptographically valid by Alice (given the current market price
her inventory is above her debts) and later made economically invalid by the
honest Bob who, by just offering to sell assets and thus changing the market
price, can make Alice bankrupt without any action on her side. We illustrate
this technically in Section 3.

This means that new type of failures are possible: honest failures and failures
by omission. The former, are managed by Exchanges in the current centralized
intermediation. The Exchange makes sure Alice deposits enough cash in ad-
vance, may eventually suspend trading and eventually absorb Alice’s honest
losses (acting as a sort of insurance). In a distributed system implementing
financial intermediation nobody can absorb Alice’s ‘honest losses’. Hence the

1Obviously the server would have had more load than a client, but this only happens
because the server participates to several authentications with several clients at once.

2The largest claimed example is the Danish sugar beet auction where 1229 Danish farmers
auctioned their production [4]. However, an actual technical reading of the paper reveals that
there were only three servers performing MPC over the secret shares generated by the 1200
bidders. As we will illustrate in Section 3 it is actually a good example of a monotonic security
protocol.

2



protocol might need to consider mechanisms to manage this (not unlikely) pos-
sibility.

Failures by omission are more critical, especially for non-monotonic proto-
cols. In the example above, as no one but Alice can prove the validity of her
standing, whenever a new order arrives and changes the market price she has
to publish some (cryptographic) proofs for her valid inventory3. If she discovers
that her inventory is not valid and learns that she cannot benefit from partic-
ipating in the protocol anymore, she would simply stop joining the step and
any multi-party-computation protocol in the all-but-one security model hang
waiting for her messages.

One might argue that a well designed protocol might fail safe so that nothing
is disclosed and the parties could restart as if nothing happend. From the
perspective of the other traders this would rather be fail uselessly as there
cannot be a market if you can walk abruptly away as soon as you are unhappy
with the likely outcome, irrespectively of what you promised to do.

2 Monotonic Security behavior

To define monotonicity of security credentials we focus on a single legitimate
protocol run that comprises of multiple steps (and potentially never stops)4.
Clearly, the security evidence in a step must be valid immediately after the step
completed. In the next steps, other honest parties may perform some actions.
If such actions do not invalidate the security evidence, a protocol is monotonic.
Otherwise it is non-monotonic.

For example, a single run of ZeroCash [3] starts with initiating a genesis
block and continues to expand the chain to include transactions (The protocol
never stops). To make a transaction, a payer simply broadcast the payment
information (encrypted and its correctness is proven in zero-knowledge) and
the miners find a Proof-of-Work [19] to converge on the transaction result. To
do so, the miners first must verify the payment information’s correctness by
checking the zero-knowledge proofs provided by the payer: (i) the spending
coin belongs to an unspent set of coins maintained as a Merkle Tree [17]; (ii)
the payer knows a secret parameter (ρ) to unlock the aforementioned coin; and
(iii) the transfer amount is well within availability. Another transaction (except
for double-spending in which the same coin is paid twice), which would claim
another coin, cannot invalidate any of the above proofs.

Similarly, in E2E voting [10], a voter will receive from the Election Authority
a vote card giving the voter an authentication code and a vote code. A vote
is only valid with the correct authentication code and well-formed vote code.
Hence its eligibility (the authentication code and the vote code’s correctness)
cannot be changed by another vote which claims another authentication code

3See an additional discussion in [16] and a concrete implementation in [15].
4Security evidence created during a protocol run should not extend beyond the protocol

run. Several protocol failures are indeed due to protocol design errors where a credential could
be used across sessions [1].

3



(again, except for double-voting in which the authentication code is used twice)
as the other votes yield no direct effect against such vote.

The same phenomenon happens for privacy-preserving reputation systems
(e.g. [21]) which evaluate information quality and filter spam by providing
linkage between user actions and feedback. In such systems, Alice’s reputation,
once gained, cannot be affected by Bob’s actions to gain his own reputation.
Hence security evidence for reputation grows monotonically over honest traders
actions.

3 Security of Financial Intermediation is non-
monotonic

A financial intermediation service provider, which acts as a counter-party for
other participating parties, can be as simple as an auction house, a voting
system or a reputation system to be as complex as a futures exchange. Table 1
summarizes the monotonic versus non-monotonic steps in the example of an
auction house and a futures exchange [2].

Table 1: Monotonicity vs Non-monotonicity
Auction House

Steps Mono Non-mono
Authenticate a bidder (optional) X
A bidder makes a bid X
A bidder proves to have money X
Determine winner (in multiple rounds) X

Voting System
Steps Mono Non-mono
Authenticate voter X
Authenticate vote X
Determine winner X X

Reputation System
Steps Mono Non-mono
Accrue reputation X
Prove reputation X

Futures Exchange
Steps Mono Non-mono
Authenticate a trader X
Make a quote (in a round) X
Prove valid order X
Prove inventory validity X
Match a trade X
Mark to Market X

In the first scenario, multiple bidders join the auction with a pre-defined bal-

4



ance. Each bidder will take turn to make bids by raising the highest price until
the winner is identified (as the one who bids the highest). Security requirement
in an auction house only includes checking the balance of the bidder’s account
to be able to satisfy the bids (authentication is only optional, an anonymous
auction requires no identity to make a bid). There is no other way to change
the validity of a bid once it has been proven except when the owner changes
the price to be higher than the available cash in a new bid. Hence this security
requirement is monotonic.

To determine the highest bid by bidding against a fixed price is mostly
monotonic as shown in this case (only the proclaim winner step needs to be
non-monotonic as the winner can change after each bid, hence Alice’s proof to
be the owner of the highest bid can be invalidated by Bob once he makes a bid
that is higher in the next round).

The famous Danish Sugar Beet auction [4] was actually an example of a
monotonic bidding against fixed prices. There were 400 fixed price levels and
everybody bidded the amount of product they would like to buy (or sell) at
each price level. Bob’s bid (cryptographically represented as three secret shares)
would not make Alice’s bid invalid (which were three other independent shares).
The three servers (each receiving one share by each bidder) would then perform
a MPC computation to add up the quantities at each price level and determine
the mid price (where supply would equal demand). Everybody who had bid at
that price would actually have to sell/buy.

Similarly, in an e-voting system (e.g. [10]), to authenticate a voter and a
vote is monotonic while determine winner might be non-monotonic if the result
is determined by multiple rounds of voting. A reputation system (e.g. [21]) is
fully monotonic.

Differently, in a futures exchange [2], such as Chicago Mercantile Exchange,
multiple traders participate with an initial margin to trade futures contracts, a
standardised legal agreement between two parties to buy or sell an underlying
asset at specified price agreed upon today with the settlement occurring at a
future date [20]. Traders take positions (accumulating contracts in inventory)
by posting buy and sell orders which effectively changes the market price and
directly affects the validity of all trading inventories5. Thus the security require-
ment now involves all parties after an action made by a party. Once an order
has been proven valid by a trader, other traders have to come in and prove their
inventory valid regarding the new order as their old proofs are discarded when
the market price changes. As a result, the security requirement for a futures
exchange is non-monotonic: an action made by a trader upon changing the
market price immediately invalidates (economically) all validity proofs of other
traders6.

A futures exchange is a good example of a non-monotonic protocol. In the
next sections we will discuss the non-monotonic behavior’s effect against the
new failures and design implications of such non-monotonic protocol.

5A formal definition of a Futures Market is given in [16] (Section IV)
6See an additional discussion of non-monotonic security in [15] (Section V, Remark 1)

5



4 Design Implication of Non-Monotinicity: the
“Proportional Burden” of Computation

All security protocols implicitly satisfy a Proportional Burden: Each computa-
tion should be mainly a burden for the party benefiting from it (e.g. Alice is
expected to do more work to cast her vote than when Bob is casting his vote).
Other parties should join the protocol only to avoid risks (e.g. failed solvency
or protect anonymity).

This is a practical constraint, and not a security one. Such constraint is
immaterial in classical security protocols such as user authentication (every
user gets the token he ask for), or multi party computation applications such
as auctions where everybody makes one bid, or e-voting when everybody casts
one vote.

This is definitely not true for security protocols implementing general finan-
cial intermediation. In a stock market, most “retail traders” make few quotes,
but “algorithmic traders” (typically speculators) make and cancel thousands of
quotes.

For example, the empirical study in [14]. showed that retail and institutional
investors are 71% of traders in the TSX market but only make 18% of the orders.
Traders responsible for the bulk of the over 300K orders per day were algorith-
mic traders who, in 99% of the cases, only submitted limit orders that would
never be matched in an actual trade. Any implementation should reflect this
practical constraint. Indeed, Centralized Exchanges charges differently based
on the number of quotes.

The same thing happens in the Bitcoin network. A transaction from a payer
to a payee has to leave some (small) amount to be collected as transaction
fee. A miner in the Bitcoin network is compensated for their effort with those
transaction fees upon finding the Proof-of-Work to extend the longest chain [19].
As a result, the more transactions a payer makes the more fees he has to pay
to the miners.

Monotonic security allows efficient optimizations [21] as a costly multi-party
computation (MPC) with n interacting parties may be replaced by n indepen-
dent (possibly zero-knowledge) non-interactive proofs or secret shares.

The sugar beet auction did exactly that: instead of having 1200 bidders
performing an MPC operation all together it had only three servers doing MPC.
Each bidders actually submitted only three secret shares to the three servers.
Monotonicity of the underlying financial model made it possible to implement
it with a monotonic security protocol.

This replacement is also possible when a party only need to make changes
to their old secret values based on some public information and prove the cor-
rectness in zero-knowledge. This happens in ZeroCash transaction’s correctness
[3]. It makes it possible for a party to stay off-line and only connect on demand
as well as allowing public verification (the proof of payment in ZeroCash can be
verified by any party, even the newly arrived ones).

In the general case, the financial intermediation system corresponds to a

6



security reactive functionality [5] and changes its internal state because an agent
performs a valid move which updates the public information and her own private
information. If an agent’s legit move can unpredictably make another agent’s
state invalid the system as a whole as a whole must transit to a new state where
the legit move is accepted and the invalid state is fixed. This is intrinsically
not monotonic as the arrival of one security credential might make economically
invalid all the other security proofs cumulated so far.

The solution would be to implement the whole functionality as MPC. Let
alone any efficiency consideration7, this would be unacceptable given the large
variance in trading efforts: some traders only make few operations, others can
make gazillions of them. In the cited example [14], it is hard to believe that
retail investors would be willing to pay CPU and network resources so that
speculators could securily and anonimously make their 245.000 vacuous bids
against the actual 5000 trades.

A solution would be to require each trader to prove the constraint satisfaction
of the economic validity of the order again when new order arrives. However
this conflicts with the market’s anonymity requirement in case only one party
cannot prove the validity. This leads to dangerous seconomic vulnerabilities
such as price discrimination attack [16].

Hence, the challenging part of the protocol construction is to identify the
minimal core of the state of the reactive security functionality implementing
the financial intermediation service provider that would account for its non-
monotonic behavior in the legitimacy of traders and assets8. This is the only
part where MPC needs to be used.9. As shown in [15], this approach can reduce
the total burden of computation by retail traders by several orders of magnitude
heavier comparing to the generic MPC implementation.

5 Design Implications of Non-monotonicity: Fail-
ures by omission

From a security perspective, the above design is only secure-with-abort as an
adversary can abort the protocol by simply not participating in a joint MPC
step. The protocol fails by omission. It is true that from a security perspective
one can design the protocol to be fail-safe [8], but this is hardly acceptable in
practice. Which speculator would join the TSX market mentioned above if any
retail investor disconnecting its computer could fail safe to nothing happend
and thus avoid being thoroughly shaved? Would institutional or retail investors
ever join if any glitch by mistake or mischief by an algorithmic trader could fail
safe to nothing done a day of costly MPC computation?

7The 1229 parties full MPC variant is still out of reach for the foreseable future as experi-
mental papers typically reported MPC with less than 10 parties [6].

8See Section VII of [15].
9This does not violate the proportional burden requirement as each trader has the respon-

sibility to prove the solvency if s/he still wants to be in the game

7



A preliminary observation is that in practice one cannot initialize a market
with a self-claimed account. The cash that get deposited into the market must
be backed by a verifiable source where a debit is acknowledged by every market
participants, e.g. ZeroCash. Hence, such source must be able to publicly verify
the validity of the transactions resulting from the market’s operation at the end
of the day to credit each the account with the corresponding amount.

An approach to penalize a faulty participant upon aborting in an MPC
with digital cash is to make the adversary lose some digital cash. The works
in [12] and [13] require the adversary to make deposits and forfeit them upon
dropping out. Technically the parties have to stake increasing deposit in a fixed
order since order of revelation is important (the see-saw mechanism, [12, p. 7])
for the aforementioned penalty mechanism to work10 To participate in a game
where x is at stake, the first trader completing the protocol deposits n · x, the
second trader deposits (n− 1) · x, and the n-th trader deposits x.

Unfortunately those protocols are not usable in any practical scenario when
deposits are actually meaningful (i.e. x is truly money and not a LATEX symbol)
as they are economically unfair. This is due to the difference in financial capa-
bility of traders. Consider a real futures market: the single smallest contract has
a value of 1 million (real) dollars. In a low-frequency market (lean-hog futures)
there are only few tens of traders but still the trader completing first would
have to deposit assets 35x times the stake of the trader completing last, and in
large markets more that 500 times larger. It is true that this money would be
returned at the end of the protocol, yet while the protocol is in execution the
first completing trader would have to borrow 500million dollars for its deposit
to make an order worth 1 million. . .

A better solution against omission is the mechanism of Hawk [11, Appendix
G, §B] in which private deposits are frozen and the identified aborting parties
cannot claim the deposits back in the withdraw phase. This requires that the
protocol must be able to provide security tokens of successful completion and
provide identifying evidence not only in case of misbehavior but also in case of
aborts. We refer the reader to Section X of [15] for additional discussion.

6 Conclusions

In this paper we have argued that the increasing number of (honest) parties
that participate to security protocols makes it possible to distinguish between
monotonic and non-monotonic security protocols.

Non-monotonic security implies novel failure modes and novel design chal-
lenges for protocl designers. Yet, we have also shown that some of them could
actually be addressed.

10In some cases this fixed order might interfere with the security goal, if the order of actions
may leak some information on who started the process.

8



References

[1] M. Abadi and R. Needham. Prudent engineering practice for cryptographic
protocols. In Research in Security and Privacy, 1994. Proceedings., 1994
IEEE Computer Society Symposium on, pages 122–136. IEEE, 1994.

[2] F. Allen and A. M. Santomero. The theory of financial intermediation.
21(11-12):1461 – 1485, 1997.

[3] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza. Zerocash: Decentralized anonymous payments from bitcoin.
pages 459–474, 2014.

[4] P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, et al. Se-
cure multiparty computation goes live. In Financial Cryptography, volume
5628, pages 325–343. Springer, 2009.

[5] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable
two-party and multi-party secure computation. pages 494–503, 2002.

[6] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the
SPDZ limits. pages 1–18, 2013.

[7] T. Dierks and C. Allen. The tls protocol version 1.0. 1999.

[8] L. Gong. Fail-stop protocols: An approach to designing secure protocols.
1994.

[9] D. Harkins and D. Carrel. The internet key exchange (ike). Technical
report, 1998.

[10] A. Kiayias, T. Zacharias, and B. Zhang. An efficient e2e verifiable e-voting
system without setup assumptions. 2016.

[11] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts.
pages 839–858, 2016.

[12] R. Kumaresan, T. Moran, and I. Bentov. How to use bitcoin to play
decentralized poker. pages 195–206, 2015.

[13] R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan. Improvements
to secure computation with penalties. pages 406–417, 2016.

[14] K. Malinova, A. Park, and R. Riordan. Do retail traders suffer from high
frequency traders. Available at SSRN, 2183806, 2013.

[15] F. Massacci, C. N. Ngo, J. Nie, D. Venturi, and J. Williams. Futuresmex:
Secure, distributed futures market exchange. In 2018 IEEE Symposium on
Security and Privacy (SP), volume 00, pages 453–471.

9



[16] F. Massacci, C. N. Ngo, J. Nie, D. Venturi, and J. Williams. The sec-
onomics (security-economics) vulnerabilities of decentralized autonomous
organizations. In Proceedings of the twenty-fifth Security Protocols Work-
shop, 2017.

[17] R. C. Merkle. A digital signature based on a conventional encryption func-
tion. pages 369–378, 1987.

[18] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos
authentication and authorization system. In In Project Athena Technical
Plan. Citeseer, 1987.

[19] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[20] D. F. Spulber. Market microstructure and intermediation. 10(3):135–152,
1996.

[21] E. Zhai, D. I. Wolinsky, R. Chen, E. Syta, C. Teng, and B. Ford. Anonrep:
Towards tracking-resistant anonymous reputation. pages 583–596, 2016.

10


	Introduction
	Monotonic Security behavior
	Security of Financial Intermediation is non-monotonic
	Design Implication of Non-Monotinicity: the ``Proportional Burden'' of Computation
	Design Implications of Non-monotonicity: Failures by omission
	Conclusions

