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Abstract

Current industry standards for estimating cyber security risk are based
on qualitative risk matrices as opposed to quantitative risk estimates. In
contrast, risk assessment in most other industry sectors aims at deriving
quantitative risk estimations (for example Basel II in Finance). This pa-
per presents a model and methodology to leverage on the large amount of
data available from the IT infrastructure of an organization’s Security Op-
eration Center to quantitatively estimate the probability of attack. Our
methodology specifically addresses untargeted attacks delivered by auto-
matic tools that make the vast majority of attacks in the wild against
users and organizations. We consider two-stage attacks whereby the at-
tacker first breaches an Internet-facing system, and then escalates the
attack to internal systems by exploiting local vulnerabilities on the tar-
get. Our methodology factors in the power of the attacker as the number
of ‘weaponized’ vulnerabilities he/she can exploit, and can be adjusted to
match the risk appetite of the organization. We illustrate our method-
ology by using data from a large financial institution, and discuss the
significant mismatch between traditional qualitative risk-assessments and
our quantitative approach.

1 Introduction

IT systems are affected by a multitude of vulnerabilities that might be exploited
by an attacker,[1] and whose exploitation may affect and propagate to other
systems in the infrastructure. [2] The quantitative estimation of the risk posed
by these vulnerabilities is a critical step towards a more efficient allocation of
resources and a more secure overall environment.[3] Indeed, quantitative risk
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analysis (QRA) is being increasingly adopted in most industry sectors. Apos-
tolakis characterizes the adoption process in three phases:[4] first, best practice
adopts only traditional ‘safety analysis’, with no risk quantification in place;
second, the policy maker integrates ‘safety analysis’ with the additional insights
identified by the new quantitative methods; finally, the policy maker trusts the
quantitative predictions enough to relax the original safety analysis predictions
and prioritize quantitative insights. This process can be identified in many
industry sectors, including nuclear energy, space, and insurance (e.g. for nat-
ural catastrophes). [4, 5] Unfortunately, in the cyber-security risk domain this
process has been withheld by technical and organizational difficulties. For ex-
ample, security information is often difficult to analyze to extract actionable
information, as big datasets (e.g. reporting perimeter alarms from an Intrusion
Detection System [6]) are often of an unstructured nature.

Partially addressing these issues, recent research advancements propose new
data-extraction algorithms and models for big data. For example, Khorshidi et.
al [7] proposes a technique for the aggregation of qualitative data features with
the aim of fostering the risk management activities of complex systems whose
data sources may be incomplete or not sufficient for the purpose of the analysis.
Similarly, but going in the opposite direction, Susto et al. [8] propose a method
for the aggregation of multiple data sources to build models of the data with
interpretable regressors.

Other research has gone in the direction of statistically linking security alarm
data in IT infrastructures to security events and, ultimately, risk. [9] Yet, the
inherent limitations of security monitoring technologies[10] limit the applicabil-
ity to risk modelling of the data they generate. [11, 12] Similarly, risk assess-
ment procedures prescribed by standards and best practices often fall short in
providing quantitative instruments for risk estimation. For example, NIST’s
Information Security Handbook prescribes the usage of ‘risk matrices’ to quali-
tatively estimate the risk associated with a particular event. [13] Yet, it is known
that risk matrices may cause risk mis-categorization, and even wrong risk pri-
oritization. [14, 15] This issue is further aggravated by the fact that whilst the
estimation of a vulnerability’s exploitation technical impact is well understood
(e.g. the Common Vulnerability Scoring System - CVSS), [16] current measures
for ‘exploitation likelihood’ have been widely questioned. [17, 18, 19] For exam-
ple, recent work has shown that patching a hundred vulnerabilities bundled in
automated attack tools yields a risk reduction of 40% of attempted attacks in
the wild; in contrast, the recommendation of the Payment Card Industry Secu-
rity Council,[20] which is only based on the qualitative impact indicator of the
CVSS, [21] only yields a 4% risk reduction and requires looking at thousands
of vulnerabilities. [19] Due to the general permeation of the IT infrastructure
in most industrial infrastructures, these issues can potentially impact several
industry domains. For example, Basel’s banking treaties tie a bank’s capital
requirements to a quantitative assessment of operational risk (IT risk being an
instance) or to a much larger flat allocation if only qualitative measures are
used.

The lack of a shared framework for the quantification of risk makes the adop-
tion of sound and comparable measures for risk mitigation currently impossible.
Whilst estimating impact is also well understood in practice, [22] the subjectiv-
ity of qualitative attack likelihood estimations, stemming from the absence of a
shared quantitative estimation methodology, [23] has raised many concerns: [24]
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existing approximations are known to be often unrealistic or based on implicit
and untested assumptions. [23]

To address these shortcomings, in this work we propose a risk estimation
model that explicitly quantifies likelihood of attack by leveraging on data avail-
able to any organization deploying common perimeter defenses such as In-
trusion Detection Systems (IDS) and performing periodic vulnerability assess-
ments. [25, 26] Addressing current concerns on the quantification of uncertain-
ties, [27] our methodology factors in the risk model a measure of probability
(or, in the definition of Aven, vulnerability [27]) that explicitly accounts for the
level of knowledge used for the assessment (i.e. the IDS alarms and the tech-
nical vulnerabilities discovered on the system) and does not involve ‘subjective’
assessments otherwise explicitly or implicitly included in current quantitative
risk assessment procedures in IT. [23] We illustrate our methodology by us-
ing actual data from a large financial institution. Our analysis shows how the
qualitative risk assessment methodology based on risk matrices used by cyber-
security standards can lead to widely different estimations of risk from those
derived quantitatively from the data. Following Apostolakis, [4] we see our
model as a contribution in the transition between ‘traditional’ risk assessment
methods and ‘quantitative’ risk assessment methods that, in the IT sector, are
still lacking behind. [4, 23]

In the rest of the paper we first define the scope of this work (§2), and discuss
existing risk assessment procedures in a large financial institution (§3); we then
discuss the theoretical limitations of these practices (§4), and illustrate our
quantitative methodology to address them (§5). Next, we show how to extract
the relevant data from the IT infrastructure (§6), apply the methodology to a
real case study of a large financial institution (§7), and conclude the paper (§8).

2 Types of cyber-risk and scope of this work

The applicability of a risk assessment methodology is tied to the nature of the
risk it addresses. Broadly speaking, cybersecurity risks are typically generated
by a ‘human’ or ‘sentient actor’ that initiates the attack.1 Following Rans-
botham and Mitra [28] we can distinguish between two types of attacks by type
of initiating actor:

• ‘Targeted’ attacks typically involve strategic players that may react strate-
gically to the defender’s choices. [29, 30] By definition, these events are
caused by attacks targeted solely or almost exclusively at specific facilities
(such as the cases of the Stuxnet and Duqu malware), and that typi-
cally require an extreme level of sophistication. The limitations of PRA’s
applicability to this type of scenarios is akin to terrorism threats and
is well discussed in the literature, [31, 32] as well as its implications for
cyber-security. [30] Recent studies estimate that only few cyber-attacks
against organizations and consumer system are of this type. [33, 34] Tar-
geted attacks are often referred to in the risk analysis literature as ‘Black
Swans’, [35] or ‘Advanced Persistent Threats’ (APT) in the computer se-
curity literature. [36]

1We do not consider here software or hardware failures as part of the cyber-security risk
scenario as these can be appropriately studied along the guidelines of traditional safety analysis
and QRA in the same fashion that natural risks are studied.

3



• ‘Untargeted’ attacks are attacks whose targets are not distinguished one
from the other by any specific property or characteristic and just happen
to be reached by the attack. [28] These attacks are typically launched
using automated tools such as exploit kits [37] and are known to drive
the vast majority of attacks in the wild. [38] Untargeted attacks have a
wide range of potential victims and are known to affect individuals, [37]
organizations, [28] and industrial systems alike. [39]

The importance of untargeted attacks in the overall risk scenario has been
outlined by recent industry reports; [40, 41, 42] for example, a recent study
classifies Crimeware and Web attacks as the source of about 70% of the at-
tacks suffered by the Financial sector, [40] a figure in clear accordance with
trends previosuly quantified in the literature. [38] Because attacks of this type
are largely automated, the attack process typically follows a two-stage mecha-
nism [37] whereby the attacking tool: (1) attack probing : the attack ‘probes’
the victim machine, [9, 6] for example to identify if it is vulnerable [43] or if it
satisfies some desirable characteristics such as geographic location; [44] (2) at-
tack delivery : the attack’s payload (e.g. shellcode, malware, bash scripts,..) is
delivered to the target, for example by exfiltrating data or executing otherwise
unwarrented actions on the system. [37, 45] Due to the prevalance of untargeted
attacks in the overall risk scenario, [46, 47, 38] in this paper we focus on this
type of attacks.

3 Cyber Risk Assessment in a Large Financial
Institution

(Cyber) Security risk assessment in industry is largely constrained by com-
pliance to regulations and adherence to standards. To illustrate this, Table 1
reports some of the regulations and industry mandated technical standards that
must be satisfied by a large financial company, here anonymized as Company,
that offers integrated services in finance, logistics, and mobile communication
with a turnaround of around 24 billion Euro and 150 thousands employees. The
Baseline illustrates some norms that must be addressed to achieve a minimum
compliance whilst the Perimeter is the set of affected Services and Applications.

In order to achieve this security baseline a large security infrastructure is
needed: a security operation center (SOC). There are several best practices
to build a SOC[25, 26] and an average SOC can quickly generate several GB
of security events per day which can create a significant stress on the human
responders. [48] For example, our anonymized and aggregated dataset for Com-
pany’s IT infrastructure is over 2GB of data for just a month of processing.
Yet, as we shall see, this infrastructure is hardly used by the risk assessment
standards. We will return to the key components of a SOC in Section 6 when
discussing how to concretely extract data from the infrastructure to feed in our
quantitative model.

Once the minimal security measures are in place, the particular risk assess-
ment process to follow might be mandated as well by the regulations. The
ISO/IEC 27005 [49] and ISO/IEC 31000 [50] are typical standards used to un-
dertake risk management at the corporate level. The NIST SP 800-30 is an-
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Table 1: Security and compliance requirements over diverse perimeters in a
financial organization.

Perimeter Description Compliance requirements Security require-
ments

Privacy Protection of
personal, sensi-
tive and judicial
data

National Law and Tech-
nical Annexes, Internal
Guidelines

Security guide-
lines, ISO
27001:2013

Financial
Data

Protection and
tracking of finan-
cial transactions,
money transfers
and financial
information

National Law and Tech-
nical Annexes, Internal
Guidelines

PCI-DSS, Secu-
rity guidelines
for protection of
payment systems

Central
Bank

Compliance with
provisions of
management and
control issued by
CB

National Authority Reg-
ulation, National Regula-
tor Terms of Reference

Security guide-
lines for elec-
tronic payments

Traffic
Data

EU Commu-
nication Di-
rective, Traffic
(Phone/Internet)
Data Manage-
ment

Nat. Authority Regula-
tion, Technical Annex to
Law, Internal Guidelines

Guidelines for
critical infras-
tructure

other widely used standard for security risk assessment in the US. [51] Other
approaches to security risk assessment, with stronger focus on audit, are the
COBIT methodology sponsored by the ISACA institute, [52] SABSA used by
Accenture, [53] or the COSO Enterprise Risk Management. [54]

While several definitions of risk exist, including concepts such as probability
and impact, uncertainty and consequence, and expected consequence [55], in
industry standards they all ultimately collapse to the intuitive relation Risk =
Impact · Likelihood.

To calculate the two parameters and the resulting risk, the default applica-
tion of an Information Security Risk Management Process (ISRM) is basically
broken down in the following steps: [49]

1. Asset and Process Identification captures the overall enterprise architec-
ture;

2. Business Impact Analysis focuses on the information used by each service
and the impact of an attack;

3. Risk Assessment is then performed in order to identify impact, gaps and
current risk levels for all assets;

4. Security Requirements Identification addresses those gaps and produces a
plateau of security measures for the Service Owner to choose;

5. Risk Treatment is performed by the Service Owner on the basis of the
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Table 2: Example of Risk Assessment Interviews for ISRM - From [22]

Level Questions Time Unit

Business Information 16 1hrs Service
Process/People 300 3hrs Process
Applications 250 3hs Application
Software components 200 2hrs Type of Asset
Infrastructure 200 2hrs Type of Asset
Facilities 100 1hrs Facility

risk analysis and the business considerations, whilst the ICT Department
implements the technical solutions.

The first step of the process generates an enterprise architecture that spans
all layers: from Services to Processes, from People to Facilities. For each layer a
detailed analysis of impacts and security controls is conducted through several
interviews with Service and System Owners. Table 2 illustrates part of this
effort for a large financial company [22]

The Business Impact Analysis accounts for the type of data that is processed,
the relevance of compliance perimeters, the impact of security compromise (e.g.
severity of consequential criminal charges), the economic relevance of the service
(e.g. amount of losses due to service downtime), up to the monetary benefit that
a competitor might gain.

At Company, these assessments are mapped in five macro categories from C1
(lowest level) to C5 (highest level), to be compliant with the 1-5 ordinal levels
identified by the ISO standard. At the lower level (C1) we have services that do
not manage personal data and are not associated with security perimeters; at
the highest (C5) we have services that are fundamental for the company from
a business perspective and that are bound to relevant security and compliance
perimeters. There might be different mechanisms for doing so that are company
dependent. [22]

Likelihood estimations are built by considering the average threat level posed
by a vulnerability and the estimated probability of receiving an attack by a
certain attacker. For example, attacks of type T may be assigned a certain
probability Pr(AttackType = T ), and the probability of an attack on a system
s is given by Pr(s ∈ Attack) = Pr(AttackType = T )× Severity(v ∈ s), where
Severity(v ∈ s) is a function that considers the severity of the vulnerabilities in
the system s. This function may be a transformation of the average or maximum
severity. This is what currently prescribed by many standards for Information
Risk Management (including PCI-DSS, ISO 27001, NIST 800-30), that suggest
to consider a positive correlation between vulnerability severity and likelihood of
attack. [56, 57, 17] Pr(AttackType = T ) is typically estimated using pre-defined
tables (see for example Table 5, defined over Eurocontrol’s guidelines).

Other methods focus on using feature extraction to enumerate security events
(e.g. as recorded by network sensors) and estimate probability of occurrence
from there. This is however known to be a poor indicator of likelihood of at-
tack. [10, 58] As a result, likelihood of attack is typically assessed by means of
expert judgment. [23]

To perform the final evaluation both ISO/27001 and NIST 800-30 standards
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Table 3: Example of a 3x3 risk matrix.

Impact:

Minor Severe Critical

Rare Low Low Med.
Likelihood: Frequent Low Med. High

Certain Med. High High

suggest the use of risk matrices as a tool to support such decisions. Table 3
reports a simple example of a 3x3 risk matrix, where the interaction between
the rare, frequent, certain likelihood levels and the minor, severe, critical con-
sequence levels, results in a final 3-level risk evaluation from low to high.

4 Limitations of current risk assessment method-
ologies

Risk quantification considers the measurement of quantities representing the un-
certainty and the consequences of an event. Several definitions of risk exist, [59]
and its mathematical form may vary; however risk should be ideally represented
as a cardinal value resulting from some function transforming uncertainty and
consequence assessments in a synthesized risk value. [14] This process is often
aided by technological means to measure or estimate those parameters. [4] For
example, probabilistic risk assessment is often based on historical data (e.g.
measured by sensors such as seismographs, or records of past nuclear incidents)
which goes in input to data and risk models that provide the final risk esti-
mate. This same process is applied to IT risk. Several models for cyber-risk
quantification exist in the literature. A summary of approaches to cyber-risk
estimations is given in Table 4.

Attack trees and graphs aim at quantifying risk of cyber-attacks, both in
generality and applied to specific risk scenarios. [2] Attack graphs represent
network or system structures, where each node corresponds to a vulnerability
and an edge indicates the possibility for an attacker to exploit two vulnerabili-
ties in sequence. Weights on the edges of the graph represent the probability of
receiving attacks on the specific vulnerability chain. This model has proven to
be very successful in the literature with several applications to a number of cases
such as industrial control systems [72, 73] and organization networks. [68] While
attack graphs are a powerful method to reason over cyber-risk, the model param-
eters are assumed to be known or measured by other means. [64] Other models
enumerating security events or vulnerabilities have also been proposed in the
literature. [63, 60] Similarly, vulnerability estimation and assessment methodolo-
gies provide a quantitative way of measuring weaknesses and formulate impact
estimations. [57, 65] However, the resulting estimations are widely regarded as
unrealistic, as recently showed in scientific studies comparing vulnerability ex-
ploits with resulting metrics, [17, 19] and industry reports openly criticizing
vulnerability models and measures as effective proxies for risk of attack. [74]

More advanced models consider the complex interactions between system
vulnerabilities and attacker actions to devise so-called time-to-compromise mod-
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els that provide a general framework to evaluate the probability of successful at-
tack given certain starting preconditions on the system and the attacker. [69, 70]
On the same line, but from an economic perspective, other approaches consider
the interplay between attacker and defender to define game-theoretic models
with the goal of deriving mixed equilibria (whose outcomes are defined in terms
of impacts and probabilities) leading to different risks. [66, 75] However, these
approaches leave the estimation of “likelihood of event” to the judgment of an
expert that either directly sets probabilities of attack, or sets some parameters
of the computational or game theoretical model that derives the quantitative
probabilities as a function of that input. [68]

Patented methodologies often employ a mixture of system [76, 77] and game-
theoretic [78] approaches to evaluate overall system risk. These models build
on top of attack graphs and derive risk estimates based on graph traversing [76]
or determination of minimal graph cut-sets [79] to block attacks out. Attack
probabilities are obtained by employing one (or a combination thereof) of the
methods presented in Table 4. [79, 80]

Overall, quantitative methodologies for cyber risk estimations estimate at-
tack likelihoods by assuming an underlying distribution of attacks (e.g. a pois-
sonian distribution) whose parameters are assessed by an ‘oracle’ (that, for
example, estimates the number of expected occurrences λ). This is often a
problem of lack of data models that can transform observations in predictions.
For example, Cherdantseva et al. report “In order to deal with the absence
of historical data, some PRA methods rely on subjective data such as expert
opinion. In some cases, expert opinion is more easily available and may even
be more valuable than historical data.” [23] Indeed, even when security data is
available (e.g. for network events), it is known to be extremely noisy [10] and
fraught with errors of unknown size (see for example the discussion provided in
[74]). Hence the need to “[..] devote more attention to techniques for capturing,
formalising and ultimately turning into numeric values expert knowledge”. [23]

This situation is worsened by the current lack of formal procedures to share
incident data that may reveal mounting attack trends, or new attacks (some-
thing that the recent EU 2013/0027 NIS - Network and Information Security
- Directive tries to address; similarly, the US NTIA and the US Department
of Commerce’s Internet Policy Task Force are currently addressing these issues
in a set of call for comments with the Industry. [81]) Official guidelines such
as NIST’s Information Security Handbook [13] prescribe a qualitative assess-
ment of risk over its quantitative estimation, as it allows the decision maker to
operate within easily understood intervals that separate a ‘likely’ attack from
an ‘unlikely’ attack, and a ‘severe’ consequence from a ‘minor’ consequence.
Inevitably, moving from a quantitative to a qualitative framework causes some
loss in resolution. Worse still, Cox [14, 15] shows that this loss in resolution may
cause mis-categorization of risks and misguide the decision maker in believing
that a certain risk is qualitatively higher than another, while the opposite is true
quantitatively. In the absence of data, a qualitative assessment of probability of
attacks is often necessary, although it is well known that ‘expert assessments’
of highly uncertain events are generally unreliable . [82, 83]

To address this, we propose a quantitative assessment methodology that
allows the user to objectively estimate likelihood of (untargeted) attacks against
his/her infrastructure.

Our method can be combined with any approach for the quantification of
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impact. Several studies on the quantification of impact exist, including impact
from direct losses, [84, 85] technical impacts, [60] financial impacts, [86] and
reputational and operational impacts. [87]
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Table 4: Summary of quantitative methodologies for cyber-risk estimation. An
overview of related patents is given in the Appendix, Tab. 13.

Ref. Quantification methodology Likelihood estimation

[60,
61]

Attack-surfaces measure the entry
points that an attacker can exploit to
breach the system. Attack surface es-
timations rely on vulnerability scan-
ners data or vulnerability models (for
a practical example, see [62]). Attack
surfaces do not explicitly measure risk
of attack, but assume that this is pro-
portional to the number of identified
entry points.

Probability of attack is assumed
to (positively) correlate with attack
surface (‘attack opportunities’). For
example Howard et al. evaluate
“targets and enablers, channels and
protocols, and access rights” to es-
timate attack likelihood. [61] The
quantitative relation between attack
surface and likelihood is however not
defined.

[2,
63]

Attack graphs are graphs where a node
is a vulnerability exploited by the at-
tacker, and edges represent the oc-
currence of an attack leading the at-
tacker from one vulnerability to the
next. Probabilistic attack-graphs at-
tach probabilities of exploitation as
weights to those edges.

Attack graphs do not provide an in-
dication on how to estimate prob-
abilities of attacks. Some method-
ologies apply a Bayesian approach
for the probability estimation based
on an initial belief. No indication
on the update function or informa-
tion used for the update is pro-
vided. For example, Poolsappasit et
al. propose a formal model of belief
propagation on top of previous ap-
proaches, where prior probabilities
are “subjectively assigned by the ad-
ministrator”. [64]

[57,
65]

Vulnerability-oriented methodologies
estimate risk of attack by considering
the characteristics of the vulnerabili-
ties. For IT systems, several stud-
ies suggest the usage of the Common
Vulnerability Scoring System (CVSS)
metric [21] to make probability esti-
mates. For example, in [64] the au-
thors state “we use the metrics defined
in NIST’s Common Vulnerability Scor-
ing System (CVSS) to estimate the at-
tack likelihood”.

The association between severity
and likelihood estimations in the
CVSS score is not substantiated by
empirical evidence,[19, 17] and is not
claimed by the standard itself. [21]

[66,
67]

Game-theoretic models consider the in-
terplay between a strategic attacker
and a defender to derive equilib-
rium points where the resulting mixed
strategies are the outcome of the
strategic game. The probabilities as-
signed to each strategy correspond to
the probability of an attack following
a certain mitigation action by the de-
fender.

The estimation of “likelihood of
event” is left to the judgement of
an expert that either directly sets
probabilities of attack, or sets some
parameters of the computational or
game theoretical model that derives
the quantitative probabilities as a
function of that input. [68]

[69,
70]

Time-to-compromise models are also
used as proxies to perform risk esti-
mations. Probability quantifications
are possible based on the underly-
ing model. For example, Henry and
Haimes assume known vulnerability
and exploit distributions for the esti-
mation of the time required for the at-
tack to succeed. [70]

The estimation of the probability
distribution of attack are expert-
based (see for example [71]).
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5 A Quantitative Model for Likelihood of Cyber
Attacks

The definition of Probabilistic Risk Assessment (PRA) by Ezell et al.[88] links
the relation between risk, probability of attack attempt (Attack), probability of
successful attack (Comprimise), and impact (Impact):

Risk = Likelihood · Impact =

Pr(Compr|Attack) · Pr(Attack) · Impact
(1)

Brown et al. [89] have critiqued this definition, as they deem critical the inter-
pretation of the term Pr(Attack), and consequently question the condition on
the second term: these probabilities can not be reliably estimated without know-
ing the ‘reason why’ an attacker attempts the attack. This also assumes that
Impact is a deterministic function. In contrast, the operational risk literature
treats both Impact and Likelihood as uncertain variables by considering com-
pound risk distributions that account for the associated uncertainty. [90] This is
for example the standard Basel-II approach used in the banking and financial
sectors. These distributions are of the type

∑N
j=1 Impactj , where Impactj is the

randomly distributed severity of a single loss. Assuming independence between
losses and frequency of occurrence (the standard insurance modeling approach
used in Basel-II [90, def. 3.5, pp. 98]), one can rewrite Eq.1 as

Risk =

∞∑
z=0

Prz(Compromise|Attack)·

Prz(Attack) ·
z∑

j=1

Pr[Impactj < x]

(2)

where Prz(·) is the probability associated with z incidents, x is the total loss, and∑z
j=1 Pr[Impactj < x] is the total probability of loss for z incidents. The risk

estimate can then be obtained by deriving the convolution of the probability and
impact distributions (for an introductory discussion see [90, Ch. 3.4.3, pp.102]).
Whereas several studies on the quantification of impact exist, [84, 85, 60, 86, 87]
current risk assessment methodologies lack of a well-specified method for the
measurement of attack likelihood.[23]

As discussed in Section 2, in this work we specifically refere to untargeted at-
tacks. While the dynamics driving the production of this class of cyber-attacks
are not fully specified in the literature yet, [91] their empirical distribution is
known or can be obtained from the data. For example, distribution of at-
tacks against web software components seem to follow a log-normal distribution
whereby for certain software types 95% of attacks are driven by as little as 5%
of the software’s vulnerabilities [46]. Hence, the frequency and impact distri-
butions defined in Eq. 2 can be collapsed to a single probability estimate for a
given number of events z. We can therefore specify the likelihood of attack for
a certain system s in the organization’s infrastructure as:

Likelihoods = Pr(s ∈ Compromise|s ∈ Breach)·
Pr(s ∈ Breach|s ∈ Attack)·
Pr(s ∈ Attack|Attack) · Pr(Attack)

(3)
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Attack launched
by an attacker

Pr	(𝐴𝑡𝑡𝑎𝑐𝑘) Pr 𝑠 ∈ 𝐴𝑡𝑡𝑎𝑐𝑘	 𝐴𝑡𝑡𝑎𝑐𝑘) Attack received
by system s

Pr(𝑣 ∈ 𝑠	&	𝑣 ∈ 𝑊𝑒𝑎𝑝𝑜𝑛)

Phase 1
The attack reaches a system (s) in the infrastructure

Phase 2
The attack exploits a vulnerability (v) present on system (s)

The attack exploits a  
vulnerability v selected by 
the attacker and present 
in system s

Phase 1. The infrastructure is attacked with a certain prior probabil-
ity Pr(Attack) and targets a specific system s with probability Pr(s ∈
Attack|Attack). The prior probability of attack is evaluated over the whole
infrastructure and is therefore immaterial to calculate relative risks for each
system. Pr(s ∈ Attack|Attack) can be obtained by evaluating the exposure
of the system to incoming traffic as reported by network sensors. Phase 2.
Once the attack reaches a system s, the probability of successful compro-
mise is equal to the probability of a vulnerability exploit being included in
the attack (v ∈Weapon) and the match between those and the vulnerabili-
ties on system s (v ∈ s). The resulting probability, Pr(v ∈ s∧v ∈Weapon)
is therefore the probability of successful attack.

Figure 1: Conceptual representation of the two-phases model and the relation-
ship with its mathematical form.

where Pr(s ∈ Attack|Attack) is the probability the attack against the orga-
nization will materialize as an attack on a particular system type, Pr(s ∈
Breach) captures the chances of the attack to breach into the system, and
Pr(s ∈ Compromise) is the probability of the final successful compromise.

To compute these components from the technical infrastructure, empirical
evidence suggests that if the automated attack tool has incorporated the exploit
of a vulnerability present on the system, then success of the attack is almost
certain. [92, 37, 47] Therefore the probability of a successful intrusion equals
the probability that the appropriate combination of vulnerabilities is present on
the attacked system (v ∈ s), and that the attacker actually weaponized v in
his or her toolkit (v ∈ Weapon): Pr(s ∈ Compromise|s ∈ Breach) · Pr(s ∈
Breach|s ∈ Attack) ≈ Pr(v ∈ s ∧ v ∈ Weapon|s ∈ Attack). As the presence
of a technical vulnerability is an intrinsic property of the configuration, and
is not dependent on the attacker selecting the particular system s, we have
Pr(v ∈ s ∧ v ∈ Weapon|s ∈ Attack) = Pr(v ∈ s ∧ v ∈ Weapon). We can then
re-write Eq. 3 as:

Likelihoods ≈ Pr(v ∈ s ∧ v ∈Weapon)·
Pr(s ∈ Attack|Attack) · Pr(Attack)

(4)

The two distinct attack phases (attack probing and attack delivery) identified
in the computer security literature [37, 28] and introduced in Section 2 naturally
emerge from Eq. 4. Figure 1 visualizes a schematic representation of the two-
phase attack process and its relation with the mathematical form expressed
above.

An agreement on how to measure Pr(Attack) still does not exist. Adopt-
ing a purely frequentist approach, Pr(Attack) could be for example the frac-
tion of malicious incoming network packets in which case we would obtain
Pr(Attack) ≈ 0. [10] If we consider the fraction of days with at least an attack
we would obtain Pr(Attack) ≈ 1. [93, 94] From the perspective of prioritizing
risk treatments between systems within the organization, this value would be
mostly immaterial. In this respect qualitative estimates might be appropriate
and might as well take into account the motivation of the attackers as advo-
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Table 5: Example of attack’s likelihood assessment derived from the Eurocontrol
Air Traffic Management Risk Tool Kit.

Likelihood

Frequent Likely Occasional Unlikely Rare

Skills Automated
attack

Semi-
automated
attack

Attack
needs re-
engineering

Highly
skilled at-
tacker

Insider &
skilled

Attack
vector

Any Known pub-
lic technique

Marketed
access

Limited ac-
cess

Unique
access

Profit High Significant Modest Little None
Attention Media

coverage
world-wide

National in-
terest

Local inter-
est

Little atten-
tion from
media

No attention

Attack
identi-
fication

Impossible
to detect
attack

Unlikely to
detect

Likely to de-
tect

Detection al-
most certain

Obvious

ProsecutionNo chance Little chance Likely High chance Certainty

cated by Brown et al. [89] For example Table 5, derived from the Eurocontrol
Air Traffic Management Risk Tool Kit, shows a fine grain classification consider-
ing different incentives and dis-incentives for attackers. Quantitative estimates
can be obtained empirically by assuming a certain probability function of ar-
rival of attacks (for example Binomial or Poissonian) and deriving the expected
value by means of Monte Carlo simulation or equivalent approaches [90]. Natu-
rally, the underlying distribution assumption is of central importance to obtain
realistic estimates and is currently an unsolved problem in the cyber-security
domain. [23].

In contrast, P (s ∈ Attack|Attack) and Pr(v ∈ s ∧ v ∈ Weapon) are tech-
nological measures and can therefore be objectively estimated using tools and
procedures commonly available, and often mandated by compliance, in any
complex-enough organization as well from the technological assumptions about
the power of the attacker.

In absence of complete information on existing exploits (e.g. because the
vendor of the security tool did not find the exploit yet), the defender can only
assume that the attacker possesses an unknown set of vulnerabilities of size k
that he/she may use out of the Vtot present in the target infrastructure.2 Hence,
the attack against system s will fail if the attacker has chosen a set of k exploits
that does not include any vulnerability among the Vtot − Vs that do not affect
system s. More formally, the attack fails if the attacker chooses a set of attacks
of size k from

(
Vtot−Vs

k

)
out of the possible

(
Vtot

k

)
choices he or she has. We

can then estimate the probability of a successful attack for an attacker with

2Estimates for k can be derived from the literature. For example, the study of exploits
kits as software artefacts by Kotov and Massacci [43] showed that each kit uses on average
11 exploits. Even an allegedly nation-state malware such as Stuxnet with 30 fully automated
functionalities (including updating itself and communicating to the remote command and
control server, etc.) only exploits 8 vulnerabilities overall. Similarly, the Duqu malware
exploited one kernel vulnerability in Windows to breach the system and then exfiltrated and
propagated itself in the network.
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weaponizing power k as follows.

Pr(v ∈ s ∧ v ∈Weapons|AttackerPower = k) =

1−
(
Vtot−Vs

k

)(
Vtot

k

) ≈ 1−
(

1− Vs
Vtot − k

)k (5)

The latter approximation can be derived by either using Stirling approxima-
tion for the binomial coefficient with Vtot � Vs > 1 or by simply drawing k
vulnerabilities from Vtot with replacement.

This estimation can be refined if it is possible to discriminate between net-
work exploitable vulnerabilities Vn and locally exploitable vulnerabilities Vl, as
the former are typically used to establish just a breach of the system and the
latter to gain complete control of it. For example, the recent RIG exploit kit
only features kn = 6 vulnerabilities3 and the dropped malware may be executed
thanks to some local mis-configuration (e.g. acquiring privileged access to the
system, or vulnerabilities in the antivirus software - see Table 7), i.e. kl = 2. In
the past, the successful worm Conficker and subsequent iterations exploited a
network vulnerability in Windows RPC service (MS08-067), propagated thanks
to Http pull mechanisms, anonymous network shares and weak network share
passwords (kn = 4). Conficker could propagate locally by exploiting removable
media content auto-execution (kl = 1).4 Hence we can break down the ability
of attackers to weaponize kn network facing vulnerabilities and kl local vulnera-
bilities as the complement of the probability that the attack fails either because
the network attack failed (Phase 1), or because the local attack failed (Phase 2)
even if Phase 1 succeeded. This yields the following equation:

Pr(v ∈ s ∧ v ∈Weapons|Power = kn + kl)

= 1−
(
V n−V ns

kn

)(
V n
kn

) −

(
1−

(
V n−V ns

kn

)(
V n
kn

) ) (
V l−V ls

kl

)(
V l
kl

)
≈ 1−

(
1− V ns

V n− kn

)kn

−
(

1− V ls
V l − kl

)kl

+

(
1− V ns

V n− kn

)kn
(

1− V ls
V l − kl

)kl

(6)

where
(V n−V ns

kn
)

(V n
kn

)
denotes the probability that the attack fails in Phase 1, and

(1 − (V n−V ns
kn

)
(V n
kn

)
)
(V l−V ls

kl
)

(V l
kl

)
denotes the probability of failure in Phase 2 given a

successful Phase 1 attack. As the attacker needs to reach at least one network
vulnerability to breach the system and one local vulnerability at least to avoid
detection, we assume kn ≥ 1 and kl ≥ 1.

To estimate the probability that an automated attack is actually directed to-
wards a particular system s we leverage on the information gathered by perime-
ter sensors such as border firewalls or intrusion prevention systems (IPSs) and

3See for example the technical analysis at http://www.kahusecurity.com/2014/

rig-exploit-pack/, last visited June 2017.
4See technical report at https://www.icann.org/en/system/files/files/

conficker-summary-review-07may10-en.pdf, last visited June 2017.

14



intrusion detection systems (IDSs) which log unwanted or anomalous incoming
traffic toward the organization.

Unfortunately, IDS technology is known to have a relatively low true detec-
tion rate and therefore can not be considered to be directly related to successful
attacks [10] albeit vulnerability and port scans detected by IDS are known to be
followed by attacks [95, 96]. Still, the relative distribution of alerts per system
can give us a practical proxy measure for the probability of an attack being
directed towards a system (type) s, given that an attack happened.

Pr(s ∈ Attack|Attack) ≈ |Alertss|
|Alerts|

(7)

At this point we have all necessary information to calculate the quantitative
value of Likelihoods for system s by using Equation (4) with the values from
Equation (7), and the values for Equation (5) or (6) can extracted from the IT
system infrastructure; overall, we consider:

1. IPS/IDS Alerts, both global and system specific, can be obtained from IPS
and IDS data and can be used to evaluate system exposure to malicious
traffic (Eq. 7).

2. Vulnerabilities, both global Vtot and system specific Vs (possibly broken
down into network or locally exploitable), can be obtained from internal
pen-testing scans or from VAs and can be used to evaluate a system’s
vulnerability to attacks (Eq. 5, 6).

3. Power of the attacker k derived from analysis of malware and exploit
kits in the wild or simply procured from intelligence services by security
companies (Eq. 5, 6).

This data is generated by a cyclic process mandated by several IT secu-
rity management standards such as ISO 27001 and 31000. The VA process
is typically run periodically by network scanning tools, (a requirement defined
by compliance, see for example Req. 11 of PCI-DSS [20]). IDSs and IPSs are
constantly monitoring the network traffic and the underlying infrastructure gen-
erates periodic reports. [25] We illustrate how to concretely obtain this data
from the technical infrastructure in the next section.

6 Infrastructural tools to evaluate system risk

Figure 2 exemplifies the considered attack dynamics on a typical network infras-
tructure with the key components of a security operations infrastructure. [26]
The first entry barrier for an attacker is the border router or some first-level fire-
wall that filters incoming traffic. The external IDS monitors all incoming traffic,
including traffic that will be filtered by the first-level firewall and the border
router. More specific filtering and traffic monitoring can be implemented at the
second and lower levels of the network (e.g. to detect attacks against specific
services).

The attacker may then initiate a probing phase of the network (P1A) in
an attempt to obtain some information about the organization’s infrastructure.
Because these network scans often follow specific patterns, they are likely to be
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Firewalls and IDSs are replicated at different levels in the network to monitor traffic
towards specific subnets or allow for easier correlation between network and system events
(e.g. the external IDS does not typically see the internal network as it sits outside).
Further, a Vulnerability Assessment (VA) service is in place that scans configurations for
known vulnerabilities in the organization’s systems (scans represented by green arrows).
An attacker has initially to probe the network (P1A) to collect information necessary
to deliver the attack, e.g. operating system used by internet-facing systems or a spear-
phished employee invoking an exploit kit (P1B). The attacker can further propagate the
attack to internal systems, e.g. drop some self-propagating malware, or use the internal
network interface of public services to bypass the first-level firewall (P2).

Figure 2: Schematics of a typical network infrastructure and attack scenario.
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Table 6: Example of IDS alarms.

Time Src IP Dst IP Src Port Dst Port Description Status

3/3/16
11:50:01

ip1 ip2 39033 https/443 Http S Apache
ClearText DoS

Detected event

7/3/16
20:17:20

ip3 ip4 58171 84 UDP Port Scan Detected attack (vuln
not scanned recently)

24/3/16
21:55:02

ip5 ip6 http/80 27710 Script Evasive
Concatenation

Detected event

30/3/16
09:50:39

ip7 ip8 http/80 40231 JavaScript
Packer Delta

Attack failure (blocked
by appliance)

reported by perimetral sensors such as IDSs or firewalls. More in general, fire-
walls and IDSs will report all ‘suspicious’ incoming network packets (P1B), e.g.
matching a signature for a known attack. Further, alarms reported by perimeter
sensor technologies often report additional information such as detected threat,
source and destination of the network packet, and time of report. This can be
used to infer the exposure of an internal system to external threats. Table 6
reports an example of entries for an IDS alarm log. In this example, on the
7th of March 2016 an UDP port scan was detected and reported. Similarly,
on the 30th of March an attack from a service acting on HTTP port 80 was
blocked by the firewall. The alarms generated by perimetral sensors can give
the assessor an objective proxy measure of the exposure to attacks of a certain
network, subnetwork or network component. [95]

The second phase of the attack (P2) consists in the execution of malicious
behaviour on the breached network host. This can be in the form of a malware
software (e.g. a rootkit or ransomware), or system commands that may exfiltrate
data or contact other systems (e.g. bypassing the first-level firewall in Fig. 2).
This may be allowed by some mis-configuration (e.g. ineffective application
filtering) or by some software vulnerability that the attack can exploit to freely
operate on the system.

Table 7 reports an example of a VA report. Each entry is a vulnerability
detected on an internal system in the organization, and indicates (where avail-
able) the type of affected service, and a description of the threat and its severity.
For example, an attacking tool reaching system D could run system commands
with admin privileges.

To link a Phase 1 network attack with its Phase 2 effects, it is necessary to
link a system’s exposure to network attacks with the system’s vulnerabilities.
In several configurations this may not be straightforward. This is because an
outward-facing network interface reachable from the Internet masks the real,
private IP addresses of the internal systems. This ‘translation’ from public
to private addresses is usually performed by border routers (e.g. by Network
Address Translators). Depending on the position of the IPS/IDS on the net-
work topology, it may therefore be not possible to immediately map an alarm
generated externally (e.g. by the external IDS in Fig. 2) with the vulnerable
system.

The analyst can however reconstruct this translation process by using the
routing table of the border router that the organization controls. The informa-
tion necessary for the translation is typically of the form Dst IP, Dst Port,
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Table 7: Example of a vulnerability assessment report for four systems.

Sys ID Type Service Severity (1-3) Vulnerability description

A Local - 3 A code execution vulnerability is present
in some versions of Oracle Java SE and
Java for Business.

B Network ftp (21/tcp) 2 A listening not necessary service has
been detected on the host.

C Network snmp (161/udp) 2 A SNMP community name is set to the
default value (e.g. public or private).

D Local - 2 Detected presence of user with adminis-
trative privileges

E Local - 2 A vulnerability exists in the scanning
functionality in McAfee products that
may allow malware to bypass scans.

Table 8: Example of information necessary to map perimeter logs with VA logs
(if sensor is outside of the network’s border).

Dst IP Dst Port Real Dst IP Sys. ID Real Dst Port

ip2 ftp/21 ipa B ftp/21
ip4 MySQL /3306 ipb . . . custom/555
ip6 http/80 ipc . . . http-alt/8080
ip8 snmp/161 ipd D snmp/161

Real Dst IP, Real Dst Port. Table 8 reports an example of information
needed to map incoming traffic toward a certain public IP (ip{2,4,6,8}) and port
with the correct real destination.

If this information is not immediately available or is difficult to gather, it
is still possible to approximate it by looking at classes of functionally similar
systems rather than individual systems. For example, in some cases systems
might be multiplexed for load balancing to multiple, identical virtual machines.
It is thus reasonable to assume that whichever duplexed system the attack
was directed to, it would be affected by the same vulnerabilities as any other
system of the same type. For example, the probability of an infection (Pr(s ∈
Compromise|s ∈ Attacks)) directed toward a web server (http/80) would likely
be the same regardless of the actual system it reaches, as most webservers
would be configured very similarly or identically. In this scenario we can link
the destination port of the incoming traffic (Dest Port in Table 6) with the
service available on the system scanned by the VA (Type: Network in Table 7).
Vulnerabilities not associated to a network service are local vulnerabilities.

Table 9 gives a summary overview of the information used to estimate the
probabilities of attack and infection and the relevant infrastructural technology
needed to gather that information.
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Table 9: Summary of probability estimates and of the relevant information used
for the estimation.

Estimate TechnologyAlert info Topology-dependent

P (Attack) None Security expert’s
perception of at-
tack likelihood

No

P (s ∈
Attack|Attack)

IDS Suspicious traffic
directed toward
an internal or ex-
ternal system

Yes. Outward-facing sensors may
not be directly correlated with in-
ternal systems. Sensors with spe-
cialised functionalities (e.g. de-
tect attacks against SQL ) may
be weighted differently than non-
specialised sensors.

Firewalls/
IPS

Unwanted traffic
or application
protocol usage
detected.

Yes. Depending on position in
the network, firewalls may provide
more detailed traffic analysis (e.g.
static vs stateful filtering vs appli-
cation filtering).

Pr(v ∈ s|s ∈
Attack)

VA A vulnerability
on the system
exist that could
lead to data
exfiltration or
other security
breaches.

No.

7 Application example: the case of a large fi-
nancial organization

We now consider the application of this methodology to the case of Company,
an anonymized large financial organization. This analysis reports the example
of the organization’s Intrusion Detection System and Vulnerability Assessment
data for the month of March 2016. The IDS data reports 106 fired alarms,
generated from more than 5000 unique IP addresses. The VA reports data
relative to 376 unique systems inside the organization.

To minimize the disclosure of potentially sensitive information, we report
normalized quantities for each system and aggregate IDS and VA data by ser-
vice type (the coarsest granularity described in Section 6). We aggregate net-
work services to nine service types. Table 14 in the Appendix describes the
nine categories. To map each TCP port to a service type category as previ-
ously described, we extended the Common Ports table provided by Microsoft5.
Table 10 reports the distribution of the unique services running on systems in
the organization (a system may run more than one service). At a first approxi-
mation we map one IP address to one (either physical of virtual) system. The
organization’s infrastructure has roughly the same number of Chat, Http, In-
frastr, and RemCtrl services. Share, Mail, SQL, services are the second

5Port Assignments for Commonly-Used Services https://msdn.microsoft.com/en-us/

library/cc959833.aspx, last visited June 2017
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Table 10: Number of service types on unique systems.

System service type Occurrences

Auth 2.59%
Chat 14.92%
Http 15.44%
Infrastr 12.63%
Mail 5.32%
RemCtrl 16.22%
RPC 2.42%
Share 7.66%
SQL 6.66%
Other 16.13%
tot. 100.00%

Table 11: Service exposure by relative frequency of IDS alarms per system type

System Type IDS Alert Frequency

RPC 8.54%
SQL 0.39%
Mail 0.47%
Http 89.63%
Infrastr 0.39%
RemCtrl 0.26%
Chat 0.15%
Share 0.03%
Auth 0.14%

most common; RPC, SQL, and Auth are the fewest. Uncategorized services
(Other) are about 16% of the total. Other are services that rely on the
UDP network protocol and/or use non-default port numbers. As UDP typically
supports most TCP applications (Domain Name resolution Services being an
exception), we do not count UDP services as these are already likely accounted
for as TCP services.

7.1 Data analysis

In Table 11 we report the exposure to network attacks of defined service types.
As expected, the most suspicious network activity is directed toward Http ser-
vices. They are typically outward-facing and therefore more easily identifiable
by the attacker. RPC services account for the second largest fraction of suspi-
cious incoming traffic; these services allow remote systems (e.g. owned by the
attacker) to interact with procedures implemented locally, and potentially exe-
cute arbitrary, privileged actions on the target systems. The remaining services
receive substantially fewer network requests raising alarms. Among these, SQL,
Mail, Infrastr and RemCtrl services are cumulatively exposed to about 1%
of the incoming traffic. SQL and Mail services are services that typically need
to be exposed to external network traffic for their normal functionality. In con-
trast, Infrastr and RemCtrl services are typically inward-facing, meaning
that it is more difficult for an attacker to reach them from outside the network.
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Table 12: Overall distribution of vulnerabilities per system type.

Sys. type % of vulnerabilities

Auth 0.46%
Chat 1.73%
Http 4.52%
Infrastr 3.69%
Mail 0.64%
RemCtrl 2.83%
RPC 1.79%
Share 1.07%
SQL 0.79%
Local 73.88%
Other 8.6%

Yet, potentially malicious traffic toward these resources reaches the external
border of the network.

Table 12 reports the overall distribution of vulnerabilities per system type.
The category Local indicates vulnerabilities that do not belong to network-
reachable systems, and that can therefore be only exploited by an attacker that
has already gained local access to the system. Overall, the largest fraction of
vulnerabilities are of this type. Hence, the attack surface exposed only locally
to the attacker is, on average, higher than the network attack surface. This is
desirable as a reduced network attack surface minimizes the likelihood of breach,
and indicates the employment of good practices by the organization. Among
network vulnerabilities, Http and Infrastr services share the highest fraction.

For illustrative purposes, we now consider an attacker that launches a spear-
phishing attack against an employee, and is capable of attacking kn = 8 network
vulnerabilities [43], and relies on the employee’s administrative privileges and
antivirus misconfiguration to run the malware locally (kl = 2). The attacking
tool has therefore power k = 10. The exposure of system services to Phase 1
attacks can be visualized by plotting the relation between exposure to malicious
network traffic and network vulnerabilities that can be remotely exploited. Fig-
ure 3 plot this relationship. Each dot represents a service type, and its position
on the graph indicates the relation between network alarms to which it is ex-
posed (vertical axis, logarithmic) and the probability that an attacker of network
power k = 8 successfully breaches the system. The farther toward the top right
corner a service type is, the higher the associated likelihood according to Eq. (7).
Services on the bottom left of the plot have low exposure and low probability of
first breach. For example, RPC services suffer from the highest probability of a
network breach (≈ 1%), but are exposed to an order of magnitude less malicious
connections than Http services. In contrast, Http services receive the largest
fraction of malicious traffic, but face a relatively small probability of breach.

We now consider the Phase 2 risk of a propagation or escalation of the attack
that impacts the organization. The success probability of this attack phase is
proportional to the number of additional local vulnerabilities that the attacker
can exploit on the breached system. This depends on the specific configuration
of the attacked system. Figure 4 reports the probability of a successful network
attack (x-axis) versus the probability of a successful local breach subsequent to
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Service exposure to malicious network traffic (y-axis, log scale) against probability of a
successful network attack for an attacker with network power kn = 8: Pr(vn ∈ s ∧ vn ∈
Weapons|Power = kn = 8) (Phase 1). Each dot represents a service type. The higher
the network exposure of the service type and the higher the probability of success, the
higher the chance of a successful network attack.

Figure 3: Exposure and success probability of network attacks.

the network attack (y-axis). RPC systems show the highest overall probability
of breach (≈ 0.005%, i.e. one out of twenty thousand automated attack is
expected to be successful), as opposed to Chat systems for which the probability
of breach is a fifth of RPC’s.

Further, we can visualize the discrepancy between the proposed risk esti-
mation and current practice. Figure 5 shows a bubble plot of the classification
yielded by the quantitative proposed methodology (y-axis), and the classification
yielded by the qualitative risk assessment currently employed in the organiza-
tion (based on ISO 27001:2013) on the x-axis as described in Section 3. Circle
size is proportional to the number of systems in the service type. Estimations
along the diagonal are similar for both methods. Chat, SQL, and RemCtrl
systems are classified similarly by both the qualitative and quantitative method-
ology. Auth, Mail, and Share services are assigned the highest risk level of
all services by the qualitative approach. On the contrary, the proposed quanti-
tative risk estimation assigns a minimum risk level to these services. Similarly,
RPC services are qualitatively assigned a ‘low risk’ profile, while quantitatively
they are assigned the highest risk level among all services. This inversion in the
assigned risk level is coherent with what previously predicted by Cox, [14] and
may lead to a systematic mis-allocation of resources.6

6This analysis does not report the final ‘risk estimate’ as this depends on the impact of an
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Probability of a network breach (x axis) for an attacker with up to kn = 8 weaponized
network vulnerabilities (Phase 1 attack)versus the probability of a local breach (y axis)
which exploits up kl = 2 local vulnerabilities (Phase 2 attack). Each dot represents a
service type in the organization. Highly-critical service types on the top-right of the
graph likely require action.

Figure 4: Probability of breach by service type.

Figure 6 reports a contour plot of the the final probability of attack Pr(v ∈
s∧v ∈Weapons|Power = kn +kl) for varying attack powers. The values for vn
and vl are those of the proposed case study and are here distributed uniformly
among system types. Displayed values are therefore only realistic, and do not
represent the real risk profile of Company. The power k of the attacker may be
set by the organization depending on its risk appetite. Even a powerful attacker
with twelve network vulnerabilities and seven local vulnerabilities achieves an
average probability of success of 2%. More specific assessments can be run for
each service type by considering the known levels of vn and vl for the specific
system as opposed to their average.

7.2 Application of the model to other scenarios

Organizations can be very different one from the other; for example, many large
organizations may have WANs spanning the whole globe and others may have
much simpler structures localized in a single city or even building. The gener-
ality of the presented model allows our methodology to be applied to a large
number of real settings by capturing the main aspects of an attack. For exam-

attack on the systems. However this is immaterial for the discussion at hand as all systems will
be multiplied by the same value for both quantitative and qualitative probability estimates.
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yield the same categorization of risk in the proposed case study. Auth, Mail and Share
services probability estimates are significantly overestimated by the qualitative approach.
RPC probability of breach is significantly underestimated.

Figure 5: Bubble plot of probability of breach estimations per service type.

ple, the network structure exemplified in Figure 2 can be extended to include
additional subnets or virtual lans (e.g. controlled by managed switches). Still,
the effects of different network structures is encoded naturally in the meaning
of IDS and security event data recorded by the sensors: if security control mea-
sures are in place to limit access to a system, this will necessarily be reflected
in a low rate (or null rate) of alarms towards that system, i.e. in our model,
Pr(s ∈ attack|attack) ≈ 0 → Risks ≈ 0. Combining network effects can also
be useful; however, in practice most IDS data is aggregated (e.g. on a periodic
basis by the managing infrastructure).

Integration with other risk models Our model can be integrated in any
system-level risk assessment methodology following the directions indicated by
Haimes [97] (the limitations of which are well discussed by Aven [27]). For
example, the estimation of likelihood of attack from our model can be used to
weight a system’s attack surface by considering its exposure to external attacks.
Similarly, attack graphs incorporating network topologies can use computed
probabilities as the prior distribution in place of the expert assessment. Ex-
pert judgment can then be used to update those probabilities with additional
evidence or considerations (e.g. how difficult a vulnerability exploitation is).
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Figure 6: Probability of attack at varying the number of kl local and kn network
weaponized vulnerabilities

Black swan events Our model does not refer to rare security events. There
are other techniques that can be applied to black swan scenarios. Our approach
could be generalized by considering the adversarial nature of the attacker, fol-
lowing the guidelines proposed in the literature. [29] The study of these events
requires the joint analysis of the defender and attacker’s strategies, and need
consider the information asymmetries that exist between the two players in the
definition of the equilibrium conditions. For example, the ‘unknown unknowns’
of a black swan attack (e.g. a 0-day vulnerability known by the attacker but
not the defender) require the distinction between uncertainty and probability
that is still part of the debate in the risk analysis literature. [59] This may
require the investigation of attacker motives (e.g. to appropriately define an
utility function), and the definition of the conditions under which the attacker
can be regarded as rational. For example, very powerful attackers such as gov-
ernments may not aim at maximising a specific utility function, as opposed to
using cyber-attacks to (un)balance political relations between countries or other
political and economical forces. [98]

7.3 Limitations

The example application proposed in Section 7 should not be interpreted as
evidence that the quantitative methodology proposed in this paper is a better
approximation of reality than traditional qualitative assessments. Unfortunately
this would require ground truth data that does not typically exist or is very
limited in nature. This limitation is intrinsic to any risk assessment methodology
and is one of the problems behind the transition, historically, from traditional
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risk assessment and quantitative risk assessment. [4]
Differently, our model results (as depicted in Figure 5) highlight the differ-

ence between a replicable and objective criteria for risk quantification, and a
qualitative measurement based on expert judgement, and stresses the resulting
relative distances in risk levels. This directly informs the process of introduc-
ing quantitative methods for risk assessment in standard practices as it already
happened in the Nuclear Energy sector in the seventies and the space industry
later on. Apostolakis provides and excellent discussion on this. [4]

8 Conclusions

The current industry adoption of qualitative risk matrices, recommended by
world-wide standards such as ISO 27001:2013 and NIST 800-30 and related
‘handbooks’, makes cyber-risk assessment essentially a function of the expert’s
belief that a particular attack will happen in the future. Assessments based
solely on expert opinions are known to be biased [82] and may lead to hard to
compare risk assessment. [55] Further, qualitative evaluations of risk using risk
matrices can lead to decisions that are systematically opposite to those indicated
by a quantitative measure of risk. [14, 15] This may lead to suboptimal resource
allocation. [99, 100]

Our methodology proposes a quantitative way to evaluate likelihood of untar-
geted attacks. This mitigates the ‘loss of resolution’ caused by the employment
of risk matrices discussed by Cox [14], and provides comparable risk measures
between systems and organizations. Most importantly, this measure is gener-
ated by technical data that all medium-large organizations already have in their
infrastructure. This data is currently often used in an unstructured way to ei-
ther generate automatic reports on vulnerability severity, or to try to traceback
known incidents. Our methodology proposes to correlate this data to measure
on one side the exposure of a system to potential attacks, and on the other the
opportunities that a successful attack has to breach a vulnerable system and
escalate to the infrastructure. By enabling users in performing objective esti-
mations of risk, our methodology makes a step forward toward the establishment
of comparable measures for security. [101, 102]

To compute an organization absolute risk there is still the need to estimate
the probability that the organization is attacked Pr(Attack). For the purpose
of prioritization within the organization [99] this is not necessary as all systems
would be subject to the same value. Its full individual assessment might also
not be necessary for untargeted attacks, which are the focus of this paper, so
that one might calculate its value by sector (e.g. financial institutions or small
enterprises). The calculation of Pr(Attack) is instead necessary to achieve com-
parable measures of risk and to provide a baseline to assess the risk of targeted
attacks. This requires the definition of models that jointly evaluate attacker’s
and defender’s strategies: [89]several independent studies showed that most at-
tacks are driven by a handful of vulnerabilities only, suggesting that attackers
choose vulnerabilities to exploit as opposed to launch attacks drawn randomly
from a pool of exploits for all vulnerabilities. [47, 103, 46] Capturing these
aspects may require to integrate socio-economic models to evaluate attacker’s
incentives in marketing or buying a new vulnerability [91, 102] or choosing a
target. [89] We consider these aspects for future work.
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Table 13: Review of patents for cybersecurity risk assessment.
Reference Patent name Contribution
US 20050193430
A1

Method for risk
detection and
analysis in a
computer network

Automated method for the assesment of system
risk based on attack graphs and vulnerability
assessment. The method approximates likeli-
hood of attack as a function of number of steps
in the attack graph to reach the target.

US 20120203590
A1

Technology risk
assessment, fore-
casting, and
prioritization

”Environmental scoring of security risks for pri-
oritization. No specific measure of likelihood
is defined, whereas the relative distribution of
severities makes for the final prioritization in-
dex.”

US 20070067845
A1

Application of cut-
sets to network in-
terdependency se-
curity risk assess-
ment

”Risk assessment of interconnected systems in
a network. Likelihood measures are calcu-
lated o the relative complexity of developing
an exploit, in terms of technical equipement or
knowledge required.”

US 7752125 B1 Automated enter-
prise risk assess-
ment

Risk assessment methodology based on the col-
lection of information related to risk factors
that influence overall risk level of the system.
No specific measure or metric for likelihood of
occurrence is provided.

US 8195490 B2 Agent security
via approximate
solvers

General framework for the evaluation of threat
realization with unknown adversaries. Proba-
bility distributions are assumed to be known.

US 8402546 B2 Estimating and vi-
sualizing security
risk in informa-
tion technology
systems

Discretization of security risks for single or
multiple networked systems. Probabilities are
defined as probability of losses and are proxied
as the “fidelity” of the security assessment.

US 8650637 B2 Network security
risk assessment

Simulation-driven approach to risk assessmenet
whereby threats are characterized by the inter-
action between a vulnerability and a remote
website. Probabilities are results of the simu-
lation process based on different browsing pro-
files as the proportion of infectious malware
sites time the proportion of malware type in-
stances.

US 20050144480
A1

Method of risk
analysis in an au-
tomatic intrusion
response system

”The method comprises data from an introsion
response system to evaluate overall risk of at-
tack. Probabilities of attacker are not explicitly
definied, whereas the frequency of an attack is
used among other parameters to evaluate final
risk levels.”

US 20060064740
A1

Network threat
risk assessment
tool

Method that provides the user with an
overview of the risk levels of the system. The
method uses multiple sources to gather intel-
ligence on probabilities of “pervasive” attacs.
The overall threat score is computed as a lin-
ear combination of a “probability score” and
other metrics computed by the method.

US 20090024663
A1

Techniques for In-
formation Security
Assessment

The method identifies factors for the evalua-
tion of a final risk score. No specific defini-
tion of probability of attack is provided. Fre-
quency of malware infections and other histori-
cal parameters are referenced as “informative”
for the process.

US 8539586 B2 Method for evalu-
ating system risk

Method for the evaluation of system risk re-
lated to a threat and a vulnerability. Probabil-
ity of event is computed as a function of past
events. An aggregate estimation of risk is given
by weighting the risk probabilities relative to
the affected system.

US 20090106843
A1

Security risk eval-
uation method for
effective threat
management

”Threat evaluation method that account for
impact degree of attack, asset value, and fre-
quency of attack. No specific definition of prob-
ability of attack is provided.”

35



Table 14: Service type categories and relative service and port examples.
Service
type

Service description Service ex. Port
ex.

RPC Technology that allows programs to ‘call’ and execute
procedures and functionalities on remote systems. An
attacker can exploit this technology to remotely access
resources local to the victim [104].

RPC client,
rpc-rstatd
(32778/tcp)

1500,
2500,
32786

SQL Service that allows interaction with SQL database
servers. An attacker may misuse the SQL language to
interact with the underlying database and possibly exfil-
trate or modify data without system authorization [105].

SQL session,
sqlnet

139,66

Mail Network services that allow resolution of email addresses
and forward messages from one mail infrastructure to an-
other. An attacker may compromise the exchange pro-
tocol to read or modify messages without the knowledge
of either the receiver or the sender [61].

IMAP, SMTP 143,
25

Http Network services responding to http(s) traffic. An at-
tacker may interact with the remote server to mod-
ify some content on the webpage (e.g. store malicious
scripts returned with server’s content), or exploit some
configuration vulnerability to read and potentially mod-
ify the traffic (e.g. connection downgrade) [61, 38].

http, http-
admin,
apache server

80,
8080,
9090

Infrastr Set of services enabling functionalities internal to the
company. An attacker may exploit service misconfigu-
ration to interact with it remotely and gain privileged
access to otherwise protected resources [61].

NNTP,
LDAP

119,
389

RemCtrl Set of services and protocols used to remotely control
an operating system. The attacker may send arbitrary
commands to the remote system by breaching the service
(e.g. encryption downgrade) [106].

SSH, Telnet 22,
23

Chat Services that enable user communication. This is typical
of complex and distributed organization environments
where employees may need to communicate at a dis-
tance. An attacker may obtain sensitive information by
breaching these systems [61].

IRC, MSN 531,
569

Share Services used to share content (e.g. documents) in a
network. An attacker may gain access to sensitive infor-
mation and possibly modify or delete it [61].

FTP, AFP 21,
548

Auth Services that enable remote authentication. An at-
tacker may exploit software and configuration weak-
nesses to gain privileged access to network and local re-
sources [106].

Kerberos, lo-
gin

543,
513

Other Other unidentified network services, e.g. operating on
non-standard ports or on protocol other than TCP. The
organization may limit the fraction of Other systems
by surveying the network systems.

- udp
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