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Abstract—Current approaches to estimate the risk of com-
promise are based on either historical data or pure technical
assessments, such as the number and severity of vulnerabili-
ties in the target network. We propose a novel experimental
approach for estimating the risk of compromise based on
experimental data, as opposed to observational data, by
leveraging on cyber ranges and capture the flag exercises.
We identify the key design principles in terms of response
and explanatory variables, specification of how they can
be measured, and the overall block design from related
experiments and approaches as well as assess their suitability
and limitations.

Index Terms—Cyber ranges, Risk assessment, CTFs

1. Introduction

Quantitative Risk Analysis (QRA) has been increas-
ingly adopted in most industry sectors from nuclear en-
ergy to insurance for natural catastrophes [9], [52]. This
approach, in contrast with a qualitative analysis, assesses
risk based on the use of numbers with an associated
meaning. Yet, this adoption is not the standard approach
in cyber-security [26], withheld by both technical and
organizational difficulties.'

Indeed, risk assessment standards and best practices
are often qualitative. For example, NIST’s Information Se-
curity Handbook recommends ‘risk matrices’ to estimate
the likelihood of security events [17]. Unfortunately, qual-
itative estimations strongly depend on the experts making
them [27] and may cause risk miscategorization [48], and
even wrong risk prioritization [8], [33].

This problem is worsened by the fact that, whilst the
estimation of a vulnerability’s technical impact utilizing
the Common Vulnerability Scoring System (CVSS) [73]
is well understood, its use for exploitation likelihood have
been empirically questioned both in terms of prediction
accuracy and risk reduction. For example, Bozorgi et
al. [18] showed that base CVSS technical metrics are not

1. See for example the debate on the Verizon breach report [60].
Further, big datasets (e.g. reporting perimeter alarms from an Intrusion
Detection System [24]) are often unstructured [13] and the statistical link
between alarm data to actual breaches is hard to make [76].

a good predictor for the eventuality that exploits will be
engineered. Allodi and Massacci [3] showed that patching
100+ vulnerabilities bundled in exploit kits yields a risk
reduction of 40% of attempted attacks in the wild whilst
the recommendation of the Payment Card Industry [62],
based on the qualitative indicator of CVSS [37], only
yields a 4% risk reduction whilst looking at 10K+ vul-
nerabilities.

How to progress further towards quantitative estima-
tion of the likelihood of a compromise? We propose a
methodology for laboratory and testbed experiments to
estimate the likelihood of a compromise. In this respect,
the setting of ‘Class Capture The Flag’ (CCTF) [54] may
provide the clean set-up and the large pool of experimental
data needed to yield insight into the quantitative estima-
tion of compromise likelihood. This can be later scaled
to large and possibly automated [79] testbed experiments,
playing the role of large scale clinical trials [69].

Next, we present the related works (§2), we propose
our experimental approach (§3) and identify both response
(§4) and explanatory variables (§5), discuss the block de-
sign (§6), present possible extensions (§7), the limitations
of this approach and the conclusions (§8).

2. Related Works

We now describe the related works on risk assessment
and class capture the flags.

2.1. CTFs competitions

Computer security CTFs like Defcon CTF [30], UCSB
iCTF [80], Build it Break it Fix it [65], and the DARPA
CGC [79] are international competitions for security
enthusiasts. Smaller cyber-security challenges are now
widely used for educational purposes. Different designs
of CCTF exists in the literature with varying degrees of
complexity of the tasks and time available to participating
students. We summarize some of them in Table 1. How-
ever, CTFs are not limited to educational purposes and can
be used for the analysis of many security aspects [70].
To the best of our knowledge, no one has proposed a
methodology for risk estimation based on CTF exercises.



2.2. Risk Assessment

The academic literature has produced a rich set of
methodologies for risk estimation based on attack sur-
faces, attack graphs, game-theoretic models, and time-
to-compromise [4], [27]. However, they often rely on
assumptions based on expert judgments instead of real
data [4]. On the other hand, several papers addressed
cyber risk estimation by using security data exhausts (data
about attacks and exploits in the wild) employing machine
learning [18], [43], [86], statistical analysis, regression
using big data analytics [4], [5], [24] and case-control
studies [3]. More recent approaches employs ML algo-
rithms on data from Twitter and dark web forums [6], [25],
[66]. Most of the empirical studies regarding cyber risk
assessment are based on case-control studies where attack
traces in the wild are analyzed to determine, for example,
which people are more likely to be a victim of targeted
attacks [50], [75], the web server characteristics associated
with a higher rate of compromise [77] and the behaviors
and applications positively correlated with the probability
of being infected by malware [22], [83]. However, case-
control studies have some limitations as the causal relation
between attack phases and the attack measurement can be
only approximated [64]. Instead, CTF exercises carried
in a controlled environment allow us to better isolate the
factors related to the likelihood of compromise and assess
their impact through multiple experiments. Compared to
the narrowed point of view offered by data exhausts we
instead have a complete view of the attack procedure, the
attacker’s assets, and intentions.

3. An Experimental Approach

Several definitions of risk exist based on probability
and impact, uncertainty and (expected) consequence [ 1].
In practice they ultimately collapse to the intuitive relation

Risk =Impact x Likelihood

=Impact x Pr(Attack) x Pr(Compr|Attack)
ey

Whilst estimating Impact is a well understood process
[71, [23], [44], [45] and Pr(Attacks) is a matter of threat
intelligence, the focus is estimating the probability of
compromise given an attack (Pr(Compr|Attack)).

3.1. Research Questions

The overall goal is to set up an experimental methodol-
ogy that estimates the empirical hardness of exploiting the
vulnerabilities in a network, Pr(Compr|Attack), against
the actual configuration of the network and the related
skills needed to take advantage of such flaws. Several
factors can determine such probability but to define an
experiment we propose to distill two of them:

e Which network configuration has the highest like-
lihood of being compromised by attacks perpe-
trated by attackers with a given set of skills?

e Which defenders’ or attackers’ skills for a given
network configuration yield a higher compromise
likelihood?

3.2. Experimental Methodology

We need an experimental set-up in which the ex-
perimenter can at least realize whether an attack has
been successfully carried on. Security data exhaust cannot
address these issues because:

“with data exhaust we don’t know if are measuring

dim attackers getting caught instead of smart attackers

getting through.” (R. Clayton)
Our key idea is to monitor the outcomes of Capture The
Flag exercises carried inside a cyber range, since it is
easier to control and more amenable to replication studies.

The experiment set-up would then follow the protocol
reported by [49]:

o Pre-assessment Before the execution of any ac-
tivity, subjects are given a questionnaire to collect
information on their background and knowledge
of attack techniques.

o Training. A scenario description is administered
to subjects by either an individual reading or by an
introductory presentation. Then, a training phase
follows in which the expert in the testbed intro-
duces its functionalities’ through a tutorial.

« Application. The subjects apply their attacking
skills to the scenario. Part of the design decisions
would also include the presence (or absence) of
defenders. We discuss this later in §6.

« [Evaluation. In this phase, the outcome of the
CTFs is analyzed to identify for example if and
how a red team has successfully compromised the
system. If an automatic assessment is not possi-
ble, then external evaluators assess the results of
the CTFs. These evaluators should possibly not
be the experimenters but rather external experts
contracted for the purpose. If human defenders
are included there should be an assessment also of
their activities to be used as a controlling factor of
the possible mitigation effect that this might have
had. It is important to underline that the external
evaluators determine the outcome of the exercises
(network compromised/not compromised) and do
not assess the risk of compromise of the network.

« Post-assessment. A post-task questionnaire is
conducted to gather subjects’ perception of the
tools they used and on the experiment as a whole.

If it is possible, the post-measurement phase could be
organized into focus groups to discuss the drawbacks and
benefits of various methods. A list of questions is used
to guide the discussion. This qualitative analysis attempts
to throw light on the features affecting the actual and
perceived efficacy of attack techniques to further improve
the assessment of these factors. For example, two red
teams can be graded with the same level of knowledge on
a certain programming language but one team successfully
compromised the network while the other one failed. In
the post-assessment phase it is possible to know that,
for example, some functions or libraries utilized by the
first team to compromise the target are not known by the
second team. This allows improving the questionnaire to

2. E.g. lectures on particular attacking tools or attack techniques.



TABLE 1: CCTF Experimental Approaches

Paper Duration Preparation Instrumentation

Mirkovic and Peterson [54] 2 hours Defense and attack scenarios (2/3 weeks preparation before CTF) Linux Machine, LAMP servers

Werther et al. [82] 18 hours Defense and attack scenarios (access VM 1 month before, evening lect.) ~ VMs, Wordpress and LAMP stack
Wagner and Wudi [81] 2 days Defense and attack scenarios (24h hardening, 24h attack) Linux, Windows unpatched machines
Brustoloni [20] 2-3 weeks Only defense scenarios (lectures about attacks and countermeasures) Cluster of machines w/ VPN and firewall
Chothia and Novakovic [28] 2-3 weeks Only attack scenarios (lectures, application of attacks) Offline Linux VM, web and DB server
Bock et al. [16] 3 hours Defence and attack scenarios (machines divided in territories) Linux,Windows unpatched with subnets

better evaluate the skills of the subsequent exercises. It is
important to underline that this last phase is not used for
any risk assessment in our methodology but to improve
the overall experiment structure.

In terms of actual realization the experiments should
take place in structured testbed (e.g., DETER [I15],
ViSe [10], and vGrounds [46]). The use of a structured
testbed can help in achieving greater control over the
execution environment, isolation among experiments, and
reproducibility. A comparison of network-based experi-
mental security testbeds can be found in the Master’s the-
sis by Stoner [71]. Table 2 shows some available testbeds
and experimentation tools from the academic literature.

3.3. Students, Ethical Hacker or Black Hacker?

It is important to notice that a CCTF is not restricted
to BSc/MSc students. The same approach can be used
for professionals to whom an advanced scenario must be
presented. For example, the training-execution-evaluation
has been used for testing the efficacy of industry security
catalogs for risk assessment with professionals with 10+
years of experience [32]. The student vs professional issue
is well debated in software engineering but less in the
security field.

There is another issue that requires attention. The
relevant population to consider when assessing the risk
of compromise is not necessarily students *or* profes-
sionals, but rather “criminals”. The population of cyber-
criminals may differ from students and professionals in
significant ways [40], [41]. It’s not really clear whether
the distribution of skill levels is the same as students
or professionals [19] albeit there is some preliminary
evidence that it may be very similar. It is a popular
opinion to consider malicious hackers more skilled than
penetration testers. However, as pointed out by Shim et
al. [67], highly skilled hackers may prefer legal activities
with respect to criminal actions due to the lowest risk and
higher profit.

Another aspect that requires attention is the level of
motivation between these groups: students or professionals
playing a CTF have plenty of motivation to continue to
attack a target, at least for the duration of the competition,
while real-world attackers may quickly give up and move
on to lower-hanging fruit. For example, it is rare for
attackers in the real world to find bugs on their own and
develop exploits for them (i.e., zero-day vulnerabilities),
but it is extremely common in CTFs. This criticism can
be representative of a subset of black hackers, the so-
called script-kiddies. However, it is not representative of
Advanced Persistent Threats (APTs) [40] that are often
driven by economic factors and therefore can have moti-
vations comparable to professional penetration testers.

In conclusion, even if the population of students and

professionals could not describe exactly the nature of ma-
licious attackers, it can be used to generate reliable attack
scenarios. Furthermore, current red teaming approaches
are based on the simulation of Tactics, Techniques, and
Procedures (TTPs) from known threat actors to reproduce
realistic scenarios of risk [36]. The simulation is made
easier thanks to the presence of open-source Offensive Se-
curity Tools (e.g. PowerSploit, Meterpreter, and Mimikatz)
that are widely used by malicious actors [74].

4. Response Variables

From Eq. (1) the factor of interest is the likelihood of
compromise Pr(Compr|Attack). We now describe two
possible approaches to compute this factor.

4.1. Frequency-based approach

A simple measure might be the number of teams that
were able to successfully attack (within the duration of
the experiment) divided by the total number of teams in
the experiment, assuming all teams were at the same skill
level and have access to the same tools. However, this
would suffer from several limitations in terms of trans-
ferability of the results. Another possibility is to define
the likelihood as the inverse of the time to compromise T
from the moment in which the attack started to the mo-
ment in which a pre-defined compromise is achieved (i.e.
attacked network’s logs reveal the malicious behavior).
This requires to have a pre-defined notion of what is a
successful attack:

e denial of service on the defenders’ machines;
« compromise of the integrity of operations;
o data exfiltration from a database.

We believe that each attack type should be measured
separately and be subject to different experiments rather
than collapsed in a single experiment.

At first, in practice most companies associate a differ-
ent impact evaluations to a different type of attack [38]
and therefore Eq. (1) should actually be weighted sum by
attack type (in terms of confidentiality (C), integrity (I),
and availability (A)).

Risk= Z Impactiype x Pr(Attackiype) x
typec{C,I,A}
Pr(Compr|Attackiype) 2)

Second, attackers are specializing themselves (e.g. booter
services aka DoS-for-hire [41]) and it might be appropriate
for the analysis to distinguish them.

Eq. (1) can be also extended considering data from
threat intelligence to get a fine-grained risk estimation in
terms of the threat actors of interest. If we consider any



TABLE 2: Security testing and experimentation tools

Tool Description Exploit types and Structure

BugBox [56] A corpus and exploit simulation environment for PHP web  Selenium and Metasploit scripts in Python that exploit PHP
application (WordPress, CuteFlow, Drupal, etc.). application vulnerabilities.

TestREx [31] A corpus and exploit simulation environment for Web appli-  Uses Docker and Selenium as well as provide exploits
cation (WordPress, CoreApp, JS-YAML ODataApp, etc.). scripts.

vGround [46] A simulation environment for Linux worms analysis. Uses UML virtual machines, provides scripts to set-up,

MalwareLab [2]

Controlled environment for experimenting with EK.

MINESTRONE [35] A software vulnerability testing framework for C/C++ pro-
grams.

SecuBat [47] Web vulnerability scanner based on a web crawler.

DETER [15] A shared testbed facility for cybersecurity experiments.

ViSe [10] A virtual testbed for digital forensic based on VMWare.

Labtainers [

1

A simulation environment for Linux-based software ex-
ploitation (e.g. BoF, format string, and crypto attacks).

delete, and collect data from the nodes.

Runs Drive-by Download attacks against different software
configurations.

Deployed in Linux Containers. Detect vulnerabilities like
memory corruption, null pointer, and resource leak.
Crafted HTTP requests that exploit SQLi and XSS vulns.
Based on Emulab and containers, provide scripts to generate
and manage the experiment infrastructure.

A set of exploits for O.S, browsers, and web applications.
Based on Docker. Provides scripts to generate environments
and automatically assess experiments.

attack on the system we have that P(Attack) ~ 1 for a
sufficiently long interval of time [14], [34]. However, the
probability of an attack can vary depending on the threat
actor’s skills. It is more common to be targeted by script-
kiddies or criminal groups than nation-state actors [78],
which traduces in different skill levels and assets. We
can, for example, classify threat actors following the STIX
notation’ in minimal (m), intermediate (i), advanced (a),
expert (e), innovator (i), and strategic (s). Depending on
the threat intelligence information, we can associate a
different P(Attacksgiys), that describes the probability
that an attacker with this level of skills will target the
network. The different skill levels will likely traduce in
different impacts (Impact ;) on the network®*.

Risk= Z Impactspins X Pr(Attacksgins) X
skillse{m,i,a,e,s}

Pr(Compr|Attackskins) (3)

A fine-grained description of the P(Attack) based on
the level of the attackers can also be useful to tune the
experiment. For example, if P(Attacksgiys) = 0.9 with
skills = mintmal, it is not of practical interest to consider
several teams with an advanced level of skills, instead, it
is more useful to consider several different groups with a
minimal or intermediate skills level. We are not claiming
that the data obtained from threat intelligence gives an
exact description of the skills level of the adversaries
a company is facing. However, this information can be
helpful for a raw classification.

4.2. Level-based approach

An alternative solution would be to compare the Attack
Score « that the participants to the experiment would be
able to gauge. Several metrics could be used depending on
the type of attack, based on OWASP or NIST guidelines
(e.g. employing the CWE vulnerability classification). For
example, privilege acquisition can be measured by defin-
ing the level of authorization achieved by the attack (e.g.
on a three-level ordinal scale < admin, system, local >).

3. https://stixproject.github.io/

4. Whose value is not necessarily positively correlated with the skill
level. For example, a wiper malware deployed by script-kiddies could
have a higher impact than the exfiltration of sensitive data carried by an
APT.

Similarly, the overall level of privilege can be measured
in terms of the ‘fraction’ of system resources that the ac-
quired level allows access to. Likewise attacks exfiltrating
data can be measured in terms of the relative fraction of
data extracted (e.g. in a database). Code execution can be
measured by the reliability with which the payload is suc-
cessfully executed by multiple instances of the attack (e.g.
considering uncertainty introduced by the O.S. scheduler
if a race condition must be won, etc.). However, measuring
exfiltration as the fraction of data that is leaked may not
be optimal since, in many cases, exfiltration is an all-or-
nothing proposition. The same applies for privileges, it
is not important the fraction of a system available to the
attackers, but the actual privileges to sensitive data that
they have gained.

Thus, given the choice between the frequency and
level-based approach, we believe the former is more reli-
able than the latter for a first experiment since the overlap
of the scores mentioned above could make collecting the
evidence of their effects extremely difficult [29], [59].
Further, as the choice of attack scores is essentially expert
dependent, this would re-introduce the serious problems
behind the subjectivity of likelihood estimation [&], [33]
that we were trying to eliminate. For example, in the
case of exfiltration, some data can be considered more
important than another depending on the situation. Making
the definition of scores dependent on the specific scenario.

5. Explanatory Variables

We now describe how can we measure the explanatory
variables that we identified in the experiment structure.

5.1. Measuring Attacker Skills

The type of skills has clearly an impact on the like-
lihood of compromise. The difficult question is how to
correctly assess them.

Some studies analyzed which cognitive skills help
to perform well in computer programming. In particular,
Harvey et al. [39] showed that a high score in the system-
izing quotient is positively related to the ability to solve
hacking challenges. Nevertheless, these results are not
related to the experience of the subjects. To evaluate the
skills level of the participants, an assessment of computer
security topics must be performed.


https://stixproject.github.io/

SANS has developed a web-based skills assessment
tool > to assess the skill set of information security experts.
It provides both general assessments regarding cyber-
security as well as more technical tests on specific topics
like penetration testing, cyber defense, and forensic. The
questions for the entry-level test are broadly divided into
four areas and are summarized in Table 3. Unfortunately,
the SANS questionnaire is far too long for a simple exper-
iment: it requires over an hour to assess the participant’s
skills. It might be useful for more advanced experiments.
Further, we do not know of any published evidence that
those questions are useful to assess the skills of attackers.

A possible alternative is based on the OWASP Top
10 ¢, which represents a broad consensus about the most
critical security risks to web applications. One of the
limitations of OWASP is the narrow technical focus as
well as the large emphasis on web application attacks.
Also, there is no proper questionnaire and one would,
therefore, need to recast the topics of the OWASP tutorial
into a questionnaire.

Self-assessments provide a quick way to evaluate the
skills but they might be misleading. On the opposite side
of the spectrum is the evaluation through small wargames
(simple cyber-security challenges) that produces a more
reliable evaluation but it is too expensive in terms of time.

Therefore, a combination of self-assessment and a
few questions SANS-style to control for the accuracy
of the former could be the right strategy. In the course
of our experience, we found out that it is always better
to “instantiate” the semantics of classical terms such as
“Familiar”, and “Expert” to something more precise when
asking participants to perform a self-assessment. For ex-
ample for programming languages using “Attended some
classes” and “Developed a large project” would provide a
semantics that is less prone to interpretation.

The assessment of the attacker skills should depend
on the information collected from the threat intelligence.
The knowledge about which threat actors are active in the
specific fields and their TTPs allows one to identify the
skills needed to emulate these attacks.

Defender skills can be assessed in the same way.
Additionally, the NISTs NICE Framework [55] can be
used to identify the skills and abilities required for specific
roles in the Blue team.

5.2. Designing and Measuring Vulnerability Pro-
files

For a first experiment, we might want to eliminate
all confounding factors due to the network topology (for
example the presence of firewalls partly segregating part
of the network). Hence we propose to adopt the simple
network layout used in some CCTFs [54]. The network
topology is shown in Fig. 1.7

When deciding the trials it is possible to identify two
alternatives Vulnerability Profiles V:

5. https://www.sans.org/cybertalent/assessment-products

6. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_
Project

7. To have a slightly better realism it might be useful to add a simple
Windows node on the side of the defender corresponding to the machine
of the system administrator or the internal user of the company.

« Controlled by the Attacker
« Anything can be installed

(a) The experiment emulates an online bank where a user can register,
deposit some money, withdraw it and check the balance. The defender
has access to the gateway and the server, meanwhile the attacker has
access to the clients Client 1, and Client 2. Client 3 is used by the
experimenter to implement a legitimate client.

Figure 1: The baseline experimental topology from [54]

« Single: a configuration with a single vulnerability
(e.g. SQL injection, Buffer overflow) so that the
attack should be carried by attacking it.

« Global: a configuration with a set of vulnerabili-
ties so that the attackers can choose the exploit.

Several configurations are then tested in round each deter-
mining a new experimental trial. Having a learning phase
is important in this set-up, to avoid learning effects during
the trials that might unfavorably bias the experiments.
These two setups are complementary in that they allow
variance by controlling the two key variables identified
by our research questions: variability of the configuration,
and variability of the attack choices. Whereas the interplay
between these two aspects can be difficult to be controlled
in a single experimental instance, running separate ex-
periments can shed light on the mutual impact of each
factor. Some configurations may influence the probability
of success of certain types of attacks, or favor a particular
type of attacker skills.

In general, the first set-up may represent an easier feat
as varying configurations are straightforward to measure
(as they are imposed by the experimenter); in this setup,
attackers are asked to deploy only one (set of) attack(s),
whose success can be easily assessed: the successful ex-
ecution of, say, an SQL injection can be measured by
the extraction of specific values from a dataset, or the
execution of custom code by having it ‘calling home’ to a
default location, proving execution as in [2]. If teams find
“unintended” vulnerabilities this might be an interesting
deviation. The only way to mitigate this would be to
provide the knowledge of where the vulnerabilities are to
the teams and require that only those vulnerabilities be at-
tacked, which removes the reconnaissance phase of attack
from the experiment and reduces its realism. Alternatively,
teams are required to provide proof of concepts (PoCs) to
verify that the right vulnerability has been exploited.

The second setup allows for greater variability as it
may be hard to foresee all ways attackers will proceed.
By sacrificing control it allows for greater realism as, in
reality, the attacker can choose. If needed, such scenarios
may be accurately measured by performing some level


https://www.sans.org/cybertalent/assessment-products
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

TABLE 3: CyberSecurity Skill Assessment - SANS

Admin. Type

Description

Maintenance, configuration, and reliable operation of computer systems; especially,

multi-user computers, such as servers.

Maintenance of network infrastructures such as switches and routers, and diagnosis
of related problems or the behavior of network-attached computers.
Maintenance of web server services (such as Apache or IIS) that allow for internal or

external access to web sites. Management of multiple sites, administration of security,
configuration of necessary components and software.

System Access logging, Incident handling, IDS

Network ~ Network topologies, TTL, DNS configuration, Subnets, IR
Logging Access, Switch, Proxy, Packet Filters

Web HTTP, network protocols (TCP/IP, UDP), SQL injection

Security Encryption, ARP spoofing, ICMP, ping, traceroute, DDL

injection

Computer and network security, including the administration, of security devices such
as firewalls, as well as consulting on general security measures.

of ‘live’ dynamic analysis, or by requiring participants to
script their attacks to allow for an (automated) follow-
up assessment on dynamic analysis platforms such as
Cuckoo. From a global perspective, it is still possible to
cast them as a one-bit answer (for example for data exfil-
tration one could simply expect a dataset to be uploaded
in a suitable location). However, to be able to assess the
second type of trial we need to assign a score to the
overall network configuration to capture the whole set of
vulnerabilities. In this case, a further design decision is to
define a metric for the network.

In this respect, several metrics have been provided in
the academic literature based on attacks, among which
the percentage of compromised hosts [51], the weak-
est adversary to compromise a network [61], and at-
tack likelihood [58]. For example, [57] proposed to use
‘existence’ (the relative fraction of vulnerable network
services), ‘exploitability’ (the average value of the CVSS
exploitability score across all available network services),
or ‘impact’ (the average value of the CVSS impact score
across all available network services). More sophisticated
measures use attack graphs and vulnerability graphs [1]
or a biodiversity-inspired metric, that models the network
diversity to capture the resilience to zero-day attacks [85].
They would not be appropriate for a simple scenario
as the one envisaged in Figure 1. For example Zhang’s
metrics about diversity [85] would always be constant as
everything is based on Linux in the scenario on Figure 1.

A possible solution is to use the same simple mea-
sures currently used by industry and that constitutes the
backbone behind the Payment Card Industry Certification
[62]. Such scoring systems are close to the ones proposed
in [57] and has the advantage to make the result of the
experiments immediately understandable by industry. Also
in terms of the analysis of the result, it provides two
individual values for the statistical analysis.

We assume that the network score N is a global metric
that is described by the following equation:

Nper = Iéll%xt{CVSS Env. Score(v)} )
Nige = nggx {CVSS Env. Score(v)} 5)

where v € Net are the network vulnerabilities belonging
to the network analyzed, v € Loc are the vulnerabilities
that have been detected with a vulnerability assessment
system, and CVSS Env. Score is a function computing the
vulnerability severity by accounting for ‘environmental’
(in the language adopted by NIST) factors as defined by
the CVSS SIG team [37]. The outcome of the experiments
might also be that they do not work (i.e. correlate with
the resulting P(Compr|Attack)).

6. Block Design

The last steps of the design must consider the impact
of the defender and the overall set up of the testbed
environment.

6.1. Controlling for the effectiveness of Defense

The final design decision is whether we should con-
sider a defense at all. In this respect we identify two
Defense scenarios D:

e in vitro where the attacker has to perform against
a system that is automatically managed by the
experimenter. Such a system is not necessarily
static but may have an automated patch evolution
as in [2].

e in vivo in this scenario the attacked system is
managed by a defender who may upgrade the
system defenses, detect the attack, and arbitrarily
respond to it.

For the latter solution, in a CCTF scenario, one nor-
mally starts with a set of balanced groups that should all
be considered attackers. It is, therefore, necessary to have
a staggered assignment of the same groups to defenders so
that no group has to defend against more than one attacker
at the same time and vice versa. For example one could
have Group ¢ attack Group i+ 1. After the first trial, such
staggering should be suitably permuted in order to have a
balanced design.

For the in vitro scenario, we don’t need to check the
outcome of the defense as it is essentially determined by
the vulnerability profile V and the initial network score
N chose by the experimenter.

The in vivo scenario requires to control the result
against the quality of the defense team. The simple so-
lution is, of course, to control for their self-assessed skills
when performing the final statistical analysis (for example
a logit regression analysis considering them as a factor).
However, a better solution exists which includes using the
same metrics used to rate the initial system in the first
place. This can be achieved by performing a standard
vulnerability assessment from the network to evaluate
the system configuration in terms of active services and
local configurations as well as known vulnerabilities on
the system. This can be performed before and after the
operation of the defenders to evaluate the changes that
their actions have on the system. These changes can be
quantified in terms of the relative change in the overall
score of the system (Ngfer — Npefore). This evaluation
has the drawback to recognize only patches and configu-
ration changes and it does not address live mitigations.



A solution to address this limitation is to compare the
number of successful exploitations carried by a team in
the ”in vitro” and the “in vivo” scenario on the same
network configuration. In this case, the only difference
is given by the defender actions that can be evaluated as
the decrement of successful exploits. The drawback is that
two experiments must be carried (one “in vitro” and one
”in vivo”) to compute the quality of the defense.

The evaluation of the effectiveness of defense must
take into account not only the security of the service
but also its availability and performance. Indeed, perfect
security can be achieved with no functionality [63]. It is
necessary to check the availability of the services as well
as their performance. This can be done using bots that
simulate clients’ activities and evaluate the availability
and the performance of the defended network as done by
Client 3 in Fig. 1.

6.2. Setting the environment

A key difficulty in this experimental set-up is the
implementation of the application scenarios. Indeed web
applications are deployed and run in many different execu-
tion environments, consisting of operating systems, web
servers, database engines, and other sorts of supporting
applications in the backend, as well as different configura-
tions in the frontend [53]. This difficulty can be illustrated
with typical exploits for the two types of web application
security vulnerabilities: SQL injection exploits, where the
success depends on the capabilities of the underlying
database and the authorizations of the user who runs it [72,
Chapter 9], and Cross-site Scripting (XSS) exploits, where
the success depends on a specific web browser being used
and its rules for executing or blocking JavaScript code [84,
Chapter 14]. Small differences in software environments
may transform failed exploitation attempts into successful
ones, and vice versa.

Currently, docker-based framework solutions like Lab-
tainers [42] and TestREx [31] reduce the effort required
to build and test cybersecurity labs. Labtainers allows to
implement environments for cyber-challenge and provides
an automatic collection of data as well as forensic indi-
cations of activities. TestREx allows one to automatically
generate the configurations required to simulate a certain
scenario. It combines packing applications and execution
environments that can be easily and rapidly deployed,
scripted exploits that can be automatically injected, and
isolation between running instances of applications to
provide a real “playground” and experimental setup.

An important point would be that every time a new
trial is launched the participants would start with a clean
configuration. The idea of automatically loading a series
of clean configurations every time before an exploit is
launched has been also proposed by Allodi et al. [2].

6.3. The Final Programme

The final experiment structure can be divided into two
distinct but related experimental phases:

o individual trials are run first with the purpose to
measure the correlations between the skills and the

likelihood of compromise. They are performed on
individual vulnerabilities in which the subjects are
given a single system with a specific vulnerability
and are told to exploit that particular vulnerability.
They intuitively correspond to in vitro clinical pre-
trials according to the FDA®,

e team trials are run after the individual trials to
have a better realism and to gauge the potential
impact of defenders. They correspond to in vivo
pre-trials.

7. Moving toward Automated Risk Analysis

New directions can look to completely automated
systems to detect vulnerabilities, apply countermeasures,
and evaluate the risk. This approach can eliminate the
uncertainty in the evaluation of attacker and defender
skills. The first move in this direction was the DARPA
Cyber Grand Challenge (CGC), where autonomous cy-
ber reasoning systems (CRSs) were used in a special
CTF without human interactions. The implementation and
the performance of these systems have been discussed
extensively [79]. In terms of risk estimation the CGC
showed that through the application of rules and penalties
for software replacement, automated systems can evaluate
the risk of their actions. In particular, CRSs strategies
to patch software is evaluated on the risk that a specific
vulnerability could be exploited and by the evidence that
this situation can occur. The competition showed that
CRSs can often act more rationally than humans [12].

Unfortunately, these systems can be easily deceived
using honeybugs [12], [21]. This kind of traps can be eas-
ily identified by humans but not by machines. A possible
solution to overcome this limitation is a human-assisted
automated analysis [68] where human actions are used
as aids for automated vulnerability analysis. Even if this
approach does not eliminate the uncertainty related to
human skills, it reduces its impact on the assessment of
risks.

8. Conclusions and Limitations

In this paper, we have described an experimental plan
for the empirical assessment of the likelihood of com-
promise of a network based on the idea of using ‘Class
Capture The Flag’ exercises. We have identified both
response and explanatory variables, specified in detail how
they can be measured, as well as the overall block design
including how to control for eventual defense abilities
during in vivo experiments. Yet several issues remain open
and we discuss them to further encourage research in this
direction.

At first, the CTF framework does not capture the
timescales on real-world APTs. There is evidence that
advanced attackers will often have control over portions
of a target network for months, and will adapt to chang-
ing network conditions and slowly learn what valuable
data may be on the network. This is challenging to be
replicated in a CTF environment. This scenario could
be described through a sequence of CTFs, where the

8. https://www.fda.gov/ForPatients/Approvals/Drugs/ucm405658.htm



defender team has to implement network modifications on
the environment of the previous CTF. The environment of
the CTF is frozen and the new CTF maintains access to
the assets obtained from the previous competition.

Another issue is how do we scale up to large net-
works. A possible idea would be to leverage on the data
provided by the scan of corporate networks to create
networks that are artificial but realistic. Starting from the
data collected, an enumeration is performed concerning
the different types of subnets, the connective components
between them (e.g., gateway), and the different kinds of
users. Then a new network is generated in which every
node of a category is replaced by a randomly sampled
node with the same configuration of a node in the original
network. In this way, we have a full testbed that can be
the object of more sophisticated experiments.

Another issue is the relation of these metrics with
current industry practices of penetration testing” with
internal and external teams. The scoring methods used by
these industry engagements may vary and we need to find
a way to map these metrics to the ones we are proposing.

Finally, there is the issue of consistency. For example,
if the same experiment is conducted with a different set of
people (with similar skills), will the results be consistent?
This is one of the key issues with current practices of red-
teaming where the results do not replicate well and depend
on the team performing the assessment and the tools they
bring. Specifically, what kind of instrumentation will be
used to collect data about the attacks and defenses will be
essential to understand whether the results are due to the
superior knowledge of the participants or the latest version
of Metasploit. The instrumentation might be also useful
to understand how many attempts an attacker needed to
create a working exploit, or how “noisy” an attack is.
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