Vulnerability Discovery Models: Which works, which doesn't?

Università degli Studi di Trento

Viet Hung Nguyen and Fabio Massacci

University of Trento, Italy {vhnguyen, massacci}@disi.unitn.it

ASIACCS'12, Seoul, Korea, 02 – 04 May, 2012

The Roadmap

Basic Concepts

*Vulnerability

 An instance of human mistake in specification, development, or configuration of software such that its execution can violate the security policy [Krsul98]

*Vulnerability Discovery Model (VDM)

- A post-release stage where people identify and report security flaws of a released software
- Usually represented as mathematic curves

[Krsul98] Krsul I.V, Software Vulnerability Analysis, PhD Thesis, Perdue University, 1998

Existing VDMs

* Alhazmi-Malaiya Logistic (AML)
* Anderson Thermodynamic (AT)
* Linear (LN)
* Logarithmic Poisson (LP)
* Rescolar's Exponential (RE)
* Rescolar's Quadratic/Linear (RQ)

The Fallacy of Measurement

*How to measure vulnerabilities?

- Different definitions/sources of vulnerabilities
- ✓ Eg. Firefox:
 - Mozilla Bugzilla (only security-relevant bugs)
 - Mozilla Foundation Security Advisory (MFSA)
 - National Vulnerability Database (NVD)
- What is the number of vulns?
 - 6 MFSA, 10 NVD, 14 (security) Bugzilla.

Research Questions

* RQ2: how do different ways of counting vulns impact to the performance of VDMs?
✓ Do VDMs behave differently with different types of data set?

*RQ3: in which definition of vuln, VDMs yield more stable results?

Which type of data set is most appropriate for VDM study?

* RQ4: which VDM is globally superior?
✓ Which VDM yields better results during software's lifetime?

Types of Vulnerability Data Set

- - VD.Advice(X): 1 vuln is <u>1 NVD entry</u> which mentions X, and has a reference to an advisory confirmed by X's vendor
 - VD.Bug(X): 1 vuln is <u>1 NVD entry</u> which mentions X, and has a reference to a bug confirmed by X's vendor
 - VD.Nbug(X): 1 vuln is <u>1 bug</u> confirmed by X's vendor, and is referred to by 1 NVD entry mentioning X
 - Advice.Nbug(X): 1 vuln is <u>1 bug</u> confirmed by X's vendor, and is directly or indirectly referred to by an NVD entry mentioning X

Targets of Analysis

* Targets of Analysis: 17 releases of Browsers ✓ IE: v4 - v8

- ✓ Firefox: v1.0 v3.6
- Chrome: v1.0 v6.0

*Why should they be browsers?

- Complex enough (like a small operating system)
- ✓ Quickly evolve
- Targets of many attacks

* Why should they be IE, Firefox and Chrome?

Top three most popular browsers

Data Collection

* Data sources

- ✓ IE : NVD
- ✓ Firefox : MFSA, Bugzilla, NVD
- ✓ Chrome: ChromeIssue, NVD

* Data collection ✓ 58 data sets of 17 releases

	nvd	nvd.Bug	nvd.Advice	nvd.Nbug	advice.Nbug	#Releases
Chrome	•	•	_	•	_	6 (v1.0-v6.0)
Firefox	•	•	•	•	•	6 (v1.0–v3.6)
IE	•	_	•		_	5 (v4.0-v8.0)

Bullets (•) indicate enabled data sets. Dashes (—), otherwise, mean there is no data sources available to collect the data sets.

Goodness of Fit (GoF) Analysis

*Fit data to VDMs

Non-linear regression method, implemented in R (www.r-project.org)

*Chi-square test for Goodness-of-Fit (GoF)

- ✓ O_i observed values
- \checkmark E_i expected values

Measure the difference between observed and expected values
 Use p-value of the chi-square test to know whether VDM works or not

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

RQ1: Which VDM works, which doesn't?

The goodness of fit of a VDM is based on *p*-value in the χ^2 test. *p*-value < 0.05: not fit (-), p-value > 0.95: good fit (X), and inconclusive fit (?) otherwise.

NVD

RQ1: Which VDM works, which doesn't?

The goodness of fit of a VDM is based on *p*-value in the χ^2 test. *p*-value < 0.05: not fit (-), *p*-value \geq 0.95: good fit (X), and inconclusive fit (?) otherwise.

RQ2: The Impact of Types of Data Se Advice.Nbug, NVD, NVD.Advice, NVD.Bug, NVD.NBug v2.0 v3.0 VDM v1.0 v3.5 v3.6 ? ? X X AML ? AT ХХ ХХ LN LP X ХХ Х Х RE RQ Each column has five cells corresponding to Advice. NVD.Advice, NVD.Bug, NVD.NBug Opposite results for the same models

* Opposite results are obtained from different data sets

- ✓ Same model
- Same target (ie. same software release)
- But different counting methods (diff. types of data set)

RQ2: The Impact of Data Sets

Advice.Nbug, NVD, NVD.Advice, NVD.Bug, NVD.NBug

	гистох									
VDM				v1.0		v2.0)	v3.0	v3.5	v3.6
AML			-		?)	(???	XX?	? - ? X	X ? ? ?	X X ? ? ? X
AT			-							
LN			-			- X X	?	-???	? X X X	X ? ? ? ? X
LP			-			? X X	?	? ? ? -	- X X X	- ? X ? ? ?
RE			-			- X X		? ? ? -	- X X X	- ? X ? ? -
RQ			-			X	?	???-	- ? X X	X ? ? -
			Google (Chrome		2			IE	
VDM	v1.0	v2.0	v3.0	v4.0	v5.0	v6.0	v4.0	v5.0	v6.0	v7.0 v8.0
AML	0 X 0 ? X) ? o ? X	0 ? 0 ? X	0 ? 0 ? X	o ? o ? ?	o ? o ? ?	0 X X 00	o ? X oo	o <u>? ? oo</u> o	<mark>00 0 X X 00</mark>
AT	o – o – –	0 - 0	0 - 0	o - o - -	o – o – –	o - o - -	0 00	o – – oc	0 00 0	? - 00 0 00
LN	o – o – –	0 - 0	o - o - -	o ? o	o - o - ?	o – o ? ?	0 00	o - X oc	o - X oo o	? ? 00 0 ? ? 00
LP	o – o – –	0 - 0	o - o	o – o – –	o ? o ? ?	0 ? 0 ? ?	0 00	ο Χ Χ ος	o - X oo o	X ? oo o ? ? oo
RE	o – o – –	0 - 0	o - o	o - o	o ? o ? ?	0 ? 0 ? ?	0 - ? 00	ο Χ. Χ. ος	0 00 0	? ? <mark>00 0 ? ? 00</mark>
RQ	0 - 0 ? -		0 ? 0 ? -	0 ? 0 ? -	0 ? 0 ? ?	0 7 0 7 7	0 00	0 00	o - X oo o	- ? oo o X X oo

Each column has five cells corresponding to Advice.Nbug, NVD, NVD.Advice, NVD.Bug, NVD.NBug

Opposite results for the same models

* Different types of data set would strongly impact to VDM's GoF

Temporal Analysis on Goodness-of-Fit * Temporal Analysis on GoF Data Set VDM Time GoF App. Х AML NF nvd AML NF nvd Last day data AML 6 mol S nvd L Release 8 months is collected. since release Х AML nvd F 9 months 7 months **GoF Analysis** Х AML NF nvd

Temporal Analysis on Goodness-of-Fit

* The GoF Entropy of VDM

- The chaotic of VDM's GoF from time t-1 to t
- Measured by using the GoF transition diagram
- Higher entropy, lesser stability

$$E_{\beta}(t) = \frac{|smalljump|_{t} + \beta \cdot |bigjump|_{t}}{|unchanged|_{t} + |smalljump|_{t} + \beta \cdot |bigjump|_{t}}$$

* The Quality of VDM

- ✓ How good a VDM is
- Measured by the #GoF at time t

$$Q_{\omega}(t) = \frac{|Fit|_{t} + 1/\omega \cdot |Inconclusive|_{t}}{|Fit|_{t} + |Inconclusive|_{t} + |NotFit|_{t}}$$

RQ3: The Stability of VDMs in Data Sets

* The trend of GoF Entroy

- VDM stability in NVD.Bug is likely the worst
- VDM stability in NVD.Advice is likely the best

RQ4: The Quality of VDMs

*VDM Quality

$$Q_{\omega}(t) = \frac{|Fit|_{t} + 1/\omega \cdot |Inconclusive|_{t}}{|Fit|_{t} + |Inconclusive|_{t} + |NotFit|_{t}}$$

 \checkmark AML is the winner

✓ AT is the loser

Conclusion and Future Work

* Summary

✓ 6 VDMs are analyzed in 58 data sets of 17 browser releases

* The findings

- VDM doesn't work: AT (for browsers)
- VDM (probably) work well: AML (for browsers)
- VDMs might work: LN, LP, RE, RQ (for browsers)
- Different types of data set would strongly impact to VDM's GoF
- VDMs likely yield more stable result in Vulnerability-as-an-NVD entry confirmed by vendors' advisories data set (NVD.Advice)

*Future work

- Replicate experiment in other types of application
 - E.g., Web Servers, Operating Systems,...

Thank you

Viet Hung Nguyen- <u>vhnguyen@disi.unitn.it</u> Fabio Massacci - <u>massacci@disi.unitn.it</u>