
Load time on-card application
certification for Java Card:
The Security-by-Contract scheme for multi-application
Java Card cards

SUMMARY
We enable multi-application Java Card-based secure elements by adding the Security-by-Contract (SxC)
framework to the Java Card Run-time Environment. The SxC framework performs the load time
application certification executed by the card itself. The framework enables applets to define their own
service access control policies outside the functional code.
During the loading process the framework checks that the applet invokes in its code only the services it
was authorized to invoke by the respective services owners. Therefore the SxC framework protects the
application services while enabling possibility of independent asynchronous evolution of applets
coming from different providers. The proof-of-concept implementation demonstrates feasibility of the
approach.

Olga Gadyatskaya, Fabio Massacci (University of Trento)

KEY FEATURES

• Practical service access control – Functional code of
applets is no longer interleaved with the access control
code. The security policy of applets is delivered within
Contract Custom components of the CAP files.
• Flexible application policy updates – An application
policy can be updated without complete reinstallation of
the applet.
• Compatibility with JCRE 2.x platforms – The
framework is directly integrated with the JCRE Loader
and Installer components. The SxC workflow is
interleaved with the standard Java Card application
development and deployment processes.

• Non-invasive implementation – Only several
functions have to be added to the Installer and the
Loader, no changes are applied to the virtual machine
implementation or the firewall
• Small memory footprint – The SxC framework on-
device non-volatile memory footprint is only 8KB. No
RAM allocation is required, the prototype works with a
256B auxiliary temporary buffer.
• The Developer SxC prototype – SxC framework also
exists in the developer version that runs on a PC, it can
be used by the developers to practice the certification
process.

IMPLEMENTATION HIGHLIGHTS

• The SxC framework consists of the native part (written
in C, integrated with the Loader) and the Java Card part
(written in Java Card, integrated with the Installer)
• The native part consists of two components: the
SxCInstaller (serves as an interface with the Installer,
includes the PolicyChecker component) and the Claim
Checker. Both components use the Loader functions to
access the CAP file components.
• The Java Card part, called the PolicyStore, maintains
the security policy of the card across card sessions.

• The security policy format is highly optimized in order
to minimize the EEPROM consumption. The bit vector
operations are used to manipulate with the policy.
• Application contracts, containing the security policy
and the details of service invocations, are developed with
the CAPModifier tool, which can then append the
contract to a standard CAP file converted by any
available Java Card development kit. The CAP files
containing contracts can be delivered on the card
following the standard loading protocol.

Load time on-card application certification for Java Card 2

ENABLING EVOLUTION

With the advent of the new NFC-based ecosystem and the
apps' marketplaces smart handsets are providing
increasingly sensitive services that can be updated over
the air in a dynamic fashion. The deployment of Java-
enabled USIM/SIM cards which use the GlobalPlatform
card technology have further enabled OTA application
downloads for mobile networks. For security reasons
these services are usually hosted together on a secure
element.
A common assumption is that only few and limited
applications will be loaded on the secure element but this
is no longer the case: the usage of trusted elements
evolves quickly following the trends in the smartphone
markets. And if from a security perspective it is important
that applications are confined, but from a business
perspective we would like them to talk to each other
within the secure element. In the same time it is crucial
that each application provider is able to update the
deployed applet and adjust its security policy
independently from other stakeholders.
We target Java Card-based secure elements, such as
(U)SIM cards. A (U)SIM card is already deployed secure
element infrastructure on all mobile devices, while other
secure element technologies can vary from device to
device. In the same time Java Card enables deployment
and execution of fully-fledged applications in a secure
environment, while some secure element technologies are
very restrictive and can be used only for storing sensitive
data, like cryptographic keys of every provider.
The current setting of the Java Card technology deployed
on the cards in the field (specification 2.x) allows the
applications to interact only through specific Shareable
interface methods, also called services. The application
can control access to their services directly in the
functional code by using some Java Card API to retrieve
the caller application identifier (AID) and matching it with
some list of trusted or forbidden clients in the code.

This solution essentially interleaves the security code
with the functional code, what is a known source of
bugs. Moreover, this hinders the possibility of
applications to update their own security policies,
because the only way to update the policies in the
current setting is to reinstall the CAP files.
The SxC framework achieves the same security (the
access control is defined per service and
authorizations are given per CAP file), but it provides
more flexibility, because the policies now can be
updated without reinstallation of the functional code.
Our approach makes a step toward open secure
elements where each service provider can upload
applications and maintain them independently from
the other stakeholders.
We have developed the proof-of-concept embeddable
SxC prototype, which performs the loading time
application code certification. The on-card application
certification for CAP file loading is summarized in
Figure1. The main idea of the SxC scheme is that each
application is loaded together with its contract. A
contract contains the security policy of the application
and the details on provided and called services. The
Claim Checker component of the SxC framework
verifies that the provided and called services details
are faithful. Then the Policy Checker component
ensures that the application calls only the services it is
authorized to call, and the other applications on the
card invoke only the services of this application they
were allowed to call in the security policy. If both
checks are successful the application security policy is
added to the global on-card Policy Store and the CAP
file can be linked. Otherwise the loading process is
stopped and the CAP file is discharged.
The SxC proof-of-concept implementation was
evaluated by a smart card vendor and integrated with
an in-use Infineon smart card integrated circuit. The
prototype is able to process applets of sizeable
complexity. This implementation has demonstrated
the potential of the approach.
For demonstration purposes we have also developed
a prototype implementation that can be run on the PC
simulator. This implementation allows the developers
to practice the Security-by-Contract approach before
installing the framework on a real card.

Figure 1. The SxC workflow for application loading

More information at
http://disi.unitn.it/~gadyatskaya/sxc.html

Contract

CAP

Bytecode

Contract
matches
Bytecode?

Loading

Claim Checker

Yes

Policy Checker

Contract
matches
Policy?

Yes

No No

Linking and
Installation

Stop
Reject loading
Free the memory

Retrieve
Policy

Policy Store

Contract
App1

Contract
AppN

…

Update
Policy

Integrated
with the JCRE

http://disi.unitn.it/~gadyatskaya/sxc.html

