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Abstract

We propose the notion of security-by-contract, a mobile contract that an application
carries with itself. The key idea of the framework is that a digital signature should not
just certify the origin of the code but rather bind together the code with a contract.

We provide a description of the workflow for the deployment and execution of mobile
code in the setting of security-by-contract, describe a structure for a contractual language
and propose a number of algorithms for one of the key steps in the process, the contract-
policy matching issue. We also describe the prototype for matching policies with security
claims of mobile applications that we have currently implemented.

We argue that security-by-contract would provide a semantics for digital signatures
on mobile code thus being a step in the transition from trusted code to trustworthy code.

1. Introduction

Mobile devices are increasingly popular and powerful. Yet, the growth in computing
power of nomadic devices has not been supported by a comparable growth in available
software: on high-end mobile phones we cannot even remotely find the amount of third
party software that was available on our old PC.

One of the reasons for this lack of applications is also the security model adopted for
mobile phones. The current security model is exemplified by the JAVA MIDP 2.0 and
.NET CF approach and is based on trust relationships: a mobile application is accepted
if it is digitally signed by a trusted party. The level of trust of the “trusted party”
determines the privileges of the code by essentially segregating it into appropriate trust
domain.

The problem with trust relationship, i.e. digital signatures on mobile code, is twofold.
At first we can only reject or accept the signature. This means that inter-operability in
a domain is either total or not existing: an application from a not-so-trusted source can
be denied network access, but it cannot be denied access to a specific protocol, or to a
specific domain. For example, if a payment service is available on the platform and an
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application for paying parking meters is loaded, the user cannot block the application
from performing large payments.

The second (and major) problem is that there is no semantics attached to the signa-
ture. The signature only tells us who is responsible for the code. This is a problem for
both code producers and consumers.

From the point of view of mobile code consumers they must essentially accept the code
“as-is” without the possibility of making informed decisions [41]. One might well trust
SuperGame Inc. to provide excellent games and yet might decide to rule out games that
keep playing while the battery fells below 20%. At present such choice is not possible.

From the point of view of the code producer they produce code with unbounded
liability. They cannot declare which security actions the code will do, they only declare
that the code comes from their software factory. The consequence is that injecting
an application into the mobile market is a costly operation as SME developers must
essentially convince the operators that their code will not do anything harmful. As a
result, a lot of code comes at the market uncertified or self-certified. In other words,
most code is untrusted.

To deal with the untrusted code the mobile version of either .NET [30] or Java [18]
enables devices to exploit the mechanism of permissions. The drawback of permissions is
that after assigning a permission the user has very limited control over how the permission
is used. An application can receive a permission to send SMS messages and then send
hundreds of them invisibly for the user. Once again the consequence is that either
applications are sandboxed (and thus can do almost nothing), or the user decided that
they are trusted (and then they can do almost everything).

Such situation has essentially polarized users in two groups: the security paranoids
and the technology enthusiasts. From the former perspective2:

The policy should protect the integrity of the device, and of other applications

on the device, from any application that is loaded, i.e. sandboxing. [...] If

the agenda data is sensitive, then I NEVER want untrusted applications to access

it. This is much simpler than a temporal requirement that an untrusted application

cannot have network access if it has looked at sensitive data.

The life of the technology enthusiasts is riskier but surely better3:

There is this nice midlet that accesses my agenda and at 7:50 pops up a window

that today is the birthday of these people in the list. [...] I’m no longer the

only parent who never greets my contact children’s teachers on their birthday. Look,

there is also an option to send an SMS with happy birthday to the phone numbers

but that would be too expensive with my current subscription.

Unfortunately, the technology enthusiast cannot just say that access to the agenda is
fine provided there is no network connection. If the permission is granted the application
may do anything with the obtained information, including sending it to a hackers’ web site
in Russia. If the required permission is not granted the application becomes completely
useless. We need something beyond sandboxing.

2A reviewer at a leading security conference on a paper on usage control.
3An article on the local press commenting the features of the ”Andiamo” (let’s go) student software

project.
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1.1. The Contribution of the Paper

We propose in this paper the notion of Security-by-Contract (S×C) (as in program-
ming-by-contract [35, 7]) namely, the digital signature should not just certify the origin
of the code but rather bind together the code with a contract. Loosely speaking, a
contract contains a description of the relevant features of the application and the relevant
interactions with its host platform. A mobile platform could specify platform contractual
requirements, a policy4, which should be matched by the application’s contract. Among
the relevant features, one can list fine-grained resource control (e.g. silently initiate a
phone call or send a SMS), memory usage, secure and insecure web connections, user
privacy protection, confidentiality of application data, constraints on access from other
applications already on the platform.

We provide here a description of the overall life-cycle of mobile code in the setting
of security-by-contract, describe a structure for a contractual language and propose a
number of algorithms for one of the key steps in the process, namely the issue of contract-
policy matching.

We argue that security-by-contract would provide a semantics for digital signatures
on mobile code thus being a step in the transition from trusted code to trustworthy code.

In the next section we briefly describe the basic idea of the S×C paradigm for mo-
bile code and security policies in the Security-By-Contract scenario. Then we discuss a
concrete contractual language (§3) that we have used. The subsequent three sections de-
scribe the matching algorithm structure and its components. The software architecture
and our Java implementations are then described (§7). A discussion of related work and
some conclusions end the paper (§8).

2. The S×C Usage Model

Bertrand Meyer in “The Grand Challenge of Trusted Components” at ICSE 2003,
described the challenges to be met by designers of trusted software components. A
key challenge was the lack of an explicit specification of the relevant behavior of the
components and, above all, the development of computer aided methods for checking
and enforcing those explicit specifications at run-time.

In his EIFFEL project, Meyer suggested the notion of programming-by-contract
[7, 22] as a way to address this problem: software components should come with a con-
tract described in contractual aware languages, the correctness of a program is explicitly
asserted through a contract, i.e. a claim on the behavior of single methods (pre-conditions
and post-conditions) or the whole classes.

Applications wishing to use a component developed with programming-by-contract
can then match the contractual claims by the component with their need or preferences.
The trusted component is bound by the promises it makes thus implicitly stipulating a
contract with the applications that wishes to uses its services.

In the framework of the S3MS project (www.s3ms.org), we have proposed to apply
Meyer’s intuition to security claims of mobile code. A contract is an explicit claim on the

4In the sequel we will refer to policy as the security requirements on the platform side and by contract
the security claims made by the mobile code.
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security behavior of a mobile application (playing the role of Meyer’s trusted component)
that a platform should match against its own.

Such notion fills a gap in the current arena of security mechanisms for enforcing
security properties of mobile code. The focus of run-time security monitors [13, 3, 20,
48] is to enforce a security policy specified by the platform. The possibility that an
application can make security claims about its behavior is not considered. We thus
need to monitor also applications that are harmless. At the other side of the spectrum
of security research, the proof-carrying code approach [39] produces a “certificate”, a
machine checkable proof that the object code respects a given security policy. The
most basic example is SUN’s javac compiler: it takes a Java source code that satisfies
a type safety policy and produces JVML code that obeys type-safety. This approach is
restricted to type-safety and does not allow the application to claim some ad-hoc security
behavior: “no http connection to Google Analytics” would be a simple claim that could
not be checked with traditional language-based approaches.

The mobile code developers are responsible to provide a description of the security
behavior that their code provides.

Definition 2.1 (Contract). A contract is a formal complete and correct specification
of the behavior of an application for what concerns relevant security actions (virtual
machine API Calls, Operating System Calls).

Following Meyer’s intuition, the contract has to be complete so that all operations that
are security-relevant and are used in the application should be included in the contract.
Further, it should be correct in the sense that the behavioral specification of the security
actions described in the contract should be the one actually followed in the application.
In this setting we found useful to provide both rules that describe the behavior during a
single run of the application (a session) and rules that describe properties across multiple
run of the application.

At development time the mobile code developers are responsible for providing the
description of the contract. Such pair of contract and mobile code may also undergo a
formal certification process by the developer’s own company, the smart card provider,
a mobile phone operator, or any other third party for which the application has been
developed. By using suitable techniques such as static analysis [27, 46], certified monitor
in-lining [19, 48, 9], or general theorem proving, the code is certified to comply with the
developer’s contract.

At the end of the process, the code and the security claims are sealed together with
the evidence for compliance (either a digital signature or a PCC proof [39, 9]) and shipped
for deployment. By signing the code and the contract together the developer certifies
that the code complies with the stated claims on its security-relevant behavior.

On the other side we can see that users and mobile phone operators are interested in
all codes that are deployed on their platform to be secure according their priorities. In
other words they must declare their security policy:

Definition 2.2 (Policy). A policy is a formal complete specification of the acceptable
behavior of applications to be executed on the platform for what concerns relevant security
actions (Virtual Machine API Calls, Operating System Calls).

At deployment time, the target platform follows a workflow similar to the one depicted
in Fig. 1 (see also [49] for the details of the software architecture). First, it checks that
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Figure 1: SxC Workflow

the evidence is correct. As we said already, such evidence can be a trusted signature as
in standard mobile applications [51] or a proof that the code satisfies the contract (and
then one can use PCC techniques to check it [39]).

Once we have evidence that the contract is trustworthy, the platform checks, that the
claimed policy is compliant with the policy that our platform wants to enforce. If it is,
then the application can be run without further ado. This may be a significant saving
from in-lining a security monitor or actually deploying a run-time monitor in parallel
with the application.

At run-time we might want to decide to still monitor the application. Then, we might
decide to inline a number of checks into the application so that any undesired behavior
can be immediately stopped or corrected.

To give an intuitive idea of the constructs proposed in this paper we informally
describe them by means of rules in natural language. We will formally specify the rules
in Section 3. Let us consider the following example which we will use throughout the
paper.

Example 2.1. A midlet5 claims that during a single execution it will

1. only use HTTPS network connections and

2. send no SMS messages.

The platform’s policy has two rules applicable to a single run of the application:

1. the application uses only high-level (HTTP, HTTPS) network connections;

2. a maximum of five text messages can be sent by the application.

It should be intuitive that in this case the application’s contract matches the plat-
form’s policy. In fact, the security behavior claimed in the application’s contract corre-
sponds to the allowed security behavior stated in the platform’s policy.

5A Java application that conforms to the Mobile Information Device Profile (MIDP) standard.
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2.1. Contract-Policy Matching

As we can see in Fig. 1, one of the key problems in the overall security-by-contract
workflow is contract-policy matching which is also a key aspect in Meyer’s programming-
by-contract: given a contract that an application carries with itself and a policy that a
platform specifies, is the contract compliant with the policy?

Contract-policy matching represents a common problem in the life-cycle because it
must be done at all levels: both for development and run-time operation. Intuitively,
matching should succeed if and only if by executing the application on the platform every
behavior of the application that satisfies its contract also satisfies the platform’s policy.
To address this issue we need efficient algorithms to match application contracts with
device policies. This will be the target of Section 4.

The following example shows how matching might fail.

Example 2.2. Let us consider an application’s contract with just one rule:

• the amount of data the application can receive is bounded by 1024 kb.

The platform’s policy has one rule allowing to receive a specific amount of data.

• the amount of data an application can receive is bounded by 512 kb.

In this case, the contract-policy matching must fail, since the application can receive
more data than the one allowed by the mobile platform.

3. A Concrete Contract Representation

If a contract represents the security behavior of an application the temptation would
be to make such contractual claims arbitrarily complex. Since we argue that contract
should be matched by mobile devices a complex procedure is likely to defy the very spirit
of our proposal.

Further, a number of independent security requirements analyses for mobile and dis-
tributed systems [24, 37, 52] show that detailed contracts are not really necessary. The
characteristic feature of these applications is that they need wide access to services to
execute correctly. Yet, the user still wants to control that these services are not abused
or misused. Therefore the same permission can be granted or not granted depending, for
instance, on previous actions of the midlet or some conditions on application environ-
ment.

Some examples of security policies for mobile devices include:

1. The application sends no more than a specific number of messages in each session.

2. The application only loads each image from the network once.

3. The delay between two periodic invocations of the midlet is at least T.

4. The application does not initiate calls to international numbers.

5. The application only uses files whose names match a given pattern.

6. The application does not send MMS messages.

7. The application connects only to its origin domain.

8. The application does not use the FileConnection.delete() function.

9. The application only receives SMS messages on a specific port.
6



10. The length of a SMS message sent does not exceed the payload of a single SMS
message.

11. The application must close all files that it opens.

Notice the difference between policies 1 and 2. The first one specifies the constraint
on a single execution (session) of the program. The second one puts a restriction on all
runs of the application. Policy 3 also requires to make a distinction between multiple
sessions of the application. For this reason, the contract must include the constructs that
define the scope of the obligation. Moreover, such policies as policy 11 are most naturally
expressed at the level of separate objects (in this case objects of type FileConnection).

We provide an overview of the ConSpec syntax, the language exploited to specify
contracts and policies within the context of the S×C framework. A full description of the
language is outside the scope of the paper (interested readers can consult [2]).

A specification in ConSpec is a non-empty list of rules. Each rule is defined for the
specific part of contract (e.g. rule for the SMS messages, for Bluetooth connections,
etc.) and describes security properties for the given part. Fig. 2 shows a fragment of the
ConSpec syntax for specifying one single rule.

MAXINT MaxIntValue
MAXLEN MaxLenValue
RuleID Identifier

SCOPE <Object ClassName | Session | MultiSession
| Global>

SECURITY STATE
[CONST] | <bool | int | string>

VarName1 = <DefaultValue1>
| <int> VarName2 = <DefaultValue2>

RANGE <FromValue> .. <ToValue>
...

<BEFORE | AFTER | EXCEPTIONAL> EVENT MethodSignature1
PERFORM
condition1 -> action1

...
conditionM1 | ELSE> -> actionM1

...
<BEFORE | AFTER | EXCEPTIONAL> EVENT MethodSignatureK

PERFORM
condition1 -> action1

...
conditionMK | ELSE> -> actionMK

Figure 2: A Fragment of the ConSpec Syntax

The RuleID tag identifies the area of the contract, e.g. for restriction of sending text
messages the identifier could be "TEXT MESSAGES" or for accessing the file system the
identifier could be "FILE ACCESS".

Each rule consists of three parts: scope definition, state declaration and a list of event
clauses.

There are different scopes in ConSpec: scope Object is used when the rule can be
applied for the object of specific class; scope Session if the security properties are appli-
cable for the single run of the application; scope Multisession when the rule describes
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behavior of the application during its multiple runs and scope Global for executions of
all applications of a system. This notion of scope definition in ConSpec differs from scope
in MIDP because the scope in MIDP defines set of capabilities, namely User interface,
Persistent storage, Networking, and Timers.

Example 3.1. Fig. 3 shows the ConSpec specifications of contract and policy of Exam-
ple 2.1. Both specifications consist of two rules, one with the identifier HIGH LEVEL CONNECTIONS

and the other one SMS MESSAGES. In each case the first rule specifies the restrictions on
using the data connections, and the second one on sending short messages. Each identi-
fier of the rule is followed by the scope declaration. As the policy is to be applied to each
run of the application separately, the appropriate scope is Session (which is, in fact, the
most common one).

The state space of the policy is defined after the scope. The state declaration defines
the state variables to be used in the current rule of the ConSpec specification. The
variables can be constant and non-constant. All non-constant variables characterize the
state of the automaton defined by the rule. Constant variables are simply used in the
specification and do not play significant role in automaton construction.

Variables can be boolean, integer or string. However, the states have to be finite and
all types have to be bounded. Hence, a ConSpec specification has two tags: MAXINT to
define maximum value of integers and MAXLEN to define maximum length of strings. If
variables should have less variability, then the keyword RANGE is used for a more precise
bound, as in rule SMS MESSAGES of the policy (Fig. 3b).

The most important part of the rule is a sequence of event clauses. The event clauses
define the transitions of the automaton constructed from the ConSpec rule. Each event
clause has a list of guard conditions and an update block which will be performed when
the corresponding guard condition holds.

Every event is defined by a modifier and a signature API method, including name of
the class, method name and optionally list of parameters. The modifiers (BEFORE, AFTER
and EXCEPTIONAL) indicate the moment, in which the update block must be executed.

Example 3.2. In the first rule (HIGH LEVEL CONNECTIONS) of the contract and the policy
from Ex. 2.1 only one event is raised each time before the method to open a connection
(javax.microedition.io.Connector.open) is called.

When the program attempts to call the security-relevant method the guard conditions
are evaluated in the same order, in which they appear in the policy. The condition is
a boolean expression on the state variables and possible parameters of the method. If
the condition evaluates to true then the corresponding update block is executed, and the
control returns to the target program.

Example 3.3. In our contract, if the program attempts to call the method
javax.microedition.io.Connector.open with the url starting with https the method
is executed without performing any update (the keyword skip denotes the empty update
block). Otherwise if the url string does not start with https (the attempted connection
is not secure) no condition evaluates to true, so the contract is violated.

The guard condition can be replaced by the keyword ELSE; in this case the correspond-
ing update block will always run if all other blocks evaluate to false. If the condition is
set to false, then the current event can never run according to the specification.
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MAXINT 10000 MAXLEN 10
RULEID HIGH LEVEL CONNECTIONS

SCOPE Session

SECURITY STATE

BEFORE javax.microedition.io.Connector.open(string url) PERFORM
url.startsWith("https://") -> {skip;}

RULEID SMS MESSAGES
SCOPE Session

SECURITY STATE

BEFORE javax.wireless.messaging.MessageConnection.send
(javax.wireless.messaging.TextMessage msg) PERFORM

false -> {skip;}

AFTER javax.wireless.messaging.MessageConnection.send
(javax.wireless.messaging.TestMessage msg) PERFORM

false -> {skip;}

(a) ConSpec Specification of the Contract of Example 2.1

MAXINT 10000 MAXLEN 10
RULEID HIGH LEVEL CONNECTIONS

SCOPE Session

SECURITY STATE

BEFORE javax.microedition.io.Connector.open(string url) PERFORM
(url.startsWith("http://") || url.startsWith("https://")) -> {skip;}

RULEID SMS MESSAGES
SCOPE Session

SECURITY STATE
CONST int maxMessage = 5;
int messageSent = 0 RANGE 0..5;

BEFORE javax.wireless.messaging.MessageConnection.send
(javax.wireless.messaging.TextMessage msg) PERFORM

messageSent < maxMessage -> {skip;}

AFTER javax.wireless.messaging.MessageConnection.send
(javax.wireless.messaging.TextMessage msg) PERFORM

true -> {messageSent = messageSent + 1;}

(b) ConSpec Specification of the Policy of Ex. 2.1

Figure 3: ConSpec Specification of the Contract and the Policy of Ex. 2.1

Example 3.4. In the second rule (SMS MESSAGES) of the contract and the policy of Ex-
ample 2.1 we define two events: before and after the method that sends a message. All
security-relevant events that might be declared in the policy should be presented in the
contract, otherwise the contract-policy matching will fail when it should succeed. There-
fore we need to declare AFTER javax.wireless.messaging.MessageConnection.send

9



event in the contract in order to run the matching procedure on many different policies
and have a correct result.

Example 3.5. Fig. 4 shows the ConSpec specifications of the contract and the policy of
Example 2.2, respectively.

MAXINT 10000 MAXLEN 10
RULEID LIMITED DATA

SCOPE Session

SECURITY STATE
CONST int maxKbRecieve = 1024;

BEFORE System.Net.Sockets.BeginReceive (Byte[] buffer,
int offset, int size, System.Net.Sockets.SocketFlags socketFlags,
System.AsyncCallback callback, Object state) PERFORM

size < maxKbRecieve -> {skip;}

(a) ConSpec Specification of the Contract of Ex. 2.2

MAXINT 10000 MAXLEN 10
RULEID LIMITED DATA

SCOPE Session

SECURITY STATE
CONST int maxKbRecieve = 512;

BEFORE System.Net.Sockets.BeginReceive(Byte[] buffer, int offset,
int size, System.Net.Sockets.SocketFlags socketFlags,
System.AsyncCallback callback, Object state) PERFORM

size < maxKbRecieve ->{skip;}

(b) ConSpec Specification of the Policy of Ex. 2.2

Figure 4: ConSpec Specification of the Contract and the Policy of Ex. 2.2

4. Contract-Policy Matching

In this section we provide a generic algorithm for contract-policy matching. The
algorithm is generic since it does not depend on the formal model adopted for specifying
the semantics of rules (process algebra, security automata, Petri Nets, and so on), but
instead it is defined by means of specific abstract constructs. Therefore, to exploit the
algorithm it will be sufficient to have an implementation of these constructs in the formal
language adopted for specifying rules. In Section 6 we will provide an automata-based
implementation of such constructs, giving in this way a complete version of the algorithm
for rules formally specified with finite-state automata.

We have identified the following abstract operators (C and P indicate a generic
contract and policy respectively):
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• [Combine Operator ⊕] Spec = ⊕i=1,...,nSpeci
It combines all the formal rule specifications Spec1, . . ., Specn in a new specification
Spec.

• [Simulate Operator ≈] SpecC ≈ SpecP

It returns 1 if formal rule specification SpecC can be followed accordingly by formal
rule specification SpecP , 0 otherwise. Intuitively, if the policy cannot follow then
the contract is not compliant, i.e. that particular rule is a violation.

• [Contained-By Operator v] SpecC v SpecP

It returns 1 if the behavior specified by SpecC is among the behaviors that are
allowed by SpecP , 0 otherwise.

• [Traces Operator] S = Traces (Spec)
It returns the set S of all the possible sequences of actions that can be performed
according to the formal specification Spec.

We assume that the above abstract constructs are characterized by the following
properties:

Property 4.1. Traces (Spec1 ⊕ Spec2) = Traces (Spec1) ∪ Traces (Spec2)

Property 4.2. Spec1 v Spec2 ⇔ Traces (Spec1) ⊆ Traces (Spec2)

Property 4.3. Spec1 ≈ Spec2 ⇒ Traces (Spec1) ⊆ Traces (Spec2)

Definition 4.1 (Exact Matching). Matching should succeed if and only if by execut-
ing the application on the platform every trace that satisfies the application’s contract
also satisfies the platform’s policy.

Traces
(
⊕i=1,...,nSpecCi

)
⊆ Traces

(
⊕i=1,...,mSpecPi

)
Definition 4.2 (Sound Sufficient Matching). Matching should fail if by executing
the application on the platform there might be an application trace that satisfies the
contract and does not satisfy the policy.

Definition 4.3 (Complete Matching). Matching should succeed if by executing the
application on the platform every trace satisfying the contract also satisfies the policy.

By applying Definition 4.2 we might reject “good” applications that are however too
difficult or too complex to perform. On the other hand, Definition 4.3 may allow “bad”
(malicious) applications to run but it will certainly accept all “good” ones (and “bad”
applications can later be detected, for instance, by run-time monitoring). Examples
of matching between contracts and policies follow. As shown in Fig. 5, the generic
contract/policy matching algorithm takes as inputs two rule setsRC andRP representing
respectively the contract and the policy to be matched. The algorithm checks if RC
“matches” RP .

Algorithm 1 lists the source code of the MatchContracts function, which is the root
function of the whole algorithm. Basically, the algorithm works as follows. First of all,
both rule sets RC and RP are partitioned according to the scope of the rules (lines 1
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Figure 5: Contract-Policy Matching Problem

and 2). This is done by calling the Partition procedure (Algorithm 2) that partitions a
generic rule set R in a sequence of rule sets with the same scope:〈
RSESSION ,RMULTISESSION , {Rclass}class∈ζC

〉
. This partition is necessary because

in the S×C framework comparison of rules starts only within a certain scope. Once
created two sequences of scope-specific rule sets (one for the contract and one for the
policy), the algorithm checks if each rule set in the sequence of the contract matches
the corresponding rule set in the sequence of the policy (lines 3-11). In other words, we
match rules within the same scope. This is done by calling the MatchRules function (lines
4-6) that we discuss in the next paragraph. If all succeeds (line 11), then the contract
matches the policy. Otherwise, matching fails.

5. Rule and Specification Matching

Matching between rules is performed by the MatchRules function (Algorithm 3). Since
the rules of the two input sets RC and RP must have the same scope, before doing
matching checks the algorithm cleans RC and RP removing the scope from each rule.

As a consequence, two sets LC and LP of pairs
(

IDC/P , SpecC/P
)

are built. Now the

algorithm is ready to check the contract/policy match. Each pair in LP is compared with
the set LC by means of the MatchSpec function (line 4). When a match is not found for
a pair (line 6), i.e. the MatchSpec function returns 0, that pair is stored in a rule set
LPfailed (line 7).

If for all rules in LP there exists a match with LC , i.e. the MatchSpec function returns
1 for each pair in LP so that LPfailed = ∅, then the match between rules succeeds and the

algorithm returns 1 (lines 10-11). Otherwise, if LPfailed 6= ∅ (i.e. there are no rules in LC

that match with the rules of LPfailed) then the algorithm performs a last “global” check.
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Algorithm 1 MatchContracts Function

Input: rule set RC , rule set RP
Output: 1 if RC matches RP , 0 otherwise

1:
〈
RCSESSION ,RCMULTISESSION ,

{
RCclass

}
class∈ζC

〉
⇐ Partition

(
RC
)

2:
〈
RPSESSION ,RPMULTISESSION ,

{
RPclass

}
class∈ζP

〉
⇐ Partition

(
RP
)

3: if MatchRules
(
RCSESSION ,RPSESSION

)
then

4: if MatchRules
(
RCMULTISESSION ,RPMULTISESSION

)
then

5: for all class ∈ ζP do // for all classes in policy
6: if MatchRules

(
RCclass,RPclass

)
then // if class 6∈ ζC , then RCclass = ∅

7: skip
8: else
9: return(0)

10: end if
11: end for
12: return(1)
13: end if
14: end if
15: return(0)

Algorithm 2 Partition Procedure

Input: rule set R
Output:

〈
RSESSION ,RMULTISESSION , {Rclass}class∈ζ

〉
1: RSESSION ⇐ {r ∈ R | Scope(r) = SESSION}
2: RMULTISESSION ⇐ {r ∈ R | Scope(r) = MULTISESSION}
3: for all class ∈ ζ do // for all classes in contract/policy
4: Rclass ⇐ {r ∈ R | Scope(r) = OBJECT < class >}
5: end for

Algorithm 3 MatchRules Function

Input: rule set RC , rule set RP
Output: 1 if RC matches RP , 0 otherwise
1: LC ⇐

{(
IDC , SpecC

)
|
〈
scope, IDC , SpecC

〉
∈ RC

}
2: LP ⇐

{(
IDP , SpecP

)
|
〈
scope, IDP , SpecP

〉
∈ RP

}
3: for all

(
IDP , SpecP

)
∈ LP do

4: if MatchSpec
(
LC ,

(
IDP , SpecP

))
then

5: skip
6: else // may return ∅ for efficiency
7: LPfailed ⇐ LPfailed∪

(
IDP , SpecP

)
8: end if
9: end for

10: if LPfailed = ∅ then
11: return(1)
12: else
13: return

(
MatchSpec

((
∗, ⊕(IDC , SpecC)∈LC

)
,
(
∗, ⊕(IDP , SpecP )∈LP

failed

)))
14: end if
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Algorithm 4 MatchSpec Function

Input: LC =
〈(

IDC
1 , SpecC1

)
, . . . ,

(
IDC

n , SpecCn
)〉

,
(
IDP , SpecP

)
Output: 1 if LC matches

(
IDP , SpecP

)
, 0 otherwise

1: if ∃
(
IDC , SpecC

)
∈ LC ∧ IDC = IDP then

2: if HASH(SpecC) = HASH(SpecP ) then
3: return(1)
4: else if SpecC ≈ SpecP then
5: return(1)
6: else if SpecC v SpecP then
7: return(1)
8: else // Restriction: if same ID then same specification must match
9: return(0)

10: end if
11: else
12: MatchSpec

((
∗, ⊕(IDC , SpecC)∈LC

)
,
(
∗, SpecP

))
13: end if

More precisely, the combination of the rules in LC is matched with the combination of
the rules in LPfailed (line 13). If also this match does not succeed, then the algorithm
returns 0, otherwise it returns 1.

The MatchSpec function (Algorithm 4) checks the match between a set of pairs LC =〈(
IDC

1 , SpecC1
)
, . . . ,

(
IDC

n , SpecCn
)〉

and a pair
(
IDP , SpecP

)
representing respectively

the rules of the contract and a rule of the policy to be matched. The function returns 1
in two situations:

1. there exists a pair
(
IDC , SpecC

)
in LC that matches with

(
IDP , SpecP

)
2. the combination of all the specifications in LC matches with

(
IDP , SpecP

)
Otherwise, the function returns 0.

Specification matching is verified as follows. If there exists a pair
(
IDC , SpecC

)
in

LC such that IDC is equal to IDP (line 1), then the algorithm checks the hash values of
the specifications SpecC and SpecP . Matching succeeds if they have the same value (line
2). Otherwise, the algorithm checks if SpecC simulates SpecP (line 4). If this is the case,
then the matching succeeds, otherwise the more computationally expensive containment
check is performed (line 6). If also this check fails, the algorithm ends and matching fails
(because the rules with the same ID must have the same specification).

If there exists no pair in LC such that IDC is equal to IDP (line 11) then the al-
gorithm checks the match between the combination of all the specifications in LC and(
IDP , SpecP

)
(line 12).

It should be clear now why the described algorithm is generic. To be actually ex-
ecuted, it needs a well defined formal semantics and implementation of the abstract
constructs. Several formal tools might be used for this purpose, such as standard process
algebras, Petri Nets and so on. As a concrete example, in the next Section we will discuss
the case of rules specified by means of specific automata, providing a real implementation
of the constructs and as a result of the overall matching algorithm.
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6. Contract-Policy Matching with Security Automata

In this section we show how the matching algorithm can be used when the behavior
of rules is specified by means of specific automata, namely Automata Modulo Theory
(AMT ) [33]. As already remarked in Section 4 we just need to provide an implementation
of the ⊕, v and ≈ operators used in Algorithms 3 and 4. For the sake of clarity, we
briefly introduce AMT . Then we briefly describe the algorithms for implementing the
abstract constructs.
AMT generalizes the finite state automata of model-carrying code [45] and extends

Büchi Automata (BA). The theory of AMT is a combination of the theory of Büchi
Automata (BA) with satisfiability-modulo-theory (SMT) problem. SMT problem, which
decides the satisfiability of first-order formulas modulo background theories, stretch the
boundaries of formal verification based on effective SAT solvers. In contrast to classical
security automata we prefer to use BA because, besides safety properties, there are
also some liveness properties which have to be verified. An example of liveness is “The
application uses all the permissions it requests”.
AMT automaton which represents a model of the system can be extracted directly

from the control-flow graph of the program. This automaton specifies actual behavior
of the system. An automaton that specifies the desired behavior can be either built
directly or from other specification languages. For example, a finite state automaton for
a temporal logic specification can be constructed using the tableaux method [29].

Example 6.1. To illustrate how AMT can be used for property specification let us show
the automata for the contract and the policy in Example 2.1 represented in Fig. 6. The
automaton on Fig. 6a represents an automaton for the first rule of contract. Starting from
state q0 we stay in this state while no connection is opened (¬joc). When a connection is
opened, we stay in this state only if started connection Connector.open(string url) method is
a secure one, i.e. url starts with ”https://”. We enter state error if we start an unsecure
connection Connector.open(string url), e.g. url starts with ”http://” or ”sms://” etc. In
the automaton for the second rule of the contract, the conditions of the transactions that
represent the change of a state after the occurrence of the security relevant event have the
form ajms∧¬bjms or bjms∧¬ajms instead of more simple ajms or bjms. The purpose
of this is to reflect faithfully the fact that in the program according to our assumption two
security-relevant events can never occur in the same moment. These examples are from
a Java VM. Since we do not consider useful to invent our own names for API calls we
use the javax.microedition APIs (though a bit verbose) for the notation that is shown
in Fig. 6.

The exploitation of automata for formally specifying rules allows a straightforward
implementation of the combine operator ⊕: rules are combined by simply making the
synchronous product of the related automata.

Also contract-matching can be simply represented as language inclusion. Given two
automata AutC and AutP representing respectively a formal rule specification of a con-
tract (SpecC) and of a policy (SpecP ), SpecC v SpecP when LAutC ⊆ LAutP , i.e. the
language accepted by AutC is a subset of the language accepted by AutP . Informally,
each behavior of AutC is among the behaviors that are allowed by the policy AutP .
Assuming that the automata are closed under intersection and complementation, then
the matching problem can be reduced to an emptiness test [8]:
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(a) First rule of the contract in Ex. 2.1 (b) Second rule of the contract in Ex. 2.1

(c) First rule of the policy in Ex. 2.1 (d) Second rule of the policy in Ex. 2.1

JAVA APIs ABBREVIATIONS

joc
.
= io.Connector.open(url)

p(url)
.
= url.startsWith(”http://”)

s(url)
.
= url.startsWith(”https://”)

ajms
.
= after MessageConnection.send(message)

bjms
.
= before MessageConnection.send(message)

s0
.
= initial state, the system states in this state until it sends the message

ms
.
= amount of already sent messages

Figure 6: Automata Specifying the Rules of the Contract and the Policy of Ex. 2.1

LAutC ⊆ LAutP ⇔ LAutC ∩ LAutP = ∅ ⇔ LAutC ∩ LAutP
= ∅

In other words, there is no behavior of AutC that is disallowed by AutP . If the
intersection is not empty, any behavior in it corresponds to a counterexample.

Our goal is to provide application-contract vs. platform-policy matching on-the-
fly, namely during the actual download of the midlet. Thus, issues like small memory
footprint, and effective computations play a key role. Therefore, we are interested in
finding counterexamples faster and we combine algorithm based on Nested DFS [43] with
decision procedure (for details see [33]). The algorithm takes as input the application’s
contract and the mobile platform’s policy as automata and then starts a depth first search
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procedure over the initial state. When a “suspect state” (which is an accepting state)
is reached we have two cases. First, when a suspect state contains an error state of the

complemented policy (AutP ) then we report a security policy violation without further
ado. Second, when a suspect state does not contain an error state of the complemented
policy we start a new depth first search from the suspect state to determine whether it
is in a cycle, i.e. it is reachable from itself. If it is we report availability violation.

The matching algorithm does not construct the product automaton explicitly but on-
the-fly. The on-the-fly emptiness test (constructing product automaton while searching
the automata) is lifted from the algorithm by Coucubertis et al. [6] with modification
of this algorithm from Holzmann et al’s [26] considered as state-of-the-art (used in Spin
[25]). The complexity results if the theory T is decidable with an oracle for the decision
problem in the complexity class C [33]:

• The non-emptiness problem is decidable in LIN − TIMEC .

• The non-emptiness problem is NLOG− SPACEC .

An alternative approach would be to use simulations between the contract automata
and the policy automata. Several notions of simulation relations for automata have been
introduced in the literature ([15, 14, 10] to mention only a few) and discussing each of
them is outside the scope of the paper. Intuitively, we can say that a state qi of an
automata A “simulates” a state qj of an automata B if every “behavior” starting at q
can be mimicked, step by step, starting at qj .

The main approach for determining simulation relations among automata consists of
reducing the simulation problem to a simulation game, i.e. to the problem of searching
the winning strategy of a parity game graph [14]. We have adapted a simulation construct
following the approach [15]. Basically, a parity game graph is constructed starting from
two automata A and B and according to a well specific notion of simulation relation.
Then the Jurdzinski Algorithm [28] is used for determining the set of winning nodes.

Example 6.2. Let us focus on Example 2.2. The ConSpec specifications of the contract
and the policy (Fig. 4a and 4b, respectively) are translated into the two automata repre-
sented in Fig. 7. If we use language inclusion for matching then we have to complement
the policy automaton on Fig. 7b, where we have only one accepting state, namely error
and the complementation transitions remain the same as the original transitions. Af-
terwards, we check the emptiness of intersection between automaton on Fig. 7a and the
complemented policy automaton. Since the emptiness check fails, then matching fails.
Another means to check for matching is by simulation, where given the two automata we
construct a game graph and search for a winning strategy for a protagonist. If automaton
of policy (Fig. 7b) can simulate automaton of contract (Fig. 7a) then matching succeeds,
where in our current example the simulation fails.

7. Software Architecture

In this section we describe the software architecture of the prototype that implements
the overall matching algorithm. The main aim is to provide a concrete and high-level
overview of how the prototype works, from its inputs (ConSpec specifications) to its
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(a) Contract in Ex. 2.2 (b) Policy in Ex. 2.2

JAVA APIs ABBREVIATIONS

bsr
.
= System.Net.Sockets.BeginReceive(Byte[] buffer, int offset, int size,

System.Net.Sockets.SocketFlags socketFlags,

System.AsyncCallback callback, Object state)

size
.
= the argument of BeginRecieve method

s0
.
= initial state, while the size less then maximum the system states in this state

Figure 7: Automata Specifying the Rules of the Contract and the Policy of Ex. 2.2

output (match succeeded/failed). To this purpose, we will also show what happens when
the prototype is executed with our running examples as inputs.

As remarked in Section 4, there can be many ways to do the actual formal matching
(simulation, language inclusion, ...). Although the prototype has been implemented with
several matching algorithms, for the sake of simplicity from now on we will focus only
on matching as language inclusion (as discussed in Section 6)).

The contract-matching prototype takes as input a contract and a policy both specified
in ConSpec and checks whether or not the contract matches the policy. A sketch of the
prototype architecture is shown in Fig. 8.

As the computational resources of mobile devices are normally limited and perform-
ing heavy computations exhausts the battery, the motivation behind the design of our
prototype has been to move as much operations as possible off the device. For this reason,
the prototype is basically composed of two tools: an off-device ConSpec parser and the
main matching algorithm that runs on the device. The parser takes as input a ConSpec
file and returns a Java source code file representing the automata-based rule set (that is,
the list of rules grouped by scope of the contract/policy, where each rule is specified by
means of an automaton).

The matching algorithm needs as inputs (1) a rule of the contract and (2) a rule of
the policy. Since we are using the language inclusion method, the rule representing the
policy needs to be complemented. The complementation of the policy needs to be done
only once at the time of deployment of the policy on the mobile device and therefore
is performed directly by the off-device parser. This can be done by simply calling the
parser with a specific parameter ’c’ or ’p’ (along with the path to the ConSpec file) that
indicates whether it is a contract or a policy in input. The parsing procedure creates two
Policy class instances, each of them contains the list of rules grouped by scope. Each rule
instance contains the corresponding automaton (AutomatonMTT class instance) that is
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Figure 8: Architecture of the Matching Prototype

needed for the inclusion.
When the main algorithm starts, the contract and the policy represented as Policy

class instances are already part of the program codebase and the matching procedure can
begin. No computational resources are spent on parsing the specification or complement-
ing the policy automaton. For every rule in the policy we must have a corresponding rule
in the contract with same RULEID and SCOPE tags: if this is not the case the whole
match fails, otherwise we perform the inclusion match on this pair.

If the inclusion match fails, the whole procedure halts with a “failure”. If it succeeds
the procedure continues with the next pair of rules. The described step is repeated until
all rules in the policy have been successfully checked against the rules in the contract.

Example 7.1. Back to our running examples, let us consider Example 2.1. Given a
contract and a policy in ConSpec (Fig. 3a and 3b) as inputs, the prototype translates
these specifications into automata (Fig. 6). Such automata are then used as inputs of
the language inclusion algorithm. Specifically, for each rule in the policy we search for
corresponding rule in the contract and run emptiness checking algorithm on the corre-
sponding two rules. The first pair of rules with the same RuleID is the one showed in
Fig. 3a and 3b. Since the contract allows to use HTTPS connections only while the pol-
icy allows to use both HTTP and HTTPS connections the obtained result states that the

19



contract matches the policy. For the other rule in the policy an appropriate rule in the
contract is found. Here the contract forbids the application to send messages while the
policy prescribes that the application can send bounded amount of messages. As a result,
the matching algorithm ends successfully: the contract matches the policy.

Example 7.2. Let us focus on Example 2.2. The ConSpec specifications of Fig. 4a and
4b are translated into the two automata represented in Fig. 7. Here the matching fails
because the algorithm finds a cycle. This is because the contract allows to receive more
data then the policy.

The parser implements the mapping from a ConSpec contract/policy to a Java source
file (list of AutomatonMTT class instances). A sketch of the implemented parser is
shown in Fig. 9. At first step (I), a syntax tree containing all the significant items of the
contract/policy is made.

In the second transformation (II), the parser finds all the events and builds a specific
structure called AST. Each event now has a list of guarded commands. Each guarded
command consists of condition on state variables, condition on parameters of the method
and actions for the guard.

During the next step (III), the automaton is built from the AST. First, we generate
the list of expressions that will be used for creating the transitions taking into account
that only one security event at a time may happen. Second, we create all the states and
then all the transitions for every pair of state and generated expression. The detailed
mapping procedure is outside the scope of the paper. Interested readers can find it in
[12].

Finally, the last step (IV) creates the Java source code containing the instance of the
automaton.

The language inclusion matching interacts with the SMT solver NuSMV6 for satisfi-
ability checks as shown in Fig. 10. We create the instance of the NuSMV class only once
at the beginning of the on-the-fly procedure; then we declare variables, add and remove
constraints from the library every time we call the solver. Constraints for the solver
are often repeated during the running algorithm (at least the constraints for searching
for accepting state and searching for cycles are the same). To avoid calling the solver
frequently for the same problem we added two lists in the DFSAlgorithm class: Ta-
ble SAT and Table UNSAT. The Table SAT contains the constraints that are checked
by the solver and result is SAT. Similarly, Table UNSAT contains the constraints that
are checked by the solver and result is UNSAT.

We faced a number of design options:

ONE INSTANCE versus MANY INSTANCES We could either create only one instance of
solver, relying on the solver to assert and retract expressions on demand, or create
a new instance of the solver every time we call the decision procedure.

MUTEX SOLVER Method names are declared as mutex constants at the moment of declar-
ing all variables on the solver, due to an edge in the automaton (correspond to
a method) which is incompatible with another edge (correspond to a different
method).

6http://nusmv.irst.itc.it/
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Figure 9: ConSpec Parser

MUTEX MC Method names are not declared as mutex constants, allowing the on-the-fly
algorithm to check whether method names are the same.

PRIORITY MC Guards are evaluated using priority or and we can optimize the expressions
sent to the decision procedure as minimized expression.

CACHING MC We saved time by caching the results of the matching.

CACHING SOLVER The solver itself has a caching mechanism that could be equally used.

However, MANY INSTANCES decision was not possible to be taken because of the
garbage collection management both by the Java virtual machine and by the libraries of
MathSAT/NuSMV (only one instance of solver exists at time).

We ran our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40 GHz,
3389.442 MHz, 1.99 GB of RAM, 2048 KB cache size) with operating system Linux
version 2.6.20-16-generic, Kubuntu 7.04 (Feisty Fawn). The desktop implementation
was mostly used for profiling and extracting details on the algorithm as a profiling tool
was not available on the mobile device.

We also ported the prototype to the mobile, namely HTC P3600 (3G PDA phone)
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Algorithm 5 DecisionProcedure(a1, a2) Procedure

Input: SpecificBoolExp a1, SpecificBoolExp a2;
1: String s := a1.toString() + ”&” + a2.toString();
2: if (Table SAT.contains(s)) then
3: return true;
4: else
5: if (Table UNSAT.contains(s)) then
6: return false;
7: else
8: return CallNuSMV (a1, a2, s);
9: end if

10: end if

Algorithm 6 CallNuSMV(a1, a2, s) Procedure

Input: SpecificBoolExp a1, SpecificBoolExp a2, String s;
1: a1.DeclareV ariables(nuSMV );
2: a2.DeclareV ariables(nuSMV );
3: nuSMV.AddConstraint(s);
4: if (nuSMV.Solve()) then
5: Table SAT.add(s);
6: return true;
7: else
8: Table UNSAT.add(s);
9: return false;

10: end if

Figure 10: Decision Procedure for SMT

with ROM 128 MB, RAM 64 MB, Samsung R©SC32442A processor 400 MHz and oper-
ating system Microsoft Windows Mobile R©5.0.

The experiments were made for different design decisions for different problem suites
(see [4] for details). The problem suites covered different kind of categories such as
network connectivity, use of costly functionalities, or private information management.

We collected data on resources used, namely number of visited states, number of
visited transitions, running time for each problem in each design alternative, and the
number of solved problems against time. We present the result obtained for alternative
with MUTEX MC, ONE INSTANCE and CACHING SOLVER in Table 1. Most problems have few
states and transitions as a result the matching algorithm runtime is little (around 2.5 s
on the desktop and 4 s on the mobile). Even for pathological problem with 102 visited
states, the runtime on a mobile platform is still acceptable (9.3 s on the desktop, 11.3 s
on the mobile).

While the timing of the desktop is obviously faster, the cumulative runtime of solved
problems is still manageable for the mobile user. An expected nice feature confirmed
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Table 1: Running Problem Suite 10 Times

(a) Running Problem Suite

MUTEX MC ONE INSTANCE CACHING SOLVER

Problem Desktop Mobile Result
ART (s) CRT (s) SV TV ART (s) CRT (s) SV TV

P1 2.4 2.4 2 6 4.3 4.3 2 6 Match
P2 2.4 4.8 2 6 4.1 8.4 2 6 Match
P3 2.4 7.2 3 11 3.9 12.3 3 11 Match
P4 2.4 9.6 2 6 4.0 16.3 2 6 Match
P5 4.7 14.3 3 11 4.1 20.4 3 11 Match

P6 2.9 2.9 4 4 3.8 3.8 3 6 Not Match
P7 2.8 5.7 5 7 3.8 7.6 2 4 Not Match
P8 2.9 8.6 5 7 3.8 11.4 3 6 Not Match

P100 9.3 9.3 102 307 11.3 11.3 102 307 Match

(b) Abbreviations

ART: Average Runtime for 10 runs SV: Number of Visited States
CRT: Cumulative Average Runtime TV: Number of Visited Transitions

by the experiments is that the runtime will be longer for the problems that match (the
algorithm has to run over all states until the cycle is found) than for the problems that
do not match (the algorithm stops working as soon as counterexample is found). In the
matching case the user has to wait longer but at least those are the applications that he
would later run.

8. Related Work and Conclusions

Contracts are formal agreements to express the relation between a supplier and its
clients, expressing each party’s rights and obligations. Following the classification pro-
posed in [5] there are basic or syntactic contracts, assertion-based contracts, behavioral
contracts, synchronization contracts and quality-of-service (QoS) contracts.

Syntactic contracts are required for basic component interoperability. Contracts of
this level specify the types, structures and signatures of components and methods
through interfaces and types definitions.

Assertion-based contracts are the original contracts proposed by Bertrand Meyer
[7, 35]. A contract between a routine and its callers is defined by two assertions:
a precondition and a postcondition. In addition to contracts bound to a single
method, global properties on each instance of a class can be expressed using an
assertion named class invariant.

Behavioral contracts [22] add the specification of the entities involved and an ordered
sequence of the message exchanged by those entities.

Synchronization contracts [16] describe concurrent relations between services pro-
vided by components (sequence, parallelism or shuffle). They can be bound to a
single method, declaring under which circumstances the method accesses a resource
or they can be bound to a collection of methods or objects.

23



QoS contracts can be specified statically by enumerating the features that the server
objects will respect or dynamically by negotiation between the object client and
its server [5].

The notion of contract proposed in this paper is essentially those of behavioral contracts.
In the realm of security research, five main approaches to mobile code security can

be broadly identified in the literature: sandboxes limit the instructions available for
use, code signing ensures that code originates from a trusted source, security automata
proscribes execution of mobile code containing violations of the security policy, proof-
carrying code (PCC) carries explicit proof of its safety and model-carrying code (MCC)
carries security-relevant behavior of the mobile code.

The Sandbox Security Model is the original security model provided by Java. The
essence of the approach [17] is that a computer entrusts local code with full access to
vital system resources (such as the file system). It does not, however, trust downloaded
remote code (such as applets), which can access only the limited resources provided inside
the sandbox. The limitation of this approach is that it can provide security but only
at the cost of unduly restricting the functionality of mobile code (e.g. the code is not
permitted to access any files). The sandbox model has been subsequently extended in
Java 2 [18], where permissions available for programs from a code source are specified
through a security policy. Policies are decided solely by the code consumer without any
involvement of the producer. The implementation of security checking is done by means
of a run-time stack inspection technique [47].

In .NET [30] each assembly is associated with some default set of permissions accord-
ing to the level of trust. However, the application can request additional permissions.
These requests are stored in the application’s manifest and are used at load-time as the
input to policy, which decides whether they should be granted. Permissions can also
be requested at run-time. Then, if granted, they are valid within the limit of the same
method, in which they were requested. The set of possible permissions includes, for
instance, permissions to use sockets, web, file IO, etc.

Cryptographic code-signing is the complement of sandboxing. It is widely used for
certifying the origin (i.e., the producer) of mobile code and its integrity. Typically, the
software developer uses a private key to sign executable content. The application loading
the module then verifies this content using the corresponding public key and then the
code can run with the full privileges associated with the signature.

This technique is useful only for verifying that the code originated from a trusted
producer and it does not address the fundamental risk inherent to mobile code, which
relates to mobile code behavior. This leaves the consumer vulnerable to damage due to
malicious code (if the producer cannot be trusted) or faulty code (if the producer can be
trusted). Indeed, if the code originated from an untrusted or unknown producer, then
code-signing provides no support for safe execution of such code. On the other hand, code
signing does not protect against bugs already present in the signed code. Patches or new
versions of the code can be issued, but the loader (which verifies and loads the executable
content and then transfers the execution control to the module) will still accept the old
version, unless the newer version is installed over it. [36] proposes a method that employs
an executable content loader and a short-lived configuration management file to address
this software aging problem.
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Another mechanism for security property enforcement is security automata [42, 19].
The automaton itself is a finite state automaton, whose input is an event stream of
security-relevant actions. Now the mobile code is not accompanied by additional infor-
mation, it is only executed in tandem with simulation of the security automaton. If
action stream in the given code violates automaton then the execution of untrusted code
terminates. A wider class of automata were presented to enable modifications of code ex-
ecution: edit automata [3] may terminate the application, truncating the program action
stream (as a simple security automata); suppress undesired actions even without termi-
nation of the program; and they may insert additional actions into the event stream.
Those enforcement mechanisms complement the matching aspect that we describe here
and are essentially used for the run-time monitoring step that we have presented in Fig. 1.

It is not necessary to use finite state automata for run-time monitoring. For instance,
temporal logic formulae are widely applied for this purpose [21]. Since there is a mapping
from temporal logic to FSA, one can translate policies written as logic formulae into
automata-based language and vice versa.

The Proof Carrying Code (PCC) approach [39] launched the idea that untrusted
code is accompanied by additional information that aids in verifying its safety. Within
PCC, this additional information takes the form of a proof regarding the safety of mobile
code. Then the code consumer uses a proof validator to check, with certainty, that
the proof is valid (i.e., it checks the correctness of this proof) and hence the foreign
code is safe to execute. Proofs are automatically generated by a certifying compiler [40]
by means of a static analysis of the producer code. The traditional approach to PCC
based on type theory is problematic for two main reasons noted by Sekar et al. [44].
A practical difficulty is that automatic proof generation for complex properties is still a
daunting problem, requiring expertise in logic and theorem proving that is beyond reach
for normal developers. A more fundamental difficulty is that the type-theory approach
is based on an unrealistic assumption [44]: the safety proof is based on a type system
and this type system cannot be configured for each individual policy. This appears an
impractical assumption since security may vary considerably across different consumers
and their operating environments.

Model Carrying Code (MCC) is the other seminal work beside Meyer’s one on which
our proposal is based that requires a producer to furnish a model regarding the safety of
mobile code [45]. With MCC, this additional information captures the security-relevant
behavior of the code. Models enable code producers to communicate the security needs
of their code to the consumer. The code consumers can then check their policies against
the model associated with untrusted code to determine if this code will violate their
policy. Since MCC models are significantly simpler than programs, such checking can
be fully automated. This model has been mainly proposed for bridging the gap between
high-level policies and low-level binary code, enabling analyses which would otherwise
be impractical. The major limitation was that MCC had not fully developed the issue
of contract matching and had limited itself to finite state automata which are too simple
to describe realistic policies.

The notion of certified inline monitors [48, 19] can bridge the gap between security-by-
contract and proof-carrying-code. Essentially, an inline monitor rewrites the application
code by inserting at specific points the security checks [13]. Such inlining can generate
in parallel a proof that the code complies with the contract that it is actually inlined.
Then one can ship the proof of the compliance of the contract with the application and
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the contract. Proof-checking techniques can then be used to check the evidence in the
corresponding step of Fig. 1. This has been currently implemented in [9].

A similar technique to inline monitoring is used in Aspect Oriented Programming (e.g.
AspectJ) and in the implementation of programming-by-contract in Java [1]. Loosely
speaking the API calls that an inlined security automata would like to monitor can be
compared to point-cuts in aspects.

In this paper we have proposed the notion of security-by-contract where an application
carries a mobile contract with itself. The key idea of the approach is that a digital
signature should not only certify the origin of the code but rather bind the code with
the contract. From this point of view, our framework makes some ideas behind MCC
more concrete. In particular, we use a high level specification language with features
that simplify contract-policy matching and allow expressing realistic security policies. In
the original work on MCC, the models that represent the behavior of the application are
represented as extended finite state automata (EFSA). However, the developed matching
algorithms for EFSA handle only simple cases when the conditions on transactions are
limited to equalities/inequalities [45]. In contrast, our approach allows us to express
much more sophisticated conditions that include basic arithmetic and string operations.
Furthermore, our matching algorithm is improved for efficiency intended for resource-
critical devices as mobiles. Thus, we first perform easier checks of sufficient criteria
before a complete check (see Algorithm 4). These features differentiate our approach
from other frameworks for modeling resource contractualization such as [31].

The contributions of the paper are manifold. First, we have proposed the security-
by-contract framework providing a description of the overall life-cycle of mobile code in
this setting. Then we have described a structure for a contractual language. Starting
from this language, we have proposed a number of algorithms for one of the key steps in
the life-cycle process: the issue of contract-policy matching. Finally, we have discussed
the software architecture supporting all these algorithms and evaluated its desktop and
mobile implementation.

The paper can be seen as an updated summary of several papers describing different
S×C technologies [2, 4, 11, 33, 34]. For instance, the algorithms presented here as well as
their implementation have been improved and optimized. Therefore, the paper represents
a first, complete and updated presentation of the overall S×C contract-policy matching
technology.

The main novelty of the proposed framework is that it would provide a semantics for
digital signatures on mobile code thus being a step in the transition from trusted code
to trustworthy code.

Acknowledgement. The authors would like to thank Marco Dalla Torre (University
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