
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Load time code validation for mobile phone
Java Cards

Olga Gadyatskaya a,*, Fabio Massacci a, Quang-Huy Nguyen b,
Boutheina Chetali b

aDepartment of Information Engineering and Computer Science, University of Trento, via Sommarive 14,

38123 Trento, Italy
bTrusted Labs, rue du Bailliage 5, 78000 Versailles, France

Keywords:

Load time application validation

Secure elements

Security-by-Contract

Java Card

a b s t r a c t

Over-the-air (OTA) application installation and updates have become a common experi-

ence for many end-users of mobile phones. In contrast, OTA updates for applications on

the secure elements (such as smart cards) are still hindered by the challenging hardware

and certification requirements.

The paper describes a security framework for Java Card-based secure element appli-

cations. Each application can declare a set of services it provides, a set of services it wishes

to call, and its own security policy. An on-card checker verifies compliance and enforces

the policy; thus an off-card validation of the application is no longer required.

The framework has been optimized in order to be integrated with the run-time envi-

ronment embedded into a concrete card. This integration has been tried and tested by a

smart card manufacturer. In this paper we present the architecture of the framework and

provide the implementation footprint which demonstrates that our solution fits on a real

secure element. We also report the intricacies of integrating a research prototype with a

real Java Card platform.

ª 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Smart handsets are providing increasingly sensitive services

(e.g. finance, access) that are often updated over the air (OTA) in

a dynamic fashion. The deployment of Java-enabled (U)SIM

cards, which use the GlobalPlatform1 card technology, have

further enabled OTA application downloads for 3G and GSM

mobile networks (some hundred millions (U)SIM cards utilize

the GlobalPlatform infrastructure). For security reasons, finan-

cial or similarly sensitive servicesareusuallyhosted together by

a secure element, such as a smart card (Langer and Oyrer).

A common assumption is that only few and limited ap-

plications will be loaded on the secure element, but this is no

longer the case: the trusted elements quickly evolve intomulti-

tenant platforms following the trends of smartphone markets

(Bouffard et al., 2011b). For example, leading smart card

manufacturers, such as Gemalto, Oberthur and Gieseck-

e&Devrient, already offer Facebook or Twitter applications to

be loaded onto the (U)SIM card, and a healthcare application2

was recently proposed.

From a security perspective it is important that the appli-

cations are confined (the Java Card firewall does precisely that),

* Corresponding author. Tel.: þ39 0461 283828; fax: þ39 0461 282093.
E-mail addresses: olga.gadyatskaya@unitn.it, gadyatskaya@disi.unitn.it (O. Gadyatskaya), fabio.massacci@unitn.it (F. Massacci),

quang-huy.nguyen@trusted-labs.com (Q.-H. Nguyen), boutheina.chetali@trusted-labs.com (B. Chetali).
1 GlobalPlatform� is a standard set of specifications for card contents management (GlobalPlatform Inc., 2011).
2 http://medicmobile.org/2011/06/06/medic-mobile-announces-the-first-mobile-sim-app-for-healthcare. Accessed on the web in Jan.

2013.

Available online at www.sciencedirect.com

journal homepage: www.elsevier .com/locate/ j isa

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9

2214-2126/$ e see front matter ª 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jisa.2013.07.004



Author's personal copy

but from a business perspective we would like them to talk to

each other within the secure element: when German transit

authorities launch a Near-Field Communication (NFC)-based

ticketing service3 andVISA pushes its payment SIM application

payWave,4 they may want to collaborate. Therefore, control of

interactionsamongapplications isa crucial requirement for the

overall protection guaranteed by the secure element.

In order to allow interactions across the firewall, Java Card

(JC) applications interact through Shareable interfaces (Classic

Edition, 2011). A Shareable interface method (or service for

short) is just a Java method that can be called through the

firewall. The traditional solution to restrict access to a service

on Java Card is to embed access control checks in the service

code. In this case the only way to add or remove possible

callers from the code is to re-install the application (this is

how the code updates are implemented on Java Card). In

many cases it is not possible to remove an application refer-

enced by other applications on Java Card. So, even if we just

want to add the possibility of being called by another appli-

cation, we will need first to delete all other calling applica-

tions, then re-install the updated application, and then re-

install all callers again. Therefore, on Java Card separation of

access control to a service from implementation of the service

provides is a desirable feature: when considering multi-

tenancy, applet providers want to be able to restrict access

to their services in a declarative and independent fashion.

Our alternative solutionwould be to validate the bytecode to

be well-behavedwith respect to interactions while loading on a

secure element. The target of our research is to perform appli-

cation validationdirectly on the secure element (the (U)SIMcard

with its severely limitedresources) toensure thefollowinggoals:

� applications can be loaded OTA;

� applications can declaratively control (allow or block) access

to their shared services by other applications on the card,

without mixing it with functional code;

� the access control policy can mention any applications,

even if at any time we only have few of them installed;

� application bytecode should be validated by the card itself to

respect the interaction policies of the other applications

already on the card during loading time.

This must be achieved under the following constraints:

� no modification to the current application loading protocol,

the JC firewall and the virtualmachine (VM) implementation

of the secure element;

� most part of the trusted computing base is in ROM (non-

modifiable non-volatile memory);

� application providers can set-up their security policies

directly without bothering the secure element owner for

individual policy changes.

For mobile phones, a number of proposals for application

certification at load time have been put forward in the past

years, but most research proposals stop at load time checking

of the application manifest and use the phone normal pro-

cessor for checking (Enck et al., 2009; Ongtang et al., 2009).

Other approaches propose to check interactions at run-time

requiring VM/platform modifications (Bugiel et al., 2012; Enck

et al., 2010), suggest to check interactions off-device (Chin

et al., 2011) or advocate application rewriting (Xu et al., 2012).

So far for smart cards the combination of all elements has

not been achieved, and our new contribution is to achieve it

by designing a complete working solution. In the smart card

world interactions among the applications can be certified,

but then the card has to be locked (new applications cannot

be loaded, existing ones cannot be removed). For example, the

TaiwanMoney Card (Taiwan) based on the Multos technology

combines a Mondex payment application with a transport

application.5 This approach of locking the card is not feasible

for OTA-loaded applications. The off-device validation tech-

niques were proposed for Java Card applications (e.g. the

works by Bieber et al. (2002) and Avvenuti et al. (2012)), but

they cannot work in practice for the OTA loading, because

they require an independent verification authority, with

whom application providers need to negotiate any single

change; and full formal verification cannot be ported to the

device itself because of the computational constraints.

Our contribution. Our target is to achieve the same security

level, as offered by Java Card itself, while allowing the flexi-

bility of OTA updates on a very restricted platform. We do not

aim to achieve more security than the current methods of

embedding access control checks in the application code or

off-line bytecode validation. Our proposal allows to immedi-

ately address the OTA-loading demands for access control

mechanisms in the context of application communication

and service calls. The policies that our system can enforce are

simple, but they are substantial given the resources available.

In this paper we report on the engineering aspects that can

achieveall thegoalsmentionedabovealongwith theconstraints

of the secure element environment: at most 10 KB of memory

footprint and atmost 1 KB of RAM consumed for validation. Our

system is able to process applications of sizeable complexity,

such as the electronic identity applet (Philippaerts et al., 2011). A

further challenge that we have faced is the need to maintain

confidentiality of the Java Card platform implementation. In the

article we report how we had overcome this problem. We also

present an abstract model of a multi-tenant secure element

platform based on deployed applications and shared/invoked

services and demonstrate that the validation process of our

framework keeps the platform secure across the updates.

The rest of this article is structured as follows. Section 2

presents a high-level overview of our solution. The back-

ground information on the Java Card technology is given in x3;
the notions of a contract and a security policy of the platform

are introduced in x4. Algorithms of the framework compo-

nents are discussed in x5. We demonstrate correctness of the

presented solution in x6. We present the final architecture of

the framework in x7 and discuss the performance (x8) and

security (x9) of our solution. We overview related work (x10)
and then conclude (x11).3 https://www.touchandtravel.de/, accessed on the web in Jan.

2013.
4 http://www.visaeurope.com/en/cardholders/visa_paywave.

aspx, accessed on the web in Jan. 2013.

5 http://en.wikipedia.org/wiki/TaiwanMoney_Card. Accessed on
the web in Jan. 2013.

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 109



Author's personal copy

2. Our approach

The threat model. The third-party application providers do not

trust each other. We assume an attacker that can load appli-

cations (applets for short) on the secure element, remove her

own applets or update the security policy of her applets. The

attacker aims to gain access to sensitive services of other

applet providers, which possibly are former business partners.

The platform owner is trusted by the application providers

to make sure that the platform implementation is correct.

However, she does not want to be involved in the costly se-

curity validation of day-by-day policy or code changes for

applet providers. The responsibility of the platform owner is

to make sure that the platform implementation is correct. So

we assume that for any applet its development and deploy-

ment steps were correct and the bytecode respects the Java

abstractions. We do not consider application spoofing in the

threat model, because the means for protection against this

attack are already provided by the GlobalPlatformmiddleware

(GlobalPlatform Inc., 2011) (GlobalPlatform offers a set of

primitives to implement authentication with external clients

and establish encrypted communication channels).

Our solution. We propose a system to ensure secure co-

existence and sharing of capabilities between multiple appli-

cations in a mobile phone multi-tenant Java Card. Our system

does so through requiring access control lists for each service

interface that can be verified by the system at load time. The

specification of these lists is moved from functional code to a

dedicated bytecode component and stored on card separately

in a cumulative policy structure; so that the policy can be

updated without requiring cumbersome reinstalls upon

changes. The system fits within a state of the art (U)SIM card,

is compliant with the standard applet deployment protocol

and the Java Card Run-time Environment (JCRE).

Our framework improves the current JC security architec-

ture by performing the application code validation upon

loading. An applet aware of the new security architecture will

now bring a contract (a component of the code stating the

policy and the details of the inter-application communica-

tions the applet participates in). Contracts of deployed applets

will be collected by the platform and stored as the platform

security policy in a memory-efficient format. The contract of a

new applet will bematchedwith the actual loaded code on the

secure element and with the current security policy of the

platform. If both checks are successful, the applet will be

accepted and its contract will be added to the policy. Other-

wise it will be rejected and removed. Fig. 1 summarizes the

workflow for load time validation and the new components of

our framework: the ClaimChecker, the PolicyChecker and

the PolicyStore. Fig. 1(b) shows the position of the new

components in the stack, for more details see Fig. 6.

Following the strategy to keep the platform secure after

each addition and deletion of an applet (we call these changes

platform evolution), our framework during the application

removal process checks that the platform after the removal

will continue to be secure. The ClaimChecker is not invoked

in this case, because the code was already verified to be

compliant with the contract. Only the PolicyChecker

component is invoked, and it decides if the application can be

removed (see x5.2 for more details). We also support a flexible

application policy update. On Java Card the application code is

updated by removing the current application and subse-

quently loading its new version, because the security policy of

an applet is embedded into the functional code. The S�C

approach enables a way to update the security policy of an

application without reinstalling the code. The checks

executed for application policy update are similar to those

done for application deletion.

Our framework has been integrated with the existing JCRE

components. We do not deal with applet authentication in

this paper, because we rely on the GlobalPlatform authenti-

cation and delegation mechanisms, and we only focus on the

access control. We do not modify the standard application

deployment process, the Java Card Virtual Machine (JCVM) or

the existing firewall mechanism. Our approach ensures

backward compatibility: cards that are not aware of the new

framework can work with applets that are aware of it, and

vice-versa.

3. Background on Java Card

Our solution targets devices in the field, thus we have devel-

oped it for Java Card 2.2.2 (the previous stable generation (SUN

Microsystems, 2006)) and Java Card 3.0.4 (the latest specifica-

tion of the Classic edition (Classic Edition, 2011)), that is fully

backward-compatible with Java Card 2.2.2. The alternative

version of Java Card is 3.0.1 Connected edition, that supports

more standard Java features, such as servlets and service

factories. However, to the best of our knowledge this version is

not yet adopted by the industry. This claim can be supported

by the fact, that, while the Java Card 3.0 appeared in two

editions in 2008 (SUN Microsystems, 2008), only the Classic

edition is regularly updated by Oracle (the latest version 3.0.4

dated 2011 (Classic Edition, 2011)), while the Connected edi-

tion is frozen at the version 3.0.1 dated 2009 (SUN

Microsystems, 2009).

There are not so many novel features of the Java Card

platform that are available in the last specification 3.0.4, but

were not available in the Java Card 2.2.2. The new features are:

guaranteed integer support, the latest cryptographic algo-

rithms (4096-bit RSA), alignment with the latest contactless

protocol standards and garbage collector; but these features

are irrelevant for the scope of this paper.

Fig. 2 summarizes the main components of the platform

and the steps of applet development and deployment. The

JCRE comprises the JCVM, a set of the Java Card API, the

Installer and the Loader (Classic Edition, 2011). The standard

implementation of the JCRE includes components imple-

mented in Java Card (the Java Card Interface in Fig. 2) and

components implemented in C (the Native Interface in Fig. 2).

Calls from the JC components to the native components are

processed without hinderance; calls from the native compo-

nents to the JC components are prohibited, and lower level

primitives have to be used.

Application development and deployment.A developer writes a

package in Java, then he compiles it into .class files and af-

terwards converts it into a CAP (Converted APplication)

format. CAP files consist of several optimized components in a

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9110



Author's personal copy

predefined format in order to reduce the amount of memory

needed for storing an applet; they include a single Constant

Pool component, a Method component with all methods in-

struction sets, etc. For conversion the Export files of imported

packages are required, and during conversion the Export file of

the converted package is produced. Export files contain fully-

qualified names and signatures of exported interfaces and

methods, and are used for interoperability purposes.

A package can contain one or multiple applets; an applet is

a class extending javacard.framework.Applet. A library

package does not contain any applets. Libraries cannot be

remotely invoked from a terminal or executed. For simplicity

we will consider that each package contains exactly one

applet and we will use words package, application and

applet interchangeably, except for when explicitly stated

otherwise.

The deployment includes the following steps. Upon

receiving a CAP file, the Installer uses the Loader API to pro-

cess the file and perform some checks specified in Classic

Edition (2011). Upon finalization of the linking process an

applet instance can be created. When the applet is no longer

wanted, the Installer, upon performing the necessary checks,

can remove the applet instance and the CAP file from the

memory (the removal process).

Java Card packages and applets are uniquely identified by

their AID (Applet IDentifier) assigned by the ISO/IEC 7816-5

standard. An AID is a long byte array and the CAP file structure

is optimized to avoidmultiple repetitions of the sameAID. The

AID of an imported package is listed only once in the Import

component of the CAP file and a 1 byte identifier (a tag) of this

package is used in the CAP file. On the card the loaded pack-

ages are further referred to by their local identifiers assigned by

the JCRE, which maintains the AID e local identifier corre-

spondence. We will denote the AID of package A as AIDA.

Application interactions. Applets from different packages are

isolated by the JCRE firewall. The firewall confines each ap-

plet’s actions to the applet’s context. Each JC package (a CAP

file) has its own context, so objects can communicate freely

within the same package. For this reasonwe can consider that

each package contains one applet, as it is not possible to

mediate the communications within a package. Since a

package is loaded in one pass, a malicious applet cannot be

later added to an honest applet package. However, amalicious

applet can arrive in another package.

Fig. 1 e The validation workflow for loading and the Java Card stack with the new components.

Fig. 2 e The traditional Java Card architecture, applet development and deployment process.

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 111



Author's personal copy

The interesting part is interactions of applets from

different contexts. The JCRE allows only methods of Shareable

interfaces (the interfaces extending javacard.framework.-

Shareable) to be accessible through the firewall. If an applet

desires to share some methods, it implements a Shareable

interface (SI). This applet is called a server and the shared

methods are called services. An applet that calls a service is

called a client.

In order to realize the applet interaction scenario the client

has necessarily to import the Shareable interface of the server

and to obtain the Export file of the server, which lists shared

interfaces and services and contains their token identifiers. The

server Export file is necessary for conversion of the client

package into a CAP file. In a CAP file all methods are referred to

by their token identifiers, thus during conversion from class files

into a CAP file the client needs to know correct token identi-

fiers for services it invokes from other applets. As Shareable

interfaces and Export files do not contain any implementa-

tion, it is safe to distribute them. The Export files consumption

for conversion is presented schematically in Fig. 2.

The current JC security mechanism to enforce access

control for service invocations is the context control JC API. A

server applet can check who is calling upon receiving a

request for the shared object or using the getPre-

viousContextAID()API in the service code.We illustrate this

in the following motivating example.

3.1. A motivating example

We consider two applets installed on a secure element. Purse

is a payment applet (e.g. payWave) and Transport is a tick-

eting applet (e.g. the DBahn NFC-based ticketing applet). The

public transportation system provides gate terminals that can

communicate to the Transport applet and check if the ticket

was paid. The ticket can be paid by the device holder through

specific payment terminals. If the Purse applet allows to

share its payment servicewith the Transport applet, then the

tickets can be purchased through Purse, and the device

holder does not need to wait in the line to payment terminals,

as the ticketing process can be seamlessly executed by the

gate terminals.

Fig. 3 contains a sanitized code snippet from the Purse

applet (we stripped off the details for the sake of clarity, the

functionality of the payment service of the actual applet is

different). The Purse applet has a service payment() provided

in Shareable PaymentInterface. Access control for this ser-

vice is implemented as the context control API usage upon

actual service execution (method JCSystem.getPre-

viousContextAID(), line 23 in Fig. 3) and the requesting

client AID check upon provision of the object implementing

the SI (line 32 in Fig. 3).

The access control list (ACL) clientAIDs[] is currently

hard-codedwithin the Purse code (line 6 in Fig. 3) and it can be

updated only if Purse is reinstalled. If the Purse provider does

not want to reinstall the applet any time the ACL is updated,

she might choose not to implement the service access control

at all. Unfortunately, in this set-up any other applet on the

card that knows the appletAID of Purse can invoke it. For

instance, the device holder can further load a new application

MessagingApp, which provides him access to the common

social networkwebsites. This new appletmay try to access the

sensitive payment()method of Purse, and if no controls were

implemented, execute the payment process. However, as the

payment service is sensitive, Purse has to use the cumber-

some embedded access control checks.

We argue that the context control API usage is not flexible,

as the list of the authorized clients is embedded in the code of

the server applet. Our framework gives the Purse applet the

possibility to redefine the ACL with the allowed clients for the

payment() service without reinstallation.

4. Contracts

High-level description. A provided service s can be identified as a

tuple hAIDs; tI; tmi, where AIDs is the unique AID of the package

that provides the service s, tI is the token identifier for the

Shareable interface where the service is defined, and tm is the

token identifier for the method s in the Shareable interface. A

called service can be identified as a tuple hAIDB; tIB; tmBi, where

AIDB is theAID of thepackageproviding the called service.More

details on the called service identification are given in Sec. 5.1.

The services provided and called by the applet A are listed

into the application claim, denoted AppClaimA. We denote the

Fig. 3 e A sanitized snippet of the Purse applet. It contains

the ACL defined in the code, and definition,

implementation and provision of the payment service.

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9112



Author's personal copy

provided services set of application A as ProvidesA and the

called services set as CallsA.

The application policy, denoted AppPolicy, contains two

parts: sec.rules and func.rules. For the applet A sec.ru-

lesA is a set of authorizations for access to the services pro-

vided byA. A security rule is a tuple hAIDB; tI; tmi, where AIDB is

the AID of the package B that is authorized to access the

provided service with the interface token identifier tI and the

method token identifier tm. In other words, hAIDA; tI; tmi is a

service provided by A.

func.rulesA is a set of functionally necessary services for A,

we consider that without these services provided on the

platformA cannot be functional (so there is no point to load it).

Functionally necessary services can be identified in the same

way as called services, moreover, we insist that

func.rulesA 4 CallsA. We do not allow to declare arbitrary

services as necessary, but only the ones that are at least

potentially invoked in the code.

The application claim and policy compose the application

contract, denoted Contract. Contracts are delivered on the

card within Custom components of the CAP files.

Definition 4.1. For an applet A ContractA is a tuple hAppClaimA;

AppPolicyAi, where AppClaimA is a tuple hProvidesA;CallsAi and

AppPolicyA is a tuple hsec:rulesA; func:rulesAi.
Contract realization. Token identifiers are used by the JCRE

for linking on the card in the same fashion as Unicode strings

are used for linking in standard Java class files. For a service

hAIDA; tI; tmi provided by A, the token identifier tI is listed in

the class_info.token structure of the corresponding inter-

face declaration in the A’s Export file, and the token identifier

tm is listed in the corresponding method_info.token. Fig. 4

presents an excerpt from the Export file of the Purse applet

with the token identifiers of the Shareable interface and the

method of the payment service. The Export file is consumed

by the Transport applet during conversion in order to replace

the fully-qualified names with the corresponding token

identifiers.

In Table 1 we provide examples of contracts of the Purse

and Transport applets in the standard Java fully-qualified

names and in the token identifiers notation. Contract can

be embedded within the Custom component of the CAP file

using the CAP modifier tool we have developed, in this way it

is delivered on board following the standard CAP file loading

protocol.

The choice to use Custom components is motivated by the

fact that CAP files carrying Custom components can be

recognized by any JC Installer, as the JC specification requires.

To write contracts we use structures and naming that are

similar to the ones defined for CAP files (Classic Edition, 2011).

After applying the standard JC tools (Compiler and Converter),

we modify the converted CAP file by appending the Contract

Custom component and modifying the contents of the

Directory component (by increasing the counter of the

Custom components amount and specifying the length of the

Contract Custom component), so that the Installer can

recognize that the CAP file contains a Custom component.

Note that this part does not need to be trusted: whatever er-

rors will be introduced in this part will simply mean that the

applet is rejected by our framework. More details of the tool

can be found in x7.

5. The components’ algorithms

5.1. The ClaimChecker algorithm

High-level description. The ClaimChecker is the component that

parses the CAP file and matches the contract with the CAP file

bytecode. The algorithm starts by retrieving the contract from

the Custom component, then it executes the check on the

provided services. The Export file of the package contains the

Fig. 4 e Shareable interface andmethod token identifiers of

the Purse’s payment service in the Export file.

Table 1 e Contracts of Purse and Transport applets.

Contract structure Fully-qualified names Token identifiers

Purse

Provides PaymentInterface.payment() h0; 0i
Calls

sec.rules Transport is authorized to call PaymentInterface.payment() h0x01020304050C; 0; 0i
func.rules

Transport

Provides

Calls Purse.PaymentInterface.payment() h0x01020304050B; 0; 0i
sec.rules

func.rules

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 113



Author's personal copy

explicit token identifiers of each Shareable interface and its

methods. However, as the Export file is not delivered on the

card, the ClaimChecker algorithm relies on the CAP file itself

and extracts the necessary token identifiers from the Export

and the Descriptor components. In the Descriptor component

the algorithm retrieves all the interfaces defined in this pack-

age, for each interface it checks within the Export component,

whether this interface is marked as Shareable. If this is the

case, the algorithm retrieves the method token identifiers for

this interface in the Descriptor component interface entry and

verifies that the pair <interface token, method token> is pre-

sent in the Provides set. After processing all the interface

entries in the Descriptor component, the algorithm ensures

that all services declared in the Provides set were found.

For the called services the algorithm starts again from the

beginning of theDescriptor component. It retrieves theMethod

component offset to the beginning of each method of the cur-

rent package and stores the offset in the temporary buffer. We

note that in case there are too many methods in the CAP file,

the algorithm processes them in batches, to ensure that the

limited temporary buffer is not exceeded. Then the algorithm

accesses each method of the package in the Method compo-

nent with these offsets and checks that the invoked services

are all declared in theCalls set of the contract. Afterwards, the

algorithm ensures that all called services declared in the Calls

set were found. Algorithm 5.1 contains a short English

description of the operations done with the CAP file compo-

nents. We demonstrate correctness of this approach in Sec. 6.

Engineering aspects. The JCRE imposes some restrictions on

method invocations in the applet code. Only the opcode

invokeinterface in the code allows to switch the context to

another application. Thus, in order to collect all potential

service invocations we analyze the bytecode and infer from

the invokeinterface instructions possible services to be

called. During execution the JCVM expects three operands

hnargs; idCP; tmi with this instruction and an object reference

ObjRef on the stack. There nargs contains number of argu-

ments of the invokedmethod (plus 1); idCP is an index into the

Constant Pool of the current package, the Constant Pool item

at idCP index should be a reference to the interface type

CONSTANT_Classref; tm is the interface method token of the

method to be invoked and ObjectRef is the reference to the

object to be invoked. The idCP index in the Constant Pool

component is used to identify the AID of the called package

from the Import component.

The process of the called service identification is illustrated

in Fig. 5, it presents a (sanitized) source code snippet of the

Transport applet and the corresponding excerpts from the

CAP file. Transport invokes the payment service in line 08 of

the code snippet (the Transport source code is explained in

x3). This invocation corresponds in the bytecode to the in-

struction invokeinterface h2160i, which is resolved in the CAP

file to invocation of the service h0x01020304050B; 0; 0i, that is
the Purse’s payment service.

To implement the ClaimChecker we needed a subset of

the Loader API to access the beginning and the length of CAP

components. This subset (CAPlibrary) also contained some

of the data structures and constants available on the device

and some additional functions necessary to access the data

from the CAP file that was stripped off during loading and

stored separately. An example of a function available in the

CAPlibrary is the function serving the AID of the loaded

package, because it was stored in the card registry together

with the assigned local identifier, and is no longer available in

the CAP file. The ClaimChecker algorithm uses variable-

length temporary buffers, that do not exist on a smart card.

The actual implementation explores just one 256 byte length

temporary buffer. The academic partner followed the JC

specifications for re-implementing the CAPlibrary for testing

purposes and directing the prototype.

Sharing theCAPlibrarywith theminimal LoaderAPI among

the smart cardmanufacturer and theacademicpartnerswasour

solution to the platform confidentiality problem. Without this

set of API our implementation couldnot be integratedwith a real

card. In the same time, one of the main concerns of the smart

card manufacturer partner was minimization of disclosure of

the proprietary implementation details.

5.2. The PolicyChecker component

The PolicyChecker component executes contract-policy

compliance checks. It needs to retrieve the security policy of

the card from the PolicyStore and the loaded contract from

the ClaimChecker. The contract is then converted into the

internal on-card format. Intuitively, during loading of applet B

the PolicyChecker has to check that (1) for all the services

from CallsB, B is authorized by their providers to call them; (2)

for all services from ProvidesB all applets that can invoke

these services are authorized by B; (3) all the services from

func.rulesB are provided.

Algorithm 5.1 e The ClaimChecker algorithm English description.

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9114



Author's personal copy

Algorithm 5.2 specifies the policy checks to be executed for

each type of change on the platform. It rejects all updates

(returns False) if they do not comply with these checks.

Notice, that the PolicyChecker component executes only the

checks for deployment of a new applet and removal of an

existing one (lines 2e8). In case of an application policy update

the PolicyStore component handles the check (lines 9e18).

6. The correctness proof

In order to demonstrate correctness of the proposed S�C

approach we define an abstract model of the JCRE, following

the specification. Let DL be a domain of package AIDs and DS

be a domain of services (identified as tuples hAIDA; tI; tmi),
where AIDA˛DL is the AID of the package providing the ser-

vice. A package execution is defined by the set of methods of

this package. Let A be a CAP file and M A be a set of methods of

this CAP file. A method m˛M A is defined by the set of its in-

structions. Let B m be the set of opcodes of the method m. Let

B A ¼ Wm˛M ABm be a bytecode of CAP fileA. For the packageA,

we will also denote its CAP file data (specifically, the Constant

Pool, Descriptor, Export and Import components) as

ConstPoolA.

Definition 6.1 (Application). On the secure element platform a

deployed application A is a tuple hAIDA;B A;ConstPoolAi.

For applet A we denote as shareableA 3fAIDAg �N�N

the set of services provided by this applet. In practice, for a

package A we define shareableA as a set of meaningful

shared services. Namely, for each service s¼ hAIDA; tI; tmi such
that tI ¼ export_file.export_classes[i].token and

tm ¼ export_file.export_classes[i].-methods[j].token

s belongs to shareableA (the structures in this definition

represent the contents of the Export file of the packageA). If tI

or tm are not meaningful token identifiers (there is no struc-

ture with the value tI ¼ export_file.export_classes

[i].token or there is no method with the corresponding tm

token defined for this interface in the Export file), then

hAIDA; tI; tmi;shareableA.

Definition 6.2. (Platform)Platform Q is a set L of currently

deployed applications.

Definition 6.3. (Platform Security Policy)Security policy P of the

platform consists of the contracts of all the applications L¼{A1, .,

An} deployed on the platform: P ¼ WAi˛LfContractAi
g

The taxonomy of the JCVM instructions. The JCVM specifica-

tion v. 3.0.4 (Classic edition) defines 109 instructions,

including 4 instructions that can be used to invoke methods.

These are invokeinterface, invokespecial, invokestatic

Fig. 5 e AID, interface and method token identifiers of the invoked payment service in the CAP file of the Transport applet.

Algorithm 5.2 e The PolicyChecker algorithm description.

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 115



Author's personal copy

and invokevirtual. The instruction invokeinterface is

used for invocation of interface methods and it allows to

invoke services across package contexts. Other method invo-

cation instructions cannot be used for service invocations, as

the firewall will allow (at most) to switch context to the JCRE

context upon execution of these instructions. In Table 2 we

present a taxonomy of the JCVM instructions that we will use

to reason about applet execution. The taxonomy is based on

the possibility of a context switch upon execution of in-

structions, and we cluster the method invocation instructions

in a separate class of instructions.

Theorem 6.1. In the presence of the S�C framework all methods

invoked by any deployed application B are authorized by the plat-

form policy, or are allowed to be invoked by the JCRE.

Proof. The proof by contradiction goes over all possible

cases of method invocation on the platform. We first assume

the theorem does not hold: B is a deployed application and it

invokes somemethod not authorized in the platform policy (B

cannot invoke a method against the JCRE rules, otherwise the

platform implementation is incorrect). Since B is a deployed

application, it has been validated by the ClaimChecker and

the PolicyChecker, also all executed application policy up-

dates of Bwere validated. Possible cases are: B invokes its own

method, B invokes amethod of yet undeployed appletA, and B

invokes amethod of installed appletA. The first two situations

are obvious. In the last situation we reason by the type of the

executed instruction, discussing each possible instruction

type in the taxonomy. We omit the cases IeV for brevity, the

full proof is provided in the xAppendix B. Here we only discuss

the case when the executed instruction is a method invoca-

tion instruction, as the most interesting.

Case VI. The next instruction is an invocation instruction

(type VI). These instructions (except for the invokestatic

instruction) expect to find an object on the stack and invoke a

corresponding method of this object. The method A.s can be

invoked if B has a reference to the object ObjRef of A that

implements A.s. The JCVM does not check correctness of the

object ownership upon execution of the invocation in-

structions, but does this during the casting instructions

execution (instructions checkcast and instanceof).

B cannot maliciously cast an object of A into its own object

or an object from a third party C due to the typechecking rules

for casting. Therefore, an attempt of casting into B’s own (or

third-party) interface or class will result in a run-time excep-

tion and the JCREwill halt B’s execution. If Bwill cast an object

of A into the JCRE’s own type (such as Shareable), the object

will be accessible, but it will not be possible to invoke the

method A.s from this object.

We now discuss the invocation instructions.

Case VI-invokeinterface. If the next instruction is invo-

keinterface which invokes a method of A, then the second

operand idCP of this instruction references an externally

defined interface (we prove this in xAppendix B). The JCRE

firewall will allow to invoke a method across contexts if and

only if the invoked interface method belongs to the JCRE or to

a Shareable interface, as defined in [(Classic Edition, 2011),

Sec.6.2.8 of the JCRE specification]. Therefore, the invoked

method is a service of A; and no other method of A (not from a

Shareable interface) can be invoked by the invokeinterface

opcode.

The PolicyChecker verifies that for all services A.s1, such

that A.s1 ˛ CallsB and A.s1 ˛ ProvidesA, there will be the

corresponding service authorization present in sec.rulesA:

(A.s1,B) ˛ sec.rulesA. Therefore, either (a) A.s; CallsB or (b)

A.s; ProvidesA. We can prove that both these cases lead to a

contradiction. Therefore, if invokeinterface is the next

executed instruction in the context of B and a service of applet

A is invoked, then B was authorized to invoke it in

sec.rulesA.

Case VI-invokespecial. The next instruction is invokes-

pecial. According to the JCRE specification the object refer-

ence on the stack cannot belong to another context when

executing this instruction. Therefore only B’s ownmethod can

be invoked.

Case VI-invokestatic. The next instruction is invoke-

static. This instruction accesses a static method that be-

longs to a class, and not an instance. Classes do not have

contexts, as objects do; public static fields and methods are

accessible from any context [(Classic Edition, 2011), Sec.6.2 of

the JCRE specification]. Therefore, if B was able to invoke a

static method of A, the JCRE allows it (no context switch

happens, the invoked method belongs to the current context

of package B).

Case VI-invokevirtual. The next instruction is invoke-

virtual. If the object reference on the stack references an

object from another context, the firewall will allow the invo-

cation if and only if the reference belongs to the JCRE [(Classic

Edition, 2011), Sec. 6.2.8 of the JCRE specification]. Thus upon

execution of this instruction B can only invoke its ownmethod

or a JCRE method, but cannot invoke methods of another

applications.

Table 2 e The JCVM instructions taxonomy.

Type Instructions

I Arithmetic instructions and other instructions that do

not modify executions. These are instructions like

iadd, bspush or dup. These instructions cannot throw

run-time exceptions or security exceptions. The JCVM

after execution of this instruction proceeds to the next

instruction.

II Instructions that can throw a run-time exception

(the JCVM can halt or modify the flow), but not

a security exception. These are instructions like

irem (remainder int) or idiv

III Instructions that modify the execution flow. These

are instructions like goto, ifnull or jsr. These

instructions define branches in the execution flow.

IV Instructions that define returns from methods,

like ireturn or return.

V Instructions that can throw SecurityException,

excluding the method invocation instructions. These

are instructions like checkcast or iastore (all operations

with arrays). These instructions require the JCRE to check

whether the access to objects is legal, but they do not

invoke methods.

VI Instructions that invoke methods: invokeinterface,

invokespecial, invokestatic and invokevirtual.

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9116



Author's personal copy

So, for all JCVM instructions B cannot illegally invoke a

method of another application A. The last case is if A used to

authorize B to invoke A.s and B was deployed legally, but at

some point AppPolicyA was updated to remove this authori-

zation. This update could have been executed if and only if

A.s ; CallsB. Again, by construction of the ClaimChecker, B

cannot invokeA.s unless this is declared in CallsB. Therefore,

A cannot remove an authorization until B is removed.

7. The prototype design

The requirements on the implementation were elaborated by

the smart card manufacturer.

� The loading protocol should be unchanged. Secure elements that

ignored the framework should be able to work with applets

that were aware of it and secure elements incorporating the

framework should be able to work with applets ignoring it

(backward compatibility). We use Custom components in

the CAP files to deliver contracts. Cards ignoring the

framework would just ignore the Custom component (i.e.

the policy of the applet). And vice-versa, applets unaware of

the new framework (those without a contract) in an indus-

trial setting can be processed by the cards aware of the new

security mechanism. These applets will be validated to

provide 0 services and call 0 services. If some services or

service calls are present in the code, an applet with an

empty contract will simply be rejected.

� Minimize changes to the existing JCRE code. Modification to the

loading code should be kept to a minimum, as the addition

to the functions of the Loader API can have negative impact

on its trustworthiness (and the certification with respect to

Common Criteria6). Modification of some other parts of the

JCRE, like the JCVM or the firewall, were ruled out of

consideration due to prohibitive cost and required interac-

tion with multiple stakeholders (e.g. Oracle).

� Very small persistent and volatile memory footprints. The pro-

totype footprint could be up to 10 KB of non-volatilememory

for storing the prototype itself and the security policy of the

card across sessions, and could not use more than 1 KB of

RAM (for computation and data structures). The latter

requirement was further strengthened by the decision to

use a 256 bytes auxiliary temporary buffer to store the

temporary computational data. Because this is a buffer fixed

by the platform, our prototype consumes no additional RAM

for its computation. On different cards different amounts of

RAM are available (from 1 KB to 5 KB onmodern cards). Thus

this temporary buffer restriction ensures the highest

interoperability.

The S�C architecture. Fig. 6 depicts themodified architecture

and the changes to the development and the deployment

processes of Fig. 2, the gray elements belong to the S�C pro-

cess and the dashed arrows denote the new steps of the

development process. We can notice that the deployment

process of Java Card is unchanged; and the S�C process adds

just one step after the standard Java Card development pro-

cess (the development and addition of the contract).

Themost challenging task was identifying the location and

the mechanism of interaction with the PolicyStore. The

PolicyStore has to reside in the EEPROM, because the se-

curity policy has to be maintained across card sessions and it

has to bemodifiable. However, only the Java Card components

(applets or the Installer) can allocate the EEPROM space upon

the card issuance finalization, and the native components,

such as the Loader, cannot do it. Thus the S�C prototype had

to be broken into a native part and a Java Card part. The

ClaimChecker was definitely the native part to be written in

C, because it needed to access the Loader API. The Policy-

Store was definitely a part to be written in Java Card. The

PolicyChecker could, in fact, be written in both languages

and successful implementations of the PolicyChecker

Fig. 6 e The Java Card architecture and the loading process enhanced with the S�C on-device validation.

6 Common Criteria is a standard for security certification.

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 117



Author's personal copy

component as an applet exist (Dragoni et al., 2011;

Gadyatskaya et al., 2012). We have chosen to implement it in

C to ease delivery of the contract. For the memory optimiza-

tion reasons (to decrease the amount of separate functions)

the PolicyChecker functionality was implemented in the

S�CInstaller component. The S�CInstaller is imple-

mented fully in C and it serves as an interface with the plat-

form Installer.

The JCRE is implemented in a way that calls from a Java

Card component to a native component (for example, from

the Installer to the S�CInstaller) are processed without

hinderance. Unfortunately, calls from a native component to a

Java Card component are prohibited, unless lower level

primitives are used. Our solution is to introduce the Policy-

Store on the card as a class in the Installer. The Installer,

when invoking the S�CInstaller, serves it a pointer to the

current security policy array, and the access to this array is

done through a native API.

An alternative architecture was to implement a Policy-

Store applet that would maintain the security policy. The

problem of native-Java Card communication was solved by

the usage of the APDU buffer. This solution would have

required less modifications to the platform implementation

and the S�C prototype could have been tested directly on a PC

simulator outside the premises of the platform implementa-

tion owner. The trade-off is that all policy data structures have

to fit into the APDU buffer. Standard Java Card platforms have

buffers of 128 B and 256 B, thus only a very small policy could

be maintained (256 B buffer only allows up to 4 applications).

In contrast, the usage of native API allows us to increase the

security policy size and to have more applications loaded on

the card (but it requires more modifications to the platform).

When the actual integration with the device was per-

formed, we have found out that the APDU buffer could not be

used during the loading process (platform-specific imple-

mentation detail of our smart card vendor). So we could not

compare the practical efficiency of the two architectures.

Thedeveloperprototype.The standard Java Card Development

Kit from Oracle7 does not support Custom components, so we

have developed a CAP modifier tool to embed contracts into

CAP files. It is available in our developer version of the tool.

The CAPmodifier tool allows users to choose to add services to

Provides, Calls/func.rules and sec.rules sets, then the

dialog will appear where users can insert the necessary AIDs

and tokens. When the contract is ready it can be saved for

future usage. The contract can also be embedded into the

chosen CAP file, and then the CAP modifier can generate the

scripts necessary to communicate the CAP file to the card.

The CAPlibrary was shared by the partners; the smart

card manufacturer has the actual implementation of the

CAPlibrary runnable on the device. For the developer pro-

totype we implemented the CAPlibrary following the JC

specifications.

We have made available the S�C prototype version for

testing purposes8; it runs on a PC and can be used by applet

developers to practice the S�C scheme. It also includes several

testing scripts, the CAP modifier tool to embed the contracts,

the CAP files of the running example applets and a user

manual.

7.1. Policy management

The PolicyStore is responsible for storing the security

policy of the card. It has to be organized efficiently, so that

the PolicyChecker algorithm is fast while the space

occupied by the security policy data structures is small.

Once a new applet has been validated (both the Claim-

Checker and the PolicyChecker returned True), the se-

curity policy of the card is modified by including the

contract of the new applet. The S�CInstaller stores the

contract in the buffer, and the PolicyStore retrieves it and

adds to the policy data structures. In case some applet is

removed, after the PolicyChecker has approved this

change, the PolicyStore will remove the contract of this

applet from the policy.

For the contract-policy compliance check we have used bit

vectors, assuming up to 10 loaded applets at each moment of

time (the 11th will be rejected by the current implementation,

but it is possible to free the space by removing something

loaded), each applet can provide up to 8 services. These

numbers are more than enough for modern secure elements:

from our personal experience, current numbers are respec-

tively 4e7 deployed packages (most of them libraries) and 0e1

services. In the same time, our policy format is not restricted

with respect to possible authorized clients AIDs, these are

unconditioned.

Notice that the PolicyStore only maintains the security

policy data structures and performs updates, but the main

contract-policy compliance check is executed by the Poli-

cyChecker, which retrieves the policy from the dedicated

platform buffer.

The possibility of applet policy update without reinstalla-

tion is one of the main benefits of the S�C approach. To up-

date the policy, the applet provider needs to contact the

PolicyStore. We consider atomic updates: addition or

removal of an authorization to sec.rules and addition or

removal of a necessary service to func.rules. A possible

AppPolicy update scenario for the example in x3.1: the Purse

applet provider chooses to allow the applet MessagingApp to

call its service payment().

The application provider needs to transmit to the Poli-

cyStore component an APDU (Application Protocol Data Unit)

sequence specifying the type of the update to be executed, the

Table 3 e The S�C framework components sizes.

Component Compiled (PC) Compiled (device) LOCs

S�CInstaller 10 KB 1 KB 178

ClaimChecker 10 KB 0.9 KB 170

Total (C) 20 KB 2 KB 348

PolicyStore 6 KB 6 KB 148

Total S�C 26 KB 8 KB

7 http://www.oracle.com/technetwork/java/javacard/overview/
index.html, accessed on the web in Jan. 2013.

8 Accessible from http://disi.unitn.it/wgadyatskaya/SxCdeveloper.
zip.

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9118



Author's personal copy

AIDs of the applets in question (which applet’s policy has to be

updated and which is the AID in the security or functional

rule). The PolicyStore runs the check if the suggested up-

date leaves the card in a secure state, and executes the update

in case of a positive result. Notice that the necessary step of

the applet provider authentication should be present in the

policy update protocol; it can be implemented using the

standard GlobalPlatform middleware.

8. Resource analysis of the implementation

Several features are important for the embedded software.

Traditionally for smart cards themost important feature is the

memory footprint of the new components. For instance, a

study of commercial Java Cards (Mostowski et al., 2007) lists

memory available on the card as the second card feature, after

the supported specifications; while the run-time performance

of cryptographic primitives arrives much later. In the NFC

world the user experience is crucial, and it is required that the

applet operations (such as execution of the payment process

by the Purse applet and the ticketing operation by the

Transport applet in the example in x3.1) are very fast (frac-

tions of seconds). In contrast, the OTA deployment of applets

can take more time, because it can be executed by the stake-

holders, while performing other operations such as updating

status or charging money. Therefore, the load time perfor-

mance overhead for our framework is not as important as the

memory footprint. The S�C framework components run al-

gorithms that are linear in the size of the processed CAP file;

the load time overhead is insignificant in comparison with the

operations performed by the Loader and the Linker JCRE

components. In the same time, our framework actually re-

duces the applets’ execution time, because the ACL checks are

not performed anymore.

Therefore, we first focus on the memory footprint. Since

integration with an actual device is very costly, we first

measured the footprint of the prototype compiled on a PC

Win32 simulator (for compilation we used the Microsoft Vi-

sual C compiler cl.exe with appropriate options). Table 3

presents the data on the components sizes. The target

device is an in-use Infineon smart card integrated circuit (an

actual multi-application (U)SIM secure element). The Poli-

cyStore component was measured as a CAP file, because it is

the actual size on device. We also provide the number of lines

of the source code (LOCs). To give a feeling on the level of

optimization, Fig. 7 compares the embedded native S�C

components sizes with sizes of the standard native JCRE

components (the Loader and the Linker compiled on the PC

simulator); Fig. 7(b) compares the sizes of the S�C components

compiled on device with on-device sizes of the Installer

(measured as a CAP file), the Loader and the Linker compo-

nents. The total size of the S�C prototype is bigger than the

Loader or the Linker, because the PolicyStore is imple-

mented in Java Card, while Loader and Linker are native

components and thus are highly optimized.

It should not be surprising that the size of the native

components compiled on a PC is an order of magnitude bigger

than the size of the native components deployed on a device.

This decrease of size is explained bymultiple optimizations to

the native components structure carried out before deploy-

ment. For example, the device memory is smaller, so all

pointers and integers are shorter.

For the RAM allocation, in addition to the auxiliary tem-

porary buffer, the S�C prototype allocates less than 100 B (only

local variables, no transient arrays are used). The EEPROM

consumed by the PolicyStore for the security policy data

structures is 390 bytes (two arrays, 135 B and 255 B).

Processed applets. Table 4 presents the relevant details of

some of the applets we used to test the prototypes. The Purse

and Transport applets were developed by the smart card

Fig. 7 e Sizes of the prototype components and their comparison with the JCRE components sizes.

Table 4 e Details of applets used for testing and
evaluating the S�C prototype.

Applet CAP file
size

# of methods
in CAP file

# of services LOCs
(.java)

Purse 2.5 KB 6 1 66

Transport 2.5 KB 5 0 92

EID 11.2 KB 81 1 1419

ePurse 4.7 KB 16 1 431

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 119



Author's personal copy

manufacturer partner for functionality testing relevant for

clienteserver interactions. The ePurse is another electronic

purse applet provided by the smart card manufacturer. The

EID applet is an open-source electronic identity applet

(Philippaerts et al., 2011); originally it did not include any

services, so we have added 1 Shareable interface including 1

method.

There is no agreed industry benchmark for the represen-

tative size of the “average” applet. However, generally a CAP

file of 10 KB is already a big applet, most telecom applets are

between 1 and 10 KB.

9. Security analysis

We now review and discuss the security assumptions behind

our guarantees.

� Correct implementation of the Java Card development,

deployment and execution environments. Soundness of the

framework algorithms relies on the correct implementation

of the JCRE and the JCVM, and we assume they are in full

compliance with the specifications (Classic Edition, 2011).

For instance, we require that the only way for applets to

communicate is through Shareable interfaces. Another

crucial assumption is that the bytecode is trustworthy and it

respects the Java type safety assumptions. These assump-

tions are standard for the JCRE security.

We base correctness of our technique on the guarantees

offered by the JCRE (x6). For example, we expect that illegal

(security-violating) context switches upon execution of a

JCVM instruction correspond to security exceptions thrown by

the JCVM (class SecurityException) The JCRE specification

defines how the context switches should be handled (the

firewall rules). If an instruction makes an attempt to switch

context illegally (not following the rules), a security exception

will be thrown. The current execution will be aborted and the

sensitive resources will be protected. This is why we consider

instructions able to throw this exception separately in the

taxonomy. Another special type of exceptions is System-

Exception, which can be thrown by the JCVM at any point of

the execution. This exception type handles the JCVM errors.

For the other exception types, besides SecurityException

and SystemException, the specification expects that appli-

cation providers can catch these exceptions and handle them

correctly. Any uncaught exception results cause the JCVM to

halt, the current applet execution is aborted. We consider that

in case of an uncaught exception, the JCRE context will

become the active context.

� The package AIDs cannot be spoofed. The AIDs are assigned

uniquely following the ISO standard. The existence of the

AID impersonation attacks (registration of a new applet

instance with a spoofed AID (Montgomery and Krishna,

1999)) and the need for reliable CAP file and applet authen-

tication techniques are acknowledged by the JC practi-

tioners for a very long time. The GlobalPlatformmiddleware

provides the means for secure card content management

(including delegation) and offers sophisticated mechanisms

for application and terminal authentication. A full industrial

implementation of our framework can leverage these

mechanisms. So we assume the applet code is authentic

and assigned to an authentic AID. We also assume that the

platform correctly authenticates applet owners for the pol-

icy updates. Our focus is on the code permissions and ser-

vice invocations.

� Access control to services is specified per a package rather

than per an applet instance. The service access control

policies enforced by our framework are based on the pack-

age AIDs, while the current JC methods of service access

control are based on the applet instance AIDs. However, the

package AIDs are more trusted than the applet instance

AIDs, as the package AIDs cannot be modified after the

conversion, while the applet instance AIDs can be changed

freely. In the same time, as all applets of the same package

can freely communicate, granting access for one applet

instance means in practice granting access for its whole

package. Thus the package-based access control does not

worsen the granularity of the current JC access control

policies. As well, in practice the industry only needs the

ACLs based on the applet provider identity (access is granted

only to the trusted partners).

In the current paper we assumed that each package includes

exactly one applet. Our approach can also be directly applied

in the case when a single package includes multiple applets;

no changes to the contract model or the framework compo-

nents are required.

Regarding the abstract model of the platform, we have con-

jectured 1e1 correspondence between packages deployed on a

card and instantiated applets. In fact, the card can host

deployed packages that are not instantiated. If we do not

consider library packages and enforce the condition that each

package does not implement Shareable interfaces defined in

other packages, then the un-instantiated packages can not

participate in the inter-package communication (in both roles

of a server and a client), therefore our security theorem still

holds. A single package can be instantiatedmultiple times, but

all applet instances will belong to the same context and they

can be treated as the same instance.

� Restricted amount of deployed packages. There is no sub-

stantial limitation on the number of packages mentioned in

the policy (as authorized clients), but in order to improve the

policy management efficiency our prototype allows at most

10 packages to be deployed, validated and listed in the se-

curity policy at any given time. For modern secure elements

10 loaded packages is a significant amount: from our expe-

rience, usually high-end multi-applet cards carry around

4e7 packages, most of them being library packages used for

personalization (like GlobalPlatform), loaded at the card

manufacturer premises. However, the limit on the number

of deployed packages can be restrictive for the industry, as

we target open secure elements of the future. Our imple-

mentation can be improved by enabling dynamic scaling of

the policy structures.

� No services defined outside applets. JC allows library pack-

ages that do not contain any applets, but they can define

Shareable interfaces. We have investigated an extension of

the current proposal in order to consider also library pack-

ages and to capture implementation of a service defined in a

separate package and to strengthen the demands on the

functionally necessary services by requiring that the service

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9120



Author's personal copy

is provided if there is a class implementing the interface

defining this service. To deal with these problems it is

possible to expand the contracts by including in the App-

Claim also the set of service definitions declared in the

current package. There will be a set of defined services and a

set of actually provided services. The Calls set will be based

on invocations of defined services (because CAP files contain

the interface token, but not the actually invoked class), and

the Provides set will refer to the services implemented in

the current package. The PolicyChecker will ensure that

the policy of the package implementing a service is more

liberal than the policy of the package defining this service.

The pre-loaded libraries (those are deployed at the card

manufacturer premises before the card issuance) in the in-

dustrial setting can be accounted in the policy structure from

the very beginning.

� Each applet implements only services declared in this pack-

age. We interpret provided services as services that are

declared in the Export file of the package. Thus the S�C

approach to ensure the functionally necessary services avail-

ability requires a commitment from the server that the actual

implementation of the declared serviceswill exist at run-time.

� The called services are identified in the bytecode by the

static token identifiers. While analyzing the code, we could

try to track the object references on the stack, thus inferring

all possible objects of the server that could be referenced by

the client during the invokeinterface opcode execution.

Unfortunately, only the server’s code defines which objects

it will provide and to whom. It is even possible the server is

not yet on the card when the client is loaded (and it could

never arrive). Thus the load time analysis can be only as

precise as the static tokens provided in the client’s code.

� The application policy update is secure.The S�C framework

is fully compliant with the standard JC application update

scheme e when an application is removed and then rede-

ployed again. This scheme has to be used when the func-

tional code needs to be updated (including removal of an

external service invocation or addition of a provided

Shareable interface). We have proposed a novel flexible

approach to update the security policy of an application

without redeployment. However, this scenario introduces

new potential insecurities, because it exposes a new

communication scenario with the Installer. Therefore to be

used in practice full security evaluation and certification of

the additional features of the Installer and the application

policy update protocol is required.

10. Related work

10.1. The Java Card security

The Java Card platform attacks and countermeasures. The security

of the Java Card platform and the novel security issues raised

by the openmulti-application architecture are discussed in the

community for more than a decade (Girard and Lanet, 1999).

The hardware and software attacks on the platform (the side-

channel and fault-injection attacks) are outside of the scope of

this article. The interested reader can find the detailed

overview of the latest advances in these kinds of attacks and

the efficient countermeasures in Barbu et al. (2011), Barbu et al.

(2012a), Bouffard et al. (2011a), Bouffard et al., (2011b),

Markantonakis et al. (2009) and Leng (2009). Among the tools

for enabling security on Java Card are the bytecode verifier

(executed off-card or on-card) (Bouffard et al., 2011a), a hard-

ened defensive JCVM (Lackner et al., 2012; Dubreuil et al., 2012)

anda systemfor control flow integrity verification for JavaCard

(Bouffard et al., 2011b). Regarding the applet interactions se-

curity on JavaCard,W.Mostowski and E. Poll have investigated

in Mostowski and Poll (2008) the potential of abuse of the

Shareable interfacemechanism(amongdiscussingother types

of attacks on JCRE); they have demonstrated that with the

Shareable interface mechanism the JCVM can be tricked into

the type confusion, and observed that all tested cards with the

on-card bytecode verifier rejected applications with Shareable

interfaces. The authors hypothesize that this rejection of the

sharingapplets (being, strictly speaking, incompatiblewith the

JC specifications) is a safety measure, because the on-card

bytecode verifiers are not able to detect the type mismatch.

The run-time countermeasures against this attack are dis-

cussed in Bouffard and Lanet (2012). However, the only prac-

tical attack that exists in the literature (Mostowski and Poll,

2008) assumes collaborating malicious client and server ap-

plets. A standalone malicious applet (being it a client or a

server) cannot lead the JCVM to a type confusion.

One of the most eminent features of the updated Java Card

Classic edition is the garbage collector (Classic Edition, 2011).

G. Barbu et al. have investigated the replay attacks against the

Java Card platform with the enabled garbage collector (Barbu

et al., 2012b). In the reply attack an honest applet is removed

while a malicious applet retains the references to the honest

applet objects (the references can be guessed by using the

rules of the reference assignment on Java Card, that are quite

simplistic). These objects are not garbage collected, but cannot

be accessed due to the firewall mechanism. However, if a new

applet is immediately installed, it might be assigned the same

context identifier, and themalicious client will pass the object

references to the new applet. Being an applet from the “same”

context as the object references, the new applet can access the

objects of the original applet, that is now removed; thus the

firewall mechanism can be bypassed.

The communicationprotocols of the smart card and thehost

terminal and their security are also outside the scope of this

article. The interested reader can find a summary of the control

flow difficulties in these protocols in Li and Zdancewic (2004).

The paradigm shift in the card ownershipmodel. The traditional

smart card business model assumes a centralized controlling

authority (“issuer”) that manages the card. Application pro-

viders have to negotiate with the card issuer the terms for

loading and removal of applications; the card holder does not

take any decision or any responsibility in this model. Recently

the proposals of a user-centric open multi-application card

appeared (Akram et al., 2010; Sauveron, 2009). In the new

proposed paradigm the card holder is responsible for taking

the decision to install or remove an applet. In the same time,

the application providers require certain security guaranteed

for their applets on the shared platform; this can be ensured

by sufficient security mechanisms available on the card

(Akram et al., 2010; Dragoni et al., 2001).

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 121



Author's personal copy

The NFC secure element security. M. Roland et al. in (2012)

overview the existing approaches for secure element imple-

mentation in the NFC-enabled mobile devices. They conclude

that the introduction of smart cards into mobile phones as

secure elements for NFC transactions can lead to unexpected

vulnerabilities due to the current lack of standardization for

the NFC card communication protocols. The standard smart

card communication protocols used for NFC transactions can

introduce, for instance, the denial of service attack: any phone

application can trigger an authentication protocol with the

device secure element, and the standard authentication pro-

tocols on some devices, such as Nokia 6131 and Samsung

Galaxy S, allow only for limited number of authentication

attempts. After reaching the threshold the card will be

brought to the terminated state, from which it cannot be

brought back to a working state. Therefore, a malicious

smartphone application can render the secure element

terminated.

Akram et al. (2012) identify a cooperative architecture

scheme for the NFC-based mobile services that merges the

Trusted ServiceManager architecture, traditionally adopted in

the NFC trials, and the user-centric smart card model. The

authors allow the device holders to take the decision on

installing an applet, but the users now have to pay for this to

the card controlling authority (a telecom operator) that has

provided the open secure element infrastructure.

Application code verification. The smart card applications are

quite sensitive and usually require a tedious formal verifica-

tion and certification process (Narasamdya and Perin, 2009).

To facilitate the formal verification process G. Barthe et al.

have developed the JACK tool for validation of security of the

Java Card applets (Barthe et al., 2006). JACK can verify Java

source and bytecode, it includes automatic annotation gen-

eration algorithms and integration with the Coq prover.

VeriFast (Philippaerts et al., 2011) is another tool for auto-

mated verification of Java and C programs, that can be used for

the Java Card programs verification.

Run-time verification for Java Card. Souza da Costa et al. (2012)

are the pioneers in application of the run-time verification

techniques on Java Card. They have proposed the JCML (a

specification language for Java Card applications derived from

the JML) and an implementation for it (a compiler that gen-

erates the run-time verification code). The solution is based on

the Design-by-Contract approach: some logical assertions are

added to the source code to specify its contract. The assertions

are verified at run-time. In contrast to the S�C approach, the

application contracts in Design-by-Contract deal with lower

level code properties, such as code invariants, preconditions

and postconditions for the code parts. The experiments in

Souza da Costa et al. (2012) show viability of the JCML lan-

guage adoption for Java Cards. However, this language does

not improve the application communication access control

mechanism, because the assertions are still embedded in the

applet code.

10.2. Control of applet interactions on Java Card

Control of interactions for predefined sets of applets. Most of the

proposals for the control of applet interactions consider only

static scenarios, when the set of applets to be deployed on the

card is known in advance and can be analyzed at the premises

of the card issuer or the trusted controlling authority (Girard,

1999; Schellhorn et al, 2000; Bieber et al., 2002; Huisman et al.,

2004). For example, Avvenuti et al. (2012) have developed the

JCSI tool that verifies that a set Java Card applications respects

pre-defined information flow policies. As we have discussed,

the static scenarios are not appropriate with the dynamic

nature of the novel NFC-enabled platforms.

Dynamic applet interactions scenarios. Similar to ours card

evolution scenarios (application loading and removal) are

considered in Fontaine et al. (2011b), where Fontaine et al.

propose the TCFmechanism to enforce transitive control flow

policies on Java Card. These policies capture application col-

lusions, when two or more applications engage into a chain of

method invocations. These policies are stronger than the

policies enforced by the S�C framework, which captures only

the direct method invocations. Themain limitation of the TCF

prototype is the focus on security domains and not on package

AIDs. Security domains are very coarse grained administrative

security roles, typically used to delegate installation privileges

(usually a handful). As a consequence we can provide a much

finer access control list. Therefore, while the S�C code-

contract and contract-policy checking steps can be accom-

modated by the TCF mechanism, this mechanism does not

support as rich set of authorized clients, as the S�C approach

does. We do not see an immediate solution to this problem,

because the finer access control lists for TCF will require

substantial memory resources to store the policy.

In (2011a) Fontaine et al. develop other types of policies

suitable for open multi-application Java Cards: the “global”

policies that allow to specify in a centralized manner sets of

prohibited method invocation chains across multiple appli-

cations and the full-fledged information flow policies, that are

inspired by the work of Ghindici and Simplot-Ryl (2008). The

information flow verification systems suitable for small Java-

based devices proposed in Fontaine et al. (2011a) and

Ghindici and Simplot-Ryl (2008) include off-device and on-

device steps. The off-device step consists of creation of an

information flow certificate (an information flow contract,

that contains the information flows within the application

and the secret/public annotations) for each application. Then

on device this certificate is checked in a proof-carrying-code

fashion and matched with the information flow policies of

other applications. The information flow policies are very

expressive, but no practical implementation of the proposed

systems for Java Card exist, due to the resource and other

constraints. For example, the mechanism proposed in

Ghindici and Simplot-Ryl (2008) cannot be implemented for

the Java Card Classic edition, because the latter does not allow

custom class loaders, and even implementation for the Java

Card Connected edition 3.0.1 may not be effective due to sig-

nificant amount of memory required to store the information

flow policies.

In the user-centric card ownership model the application

interactions are very important, as there is no central con-

trolling authority and it is difficult to have even implicit trust

in applets installed on the card. Akram et al. (2011) propose an

on-card framework for run-time applet authentication and

verification, that can augment the Java Card firewall. The

authors argue that the AID impersonation attack (Mostowski

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9122



Author's personal copy

and Poll, 2008), when an applet can masquerade itself as

bearing a legitimate AID of another applet, is quite dangerous

in the user-centric model, when there is no controlling au-

thority to check which applets are installed; and therefore the

platform requires a set of protocols (based on the trusted

certification authority signatures and applet hashes) for

establishing trust between applets on the card. However, in

presence of the trusted certification authority the validity of

the applet AIDs can be established off-card (at least for the

applets that have passed the certification process). We can

expect that the load time S�C code validation performed by

the card itself can be very beneficial for the user-centric open

smart cards, because with our proposal each platform is in-

dependent and is always maintained in a secure state with

respect to applet interactions.

The investigation of the Security-by-Contract techniques

for Java Card is carried out in Dragoni et al. (2011),

Gadyatskaya et al. (2012) and Gadyatskaya et al. (2011) tar-

geting dynamic scenarios when third-party applets can be

loaded on the platform. Dragoni et al. (2011) and Gadyatskaya

et al. (2012) propose an implementation of the PolicyChecker

component as an applet. While possible in theory, it has not

solved in any way the actual issue of communication between

that native and the JC components that we have addressed

here. This problem might only be solved if the authors of

Dragoni et al. (2011) and Gadyatskaya et al. (2012) could have

access to the full Java-based JCRE implementation. The spec-

ifications of the JC technology do not prohibit this, but in

practice full Java-based implementations do not exist. Our

ClaimChecker algorithm is more practical than the algorithm

in Gadyatskaya et al. (2011), which runs in one pass over a CAP

file, but needs to allocatememory to store temporary data. For

big CAP files (e.g. EID) the dynamic memory allocation is

prohibitive and it is necessary to reuse the space, though

increasing the number of runs over the CAP file.

10.3. Multi-tenant platforms

We survey the existing techniques for other most relevant

multi-tenant platforms.

Android. Typically, mobile applications (apps) for Android

are written in Java and compiled into DEX binaries. These bi-

naries are loaded on the Android platform and are executed by

the DVM (Dalvik Virtual Machine). Access to sensitive re-

sources on the platform is guarded by permissions, which are

granted to apps at the installation time. For some sensitive

permissions (like the GPS sensor access) the user is prompted.

Enck et al. (2009) have developed the Kirin security service

for Android that performs lightweight app validation at

installation time. The Kirin installer parses themanifest of the

loaded app and extracts the requested permissions. These

permissions are then compared with a predefined set of Kir-

in’s security rules and if a dangerous functionality access is

requested, the user is notified. Kirin is implemented as an app

showing feasibility of running on device.

Ongtang et al. (2009) were the first ones to advocate the

need of Android apps to protect themselves. They proposed

new types of app policies to be enforced on Android by the

Saint framework, among them permission assignment policy

that protects permissions for accessing app interfaces and

interface exposure policy that controls how the interfaces are

used. Saint regulates permissions assigned to apps at instal-

lation and enforces the app interactions policies.

Proposals for Android that suggest off-device verification

(such as Blasing et al., 2010; Enck et al., 2011) performed by the

user generally do not take into account that an average user is

not security-aware and he/she would probably not consider

the security threats of inter-app communications. For secure

elements this approach is not possible. Off-device app byte-

code rewriting to enforce security is a powerful technique (Xu

et al., 2012), as one could modify apps to use a specific policy-

regulated API for communications, or even to remove unau-

thorized interactions. Unfortunately, rewriting is dubious

from the business perspective. There is no clear understand-

ing who is liable in case a rewritten app failed. Is it the

developer or the rewriter (user/app market)?

Run-time monitoring of execution and inter-app commu-

nications is another known technique. Run-time monitors

capture the exact app behavior and are more precise than the

over-approximating static code analysis. An example of

lightweight app interaction policies enforcement at run-time

is presented in Ongtang et al. (2009), richer policies are elab-

orated, for instance, in Bugiel et al. (2012), Enck et al. (2010) and

Felt et al. (2011). However, the precision comes at the price of

run-time overhead.

JavaME, .Net. The S�C paradigm was proposed for multi-

application mobile devices (JavaME and .NET technologies)

(Bielova et al., 2009; Desmet et al., 2008). In the original S�C

scheme an application arrives on the mobile platform equip-

ped with a contract and signed by the developer. The contract

contains a suitable formal model of application security-

related behavior, such as the number of SMS sent per execu-

tion or access to the sensitive user agenda. A security policy

set by the user or the telecom provider defines allowed and

forbidden actions. The contract is matched by the device with

the security policy before the execution (Bielova et al., 2009). In

case of failure an inlined reference monitor is used (Desmet

et al., 2008). This approach allows to run even potentially

dangerous applications in a sandbox environment.

In our scheme for Java Card the contract is matched with

the applet bytecode; while in the S�C scheme for mobile de-

vices the contract-code compliance has to be trusted and is

based on the digital signature of the provider. The contract-

code matching step is, essentially, missing. Also, in the S�C

scheme for mobile devices the security policy of the mobile

platform is defined by the user or by the telecom provider.

This is justified because the policy protects the sensitive re-

sources of the user. However, in our scheme for JC the cu-

mulative security policy is composed by the contracts of all

applets currently loaded on the card, because the platform

protects the sensitive resources of the applets.

On-market verification. There are smartphonemarkets, such

as Apple Store and Google Play, where the platform providers

(Apple and Google, respectively) perform some off-board

checks of apps, but these checks do not aim at the app in-

teractions. Apple’s official statement9 says “Most rejections

are based on the application containing quality issues or

9 http://www.apple.com/hotnews/apple-answers-fcc-
questions/, accessed on the Web in Jan. 2013.

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 123



Author's personal copy

software bugs, while other rejections involve protecting con-

sumer privacy, safeguarding children from inappropriate

content, and avoiding applications that degrade the core

experience of the iPhone”.

Besides bug and nudity checking the process is geared to

ban competitors of Apple or its partners. Google Voice was

rejected for “replacing .Apple user interface with its own

user interface for telephone calls, text messaging and voice-

mail”. Aside frombanning competitors, Applemostly relies on

identity verification to avoid malware on the market. In the

same time, the off-device verification techniques that could be

done on the app market are of limited applicability to the

inter-app communication security, because the market does

not fully know the set of apps already installed on devices and

it is infeasible to validate all possible combinations of apps.

On-board credentials. The on-board credentials (ObC)

approach is developed by Ekberg et al. (2008) and Kostiainen

et al. (2009). The authors develop a security architecture for

hosting credentials (secret keys and algorithms) on multi-

tenant secure hardware platforms. Their approach enables

open credential platforms, where each credential provider can

load her secret data independently. There are also (restricted)

means for interactions of the provisioned programs. To enable

interactions (with the purpose to access a secret data or an

algorithm), the credential provider has to create a new family

and endorse the authorized programs (by submitting the

family secret key and the program hash) to this family. On

board ObC programs are validatedwith respect to hashes, that

is yet another form of signature verification. We perform on

device semantic validation on what programs do and invoke.

A revocation of access is not directly supported in the ObC

paradigm; in order to prevent usage of a credential by no

longer trusted partner one needs to disable the old credential

and load a new one with a different hash.

The S�C framework is complementary to the ObC tech-

nology and could be used for its enhancement. The current

approach of endorsement induces a significant run-time

overhead for credential execution. The ObC interpreter lan-

guage can be modified to include the specific instruction for

credential invocation, similarly to the Java Card system. Then

the load time code validation can be leveraged in order to

speed up the run-time computations and enable better revo-

cation mechanism.

11. Conclusions and outlook

In the paper we have presented the S�C prototype imple-

mentation that can be embedded on a real device. The S�C

prototype aims to ensure security of application interactions

on Java Card during applet loading or removal. It also handles

applet policy updates that do not require reinstallation. We

have demonstrated that our framework is correct with respect

to the JCRE specification.

We perceive the separation of the security code from the

functional code as a significant improvement in the OTA

loading setting, because it easies updates of the policy and

decreases the execution time of applications. However, there

is also a downside in it: the applications cannot execute

selectively based on who is calling them at the moment.

If the platform ownerwants to deploy a full isolation policy

on the secure element, our framework provides a noninvasive

way to do it. The ClaimChecker can ensure that loaded ap-

plets do not provide and do not call any services; the JCRE

implementation does not need to bemodified and re-certified.

We have presented a full ecosystem for the on-device S�C

validation: the CAP modifier tool to embed contracts into CAP

files and the S�C framework that includes the ClaimChecker

and the S�CInstaller components written in C and inte-

grated with the card native components, and the Policy-

Store component written in Java Card and integrated with

the Installer. We have also discussed integration with an

actual device. We believe that these results are interesting for

anyone looking into enhancing application security using

secure elements.

Potential market acceptance. Besides the technical aspects

there is also a more general question: how mature is the

market to accept this solution? At present, most companies

using JC are not yet ready to forgo the cushioned assurance of

certification of interactions for the most sensitive applets

locked on the card. Yet, there is an interesting trend that

makes our technology appealing.

From an industry perspective what is important is the se-

curity of the whole product (the secure element platform

combined with all loaded applets). This was ensured by se-

curity certification for compliance with Common Criteria or

other industry standards (VISA, etc.). Due to the costs and

operational constraints of the security certification, the in-

dustry is now partitioning applications into highly sensitive

ones and less sensitive (“basic”) ones. The topmost sensitive

applications would still be certified at the manufacturer’s

premises and possibly pre-loaded, but the “basic” applets

would no longer be certified. Rather, the product as a whole

would be certified secure but open for OTA loading of “basic”

applets.

Since “uncertified” (in the CommonCriteria sense) does not

mean “insecure”, those “basic” applets are still subject to a

large number of security rules and validation checks needed

to ensure security of the final product. These checks are so far

performed off-card before loading. In the context of OTA

loading of the “basic” applets, the S�C approach is thus

promising. It could allow to get rid of (a part of) the off-card

security checks, performing them on board instead. This will

reduce the time-to-market for service providers and facilitate

the deployment of those applets.

Acknowledgments

We thank Eduardo Lostal for developing the prototype. This

work was partially supported by the EU under grants EU-FP7-

FET-IP-SecureChange and FP7-IST-NoE-NESSOS.

Appendix A. Implementation details

The detailed ClaimChecker algorithm. Algorithm Appendix A.1

follows the English description in Alg. 5.1. In order to access

the components of the CAP files on the secure element we use

the CAPlibrary library provided by the smart card

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9124



Author's personal copy

manufacturer. For the sake of clarity some simple checks

performed by the algorithm are written only in English. The

received CAP file is a byte array which is structured accord-

ingly to the CAP file specification. Thus the algorithm refers

directly to items (fields) of the structures defined in the CAP

file specification (Classic Edition, 2011) and we indicate which

component structures belong to in the object-oriented nota-

tion.

Appendix B. The correctness proof.

We first prove an auxiliary Proposition Appendix B.1.

Proposition Appendix B.1. When the instruction invo-

keinterface hAID; idCP; tmi [ObjRef] is executed, if the CP

[idCP] item is an externally defined interface, then ObjRef refer-

ences an object belonging to another context. If the CP[idCP] item is

an internally defined interface, then ObjRef references an object

belonging to the current CAP file context.

Proof. Three cases are possible: 1) upon execution of invo-

keinterface hnargs; idCP; tmi [ObjRef] the CP[idCP] item re-

fers to an externally defined interface; 2) upon execution of

invokeinterface hnargs; idCP; tmi[ObjRef] theCP[idCP] item

refers to an internally defined interface; 3) upon execution of

invokeinterface hnargs; idCP; tmi [ObjRef] the ObjRef object

reference is incompliant with the interface resolved from idCP.

Let us assume invokeinterface hnargs; idCP; tmi
[ObjRef] is executed and the CP[idCP] item refers to an

externally defined interface, but the current ObjRef on stack

refers to the object belonging to the current CAP file context.

The referenced object has to implement the interface speci-

fied by the CP[idCP] item, and therefore, since this object was

created by the current package, either the current package has

implemented this interface, or has extended and imple-

mented this interface. This contradicts the assumption that

all the CAP files implement only Shareable interfaces defined

in the same CAP file.

If invokeinterface hnargs; idCP; tmi [ObjRef] is executed

and the CP[idCP] item refers to an internally defined inter-

face, but the current ObjRef on stack refers to the object

belonging to a different CAP file context. Again, the referenced

object has to implement the interface specified by the CP

[idCP] structure, therefore, another package (the owner of the

ObjRef) has to implement this interface, which contradicts

the previously mentioned assumption.

Algorithm Appendix A.1 e The ClaimChecker Algorithm.

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 125



Author's personal copy

The JCRE protects the object referenced by ObjRef from

being cast to an incompliant interface upon reception of the

object reference. Namely, the checkcast hidCPi [ObjRef] in-

struction, where CP[idCP] item is a reference to an interface

type, requires that the object referenced by ObjRef imple-

ments the interface type referenced by CP[idCP], otherwise

the ClassCastException is thrown upon execution of the

casting instruction.,

Theorem Appendix B.1. In the presence of the S�C framework all

methods invoked by any deployed application B are authorized by the

platform policy, or are allowed to be invoked by the JCRE.

Proof. The proof goes over all possible cases of method

invocation on the platform. Assume the theorem does not

hold: B is a deployed application and it invokes some method

not authorized in the platform policy (it cannot invoke a

method against the JCRE rules, unless the platform is imple-

mented incorrectly). Since B is a deployed application, it has

been validated by the ClaimChecker and the PolicyChecker,

also all executed application policy updates of B were

validated.

We consider the invocation of one’s own method as obvi-

ously authorized, though the platform policy does not specify

it explicitly. So the remaining case is when B tries to invoke a

method s of some other application A. If A is not deployed or

method s is not provided, Bwill obviously fail. We need only to

consider the case when A is already deployed and s is actually

provided by A. Applet A has been validated by the Claim-

Checker and the PolicyChecker, and all executed policy

updates of A were approved.

We reason inductively over the length of execution of a

platform (number of executed instructions) that the invoca-

tion cannot happen. Let s be a sequence of instructions

executed by the JCVM leading to the context of applet B (the

next instruction to be executed belongs to some method

B.m ˛ B B) such that invocation has not occurred so far. The

proof proceeds showing that s cannot be extended with the

unauthorized invocation, considering the taxonomy of the

JCVM instructions we defined in Table 2.

Case I. The next instruction in the execution is one of the

type I. Obviously this instruction cannot invoke a method or

produce a context switch.

Case II. The next instruction is one of the type II. This in-

struction can produce a context switch only to the JCRE

context, upon throwing an exception. The method A.s cannot

be invoked.

Case III. Type III instructions cannot produce a context

switch, because the execution flow only changes within the

same method of B that is currently executed. The method A.s

cannot be invoked.

Case IV. Type IV instructions are return instructions, they

cannot invoke a new method and can only switch context to

A’s context in case A was already in the execution stack.

MethodA.s could be invoked in the latter case, but not from B’s

context (otherwise the illegal invocation would have occurred

earlier in s).

Case V. Type V instructions can produce a context switch,

but cannot invoke a method. In this case, the context can only

be switched to the JCRE context.

Case VI. The next instruction is an invocation instruction

(type VI). These instructions (except for the invokestatic

instruction) expect to find an object on the stack and invoke a

corresponding method of this object. The method A.s can be

invoked if B has a reference to the object ObjRef of A that

implements A.s. The JCVM does not check correctness of the

object ownership upon execution of the invocation in-

structions, but does this during the casting instructions

execution (instructions checkcast and instanceof).

We now demonstrate that B cannot maliciously cast an

object of A into its own object or an object from a trusted

third party C. The type checking rules for the casting in-

structions require that the received object is cast into a

compatible type [(Classic Edition, 2011), Sec.7.5 of the JCVM

specification] and, specifically, if the object of another applet

A does not implement a Shareable interface, it cannot be

accessed for casting at all [(Classic Edition, 2011), Sec.6.2.8 of

the JCRE specification], because a run-time exception will be

thrown.

Type compatibility is verified by the casting instructions,

and an object of A implementing a Shareable interface SIA can

be cast only into the same interface SIA or its superinterface.

Therefore, an attempt of casting into B’s own (or third-party)

interface or class will result in a run-time exception and the

JCREwill halt B’s execution. If Bwill cast an object ofA into the

JCRE’s own type (such as Shareable), the object will be

accessible, but it will not be possible to invoke the method A.s

from this object.

We now reason by the invocation instructions. Further the

instruction operands are written in angular brackets and the

relevant stack contents in square brackets.

Case VI-invokeinterface. The next instruction is invo-

keinterface hnargs; idCP; tmi [ObjRef], where idCP is an

index into the Constant Pool of the currently executed appli-

cation B (the item at this index is a reference to an interface);

and tm is a token identifier of a method of this interface. This

interface can be defined in the application B (then the Con-

stant Pool structure at the index idCP is a pointer to the Class

component of B and the high bit of this structure is 0) or can be

an imported interface (the high bit of the pointed Constant

Pool structure is 1). In the latter case the Constant Pool

structure contains the token identifier tI of the target inter-

face and an index idImport at the Import component of B,

where the structure at this index is the AID AIDA of the

package A providing the interface.

ObjRef references the object whose method will be finally

invoked (the token tm identifies it). If idCP references an

externally defined interface, then ObjRef references an object

belonging to a context different from the one of B; if idCP

references an internally defined interface, then ObjRef be-

longs to B’s context (Proposition Appendix B.1).

If idCP references an internally defined interface, the

method invoked upon execution of the invokeinterface

instruction is B’s ownmethod. Sowe only need to consider the

case when idCP references an external interface. The JCRE

firewall will allow to invoke a method across contexts if and

only if the invoked interface method belongs to the JCRE or

to a Shareable interface, as defined in [(Classic Edition,

2011), Sec.6.2.8 of the JCRE specification]. Therefore,

A.s ¼ hAIDA; tI; tmi is a service of A; and no other method of A

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9126



Author's personal copy

(not from a Shareable interface) can be invoked by the invo-

keinterface opcode.

The PolicyChecker verifies (Sec. 5.2, line 5.2 of the Pol-

icyChecker algorithm) that for all services A.s1 such that

A.s1 ˛ CallsB and A.s1 ˛ ProvidesA there will be the corre-

sponding service authorization present in sec.rulesA: (A.s1,

B) ˛ sec.rulesA. Therefore, either (a) A.s ; CallsB or (b)

A.s ; ProvidesA.

(a) Assume A.s ; CallsB. This means, ContractB is not

faithful: B actually invokes A.s, but this is not described in the

contract.

Upon validation of B the ClaimChecker has retrieved the

offsets to each method of the B’s CAP file (lines 35e39 of Alg.

Appendix A.1), including the offset to the method B.m,

because the CAP file specification requires that each method

present in the CAP file has a valid offset stored in the

Descriptor component.

For each retrieved method the ClaimChecker parses the

full set of instructions of this method (lines 41e43 of Alg.

Appendix A.1). As invokeinterface ˛B B:m, thus the Claim-

Checker has found it (line 44) and retrieved the operands idCP

and tm (line 45). For a successful context switch the JCVM

specification requires that the high bit of the structure at the

index idCP within the Constant Pool component of B is equal

to 1 (checked on the line 47), CPB[idCP] ¼ hidImport
A
; tIi and the

ImportB[idImport
A] ¼ AIDA.

For the obtained element hidImport
A
; tI; tmi (lines 48e49 of the

algorithm) the ClaimChecker matches it with an element of

TempBufferCalls[] (line 50). However, the CallsB set is

transformed by the ClaimChecker into the form

hlocal_pack_id; tI; tmi (line 33). Thus if hAIDA; tI; tmi; CallsB,

then there is no element hlocal_pack_idA; tI; tmi in TempBuf-

ferCalls[], where local_pack_idA is an index within the

Import component of B such that ImportB[local_pack_idA]¼
AIDA. However, the ClaimChecker has verified that

hidImport
A
; tI; tmi ˛ TempBufferCalls[] and ImportB

[idImport
A] ¼ AIDA. We have come to a contradiction of the

construction of the ClaimChecker with the assumption that

A.s; CallsB.

(b) Assume A.s ; ProvidesA. Since the service is actually

invoked, A.s ˛ shareableA. As A is a deployed application, it

was validated by the ClaimChecker and the PolicyChecker.

Notice, that the set ProvidesA could not have been updated

through the AppPolicyA update. Therefore, ContractA pre-

sented at the deployment is unfaithful: there is a provided

service in the code which was not declared in the ProvidesA

set. Thus hAIDA; tI; tmi ˛ shareableA, but hAIDA; tI; tmi
; ProvidesA.

All shareable interfaces are declared in the Export file and

the Export component of the CAP file. Therefore, the Claim-

Checker during validation of A parses all interfaces declared

in the CAP file of A (lines 5e6) and checks with the Export

component if the interface is exported. Thus the Claim-

Checker successfully identifies all shareable interfaces (lines

9e12), and for each of these interfaces it goes through the

declared method tokens matching them with the ProvidesA

set (lines 8e22). By definition of the shareableA and by con-

struction of the ClaimChecker (in compliance with the JCRE

specifications), shareableA 4 ProvidesA. Notice that if

A.s ; shareableA, then it cannot be actually invoked.

Thus, if invokeinterface is the next executed instruction

in the context of B and the service hAIDA; tI; tmi of applet A is

invoked, then B was authorized to invoke it in sec.rulesA.

Case VI-invokespecial. The next instruction is invokes-

pecial hidCPi [ObjRef]. According to the JCRE specification

the object reference ObjRef on the stack cannot belong to

another context when executing this instruction. Therefore

only B’s own method can be invoked.

Case VI-invokestatic. The next instruction is invoke-

static. This instruction accesses a staticmethod that belongs

to a class, andnot an instance. Classes donot have contexts, as

objects do; public static fields andmethods are accessible from

any context [(Classic Edition, 2011), Sec.6.2 of the JCRE specifi-

cation]. Therefore, if Bwas able to invoke a static method of A,

the JCRE allows it (no context switch happens, the invoked

method belongs to the current context of package B).

Case VI-invokevirtual. The next instruction is invoke-

virtual hidCPi [ObjRef]. If ObjRef references an object from

another context, the firewall will allow the invocation if and

only if ObjRef belongs to the JCRE [(Classic Edition, 2011), Sec.

6.2.8 of the JCRE specification]. Thus upon execution of this

instruction B can only invoke its own method or a JCRE

method, but cannot invoke methods of another applications.

So, for all JCVM instructions B cannot illegally invoke a

method of another application A. The last case is if A used to

authorize B to invoke A.s and B was deployed legally, but at

some point AppPolicyA was updated to remove this authori-

zation. This update could have been executed if and only if

A.s ; CallsB, as defined in line 16 of Algorithm 5.2. Again, by

construction of the ClaimChecker, B cannot invokeA.s unless

this is declared in CallsB. Therefore, A cannot remove an

authorization until B is removed.

r e f e r e n c e s

Akram RN, Markantonikas K, Mayes K. A paradigm shift in the
smart card ownership model. In: Proc. of ICCSA 2010, LNCS
6019. Springer-Verlag; 2010.

AkramRN,MarkantonakisK,MayesK.Application-bindingprotocol
in the user centric smart card ownership model. In: Proc. of
ACISP-2012, LNCS 6812. Springer-Verlag; 2011. p. 208e25.

Akram RN, Markantonakis K, Mayes K. Coopetitive architecture to
support a dynamic and scalable NFC based mobile services
architecture. In: Proc. of ICICS-2012, LNCS 7618. Springer-
Verlag; 2012. p. 214e27.

Avvenuti M, Bernardeschi C, De Francesco N, Masci P. JCSI: a tool
for checking secure information flow in Java Card
applications. Journal of Systems and Software
2012;85(11):2479e93.

Barbu G, Duc G, Hoogvorst P. Java card operand stack: fault
attacks, combined attacks and countermeasures. In: Proc. of
CARDIS-11, LNCS 7079. Springer-Verlag; 2011. p. 297e313.

Barbu G, Andouard P, Giraud C. Dynamic fault injection
countermeasure: a new conception of Java Card security. In:
Proc. of CARDIS-2012. Springer-Verlag; 2012a.

Barbu G, Hoogvorst P, Duc G. Application-replay attack on Java
Cards: when the garbage collector gets confused. In: Proc. of
ESSOS-2012, LNCS 7159. Springer-Verlag; 2012b. p. 1e13.

Barthe G, Burdy L, Charles J, Gregoire B, Huisman M, Lanet J-L,
et al. JACKA tool for validation of security and behaviour of
Java applications. In: Proc. of FMCO-2006, LNCS 4709. Springer-
Verlag; 2006. p. 152e74.

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 127



Author's personal copy

Bieber P, Cazin J, Wiels V, Zanon G, Girard P, Lanet J-L. Checking
secure interactions of smart card applets: extended version.
In: JCS, vol. 10(4). IOS Press; 2002. p. 369e98.

Bielova N, Dragoni N, Massacci F, Naliuka K, Siahaan I. Matching
in Security-by-Contract for mobile code. In: JLAP, vol. 78(5).
Elsevier; 2009. p. 340e58.

Blasing T, Batyuk L, Schmidt AD, Camtepe SA, Albayrak S. An
Android Application Sandbox system for suspicious software
detection. In: Proc. of MALWARE’10 2010. p. 55e62.

Bouffard G, Lanet J-L. The next smart card nightmare. In:
Cryptography and security: from theory to applications, LNCS
6805. Springer-Verlag; 2012. p. 405e24.

Bouffard G, Iguchi-Cartigny J, Lanet JL. Combined software and
hardware attacks on the Java Card control flow. In: Proc. of
CARDIS-2011, LNCS 7079. Springer-Verlag; 2011a. p. 283e96.

Bouffard G, Lanet J-L, Machemie J, Poichotte J, Wary J. Evaluation
of the ability to transform SIM applications into hostile
applications. In: Proc. of CARDIS-11, LNCS 7079. Springer-
Verlag; 2011b. p. 1e17.

Bugiel S, Davi L, Dmitrienko A, Fischer T, Sadeghi A-R, Shastry B.
Towards taming privilege-escalation attacks on Android. In:
Proc. of NDSS’2012 2012.

Chin E, Felt AP, Greenwood K, Wagner D. Analyzing inter-
application communication in Android. In: Proc. of
MobySys’2011. ACM; 2011. p. 239e52.

Desmet L, Joosen W, Massacci F, Philippaerts P, Piessens F,
Siahaan I, et al. Security-by-Contract on the .NET platform. In:
Information security technical report, vol. 13(1). Elsevier; 2008.
p. 25e32.

Dragoni N, Gadyatskaya O, Massacci F. Supporting software
evolution for open smart cards by Security-by-Contract.
In: Dependability and computer engineering: concepts for
software-intensive systems. IGI Global; 2001. p. 285e305.

Dragoni N, Lostal E, Gadyatskaya O, Massacci F, Paci F. A load
time policy checker for open multi-application smart cards.
In: Proc. of POLICY-11. IEEE; 2011. p. 153e6.

Dubreuil J, Bouffard G, Lanet J-L, Cartigny J. Type classification
against fault enabled mutant in Java based smart card. In:
Proc. of ARES-2012. IEEE; 2012. p. 551e6.

Ekberg J-E, Asokan N, Kostiainen K, Rantala A. Scheduling
execution of credentials in constrained secure environments.
In: Proc. of ACM STC’2008. ACM; 2008. p. 61e70.

Enck W, Ongtang M, McDaniel P. On lightweight mobile phone
application certification. In: Proc. of ACM CCS 2009. ACM; 2009.
p. 235e45.

Enck W, Gilbert P, Chun B, Cox L, Jung J, McDaniel P, et al.
TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In: Proc. OSDI-2010.
USENIX; 2010. p. 1e6.

Enck W, Octeau D, McDaniel P, Chaudhuri S. A study of Android
application security. In: Proc. of the 20th USENIX security.
USENIX; 2011.

Felt AP, Wang HJ, Moshchuk A, Hanna S, Chin E. Permission re-
delegation: attacks and defenses. In: Proc. of the 20th USENIX
security. USENIX; 2011.

Fontaine A, Hym S, Simplot-Ryl I. Verifiable control flow policies
for Java bytecode. In: Proc. of FAST-2011. Springer-Verlag;
2011a. p. 115e30.

Fontaine A, Hym S, Simplot-Ryl I. On-device control flow
verification for Java programs. In: Proc. of ESSOS’2011, LNCS
6542. Springer-Verlag; 2011b. p. 43e57.

Gadyatskaya O, Lostal E, Massacci F. Load time security
verification. In: Proc. of ICISS’2011, LNCS 7093. Springer-
Verlag; 2011. p. 250e64.

Gadyatskaya O, Massacci F, Paci F, Stankevich S. Java card
architecture for autonomous yet secure evolution of smart
cards applications. In: Proc. of NordSec’2010, LNCS 7127.
Springer-Verlag; 2012. p. 187e92.

Ghindici D, Simplot-Ryl I. On practical information flow policies
for Java-enabled multiapplication smart cards. In: Proc. of
CARDIS-2008, LNCS 5189. Springer-Verlag; 2008. p. 32e7.

Girard P. Which security policy for multiapplication smart cards?.
In: Proc. of USENIX WOST-1999. USENIX; 1999.

Girard P, Lanet J-L. New security issues raised by open cards. In:
Information security technical report, vol. 4(2). Elsevier; 1999.
p. 19e27.

GlobalPlatform Inc.. GlobalPlatform card specification V.2.2.1; 2011.
Huisman M, Gurov D, Sprenger C, Chugunov G. Checking absence

of illicit applet interactions: a case study. In: Proc. of FASE’04,
LNCS 2984. Springer-Verlag; 2004. p. 84e98.

Kostiainen K, Ekberg J-E, Asokan N, Rantala A. On-board
credentials with open provisioning. In: Proc. of ASIACCS’2009.
ACM; 2009. p. 104e15.

Lackner M, Berlach R, Loining J, Weiss R, Steger C. Towards the
hardware accelerated defensive virtual machine e type and
bound protection. In: Proc. of CARDIS-2012. Springer-Verlag;
2012.

Langer J, Oyrer A. Secure element development. In: NFC forum
spotlight for developers; 2009.

Leng X. Smart card applications and security. In: Information
security technical report, vol. 14(2). Elsevier; 2009. p. 36e45.

Li P, Zdancewic S. Advanced control flow in Java card programming.
In: SIGPLAN Not., vol. 39(7). ACM; 2004. p. 165e74.

Markantonakis K, Tunstall M, Hancke G, Askoxylakis I, Mayes K.
Attacking smart card systems: theory and practice. In:
Information security technical report, vol. 14(2). Elsevier; 2009.
p. 46e56.

Montgomery M, Krishna K. Secure object sharing in Java Card. In:
Proc. of WOST’99. USENIX; 1999.

Mostowski W, Poll E. Malicious code on Java Card smart cards:
attacks and countermeasures. In: Proc. of CARDIS-2008, LNCS
5189. Springer-Verlag; 2008. p. 1e16.

Mostowski W, Pan J, Akkiraju S, de Vink E, Poll E, den Hartog J. A
comparison of Java Cards: state-of-affairs 2006. In: CS-Report
CSR 07-06, TU Eindhoven 2007.

Narasamdya I, Perin M. Certification of smart-card applications in
common criteria. In: Proc. of SAC’09. ACM; 2009. p. 601e8.

Ongtang M, McLaughlin S, Enck W, McDaniel P. Semantically rich
application-centric security in Android. In: Proc. of
ACSAC’2009 2009. p. 340e9.

ORACLE. Java Card 3 Platform. Virtual machine and run-time
environment specification, Classic Edition. Version 3.0.4.; 2011.

Philippaerts P, Vogels F, Smans J, Jacobs B, Piessens F. The Belgian
electronic identity card: a verification case study. In:
Automated verification of critical systemsElectr. Commu. of
the EASST, vol. 76; 2011.

Roland M, Langer J, Scharinger J. Practical attack scenarios on
secure element-enabled mobile devices. In: Proc. of NFC-2012.
IEEE; 2012. p. 19e24.

Sauveron D. Multiapplication smart card: towards an open smart
card?. In: Information security technical report, vol. 14(2).
Elsevier; 2009. p. 70e8.

Schellhorn G, Reif W, Schairer A, Karger P, Austel V, Toll D.
Verification of a formal security model for multiapplicative
smart cards. In: Proc. of ESORICS’00, LNCS 1895. Springer-
Verlag; 2000.

Souza da Costa U, Martins Moreira A, Musicante MA, Souza
Neto PA. JCML: a specification language for the runtime
verification of Java Card programs. In: Science of computer
programming, vol. 77(4). Elsevier; 2012. p. 533e50.

SUN Microsystems. Runtime environment and virtual machine
specificationsIn Java Card� platform, V.2.2.2; 2006.

SUN Microsystems. The Java Card 3 platform; 2008. White paper.
SUN Microsystems. Java Card 3 Platform. Virtual machine, run-

time environment and Java servlet for the Java Card platform
specification, Connected Edition. Version 3.0.1; 2009.

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9128



Author's personal copy

Xu R, Saidi H, Anderson R. Aurasium: practical policy
enforcement for Android applications. In: Proc. of USENIX
security 2012.

Olga Gadyatskaya received a Ph.D. in Math-
ematics in 2008 at the Novosibirsk State
University. From2007 to 2008 sheworkedas a
researcher at the Institute of Computational
Mathematics and Mathematical Geophysics
(Novosibirsk). Since 2009 she joined Depart-
ment of Information Engineering and Com-
puter Science of the University of Trento as a
post-doctoral research fellow. Her research
interests include security policies and load
time verification approaches for smart cards
and mobile devices.

Fabio Massacci is full professor at the Uni-
versity of Trento. He received his M.Eng. in
1993 and Ph.D. in Computer Science and
Engineering at the University of Rome “La
Sapienza” in 1998. He worked in Cambridge
University (UK), the University of Siena and
IRIT Toulouse (FR). His research interests are
in automated reasoning at the crossroads
between requirements engineering, com-
puter security and formal methods.
Currently he is actively working on industry

level security engineering methodologies
and is the coordinator of the EU SEC-
ONOMICS project on Security Economics.

Quang-Huy Nguyen holds a PhD in Com-
puter Science since 2002. He enjoyed several
post-doc stays at INRIA before joining
Gemalto as a research engineer. Since 2011,
he is a senior security consultant in Trusted
Labs. His field of research covers various
aspects of formal methods from both theo-
retical and applicative points of view, in
particular, the use of these methods in
computer security.

Boutheina Chetali received a Ph.D in Com-
puter Science from the University of Henri
Poincare & INRIA-Lorraine in 1996. After 10
years as R&D Manager in Gemalto Technol-
ogy & Innovation, in 2010 she joined Trusted
labs as the head of R&D. She is a member of
the Java Card Forum security group and the
GlobalPlatform security group.

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 8 ( 2 0 1 3 ) 1 0 8e1 2 9 129


