
w
w

w
.p

os
te

rs
es

si
on

.c
om www.postersession.com

Preliminary Findings on FOSS Dependencies and Security
A Qualitative Study on Developers’ Attitudes and Experience

Ivan Pashchenko, Duc-Ly Vu, Fabio Massacci
University of Trento, Italy

Preliminary findings*

Future Work
Ø Broaden our study to more countries
Ø Find actionable implications of the analysis results
Ø Correlate results with different type of companies

Contact information

Vulnerable Deps - Cause of Disaster

Interview topics

Library selection:
ØDevelopers pay attention to security only if it is required and

enforced by the policy of their company.
ØRely on popularity and community support of libraries (e.g.,

number of stars, forks, project contributors).

Updating software dependencies:
ØAvoid updating dependencies for any reason (afraid of breaking

changes).
ØSecurity motivate for updating only if vulnerabilities are severe,

widely known, and adoption of the fixed dependency version
does not require significant efforts.

Position Comp. type Country Exper. (years) Languages
1 CTO SME DE 3+ Python,JS
2 Moderator UG IT 10+ Java
3 Developer LE IT 10+ Java,JS
4 CEO SME SI 7+ Python,JS
5 Developer SME NL 3+ Python
6 Freelancer SME RU 3+ Python,JS
7 Developer SME DE 5+ Python,JS
8 Developer LE RU 4+ Python,JS
9 CTO SME IT 4+ JS

10 Developer LE DE 10+ C/C++
11 Developer LE VN 5+ C/C++
12 Developer SME DE 4+ Java,Python
13 Team Leader LE RU 10+ JS
14 Developer SME RU 4+ Java
15 Project Leader FOSS UK 10+ Python,C/C++
16 Developer SME IT 8+ Java
17 Developer LE VN 3+ Java
18 Sr Software Engineer LE IT 10+ Python,C/C++
19 Developer SME RU 3+ Java
20 Security Engineer LE DE 3+ JS
21 Developer SME HR 3+ JS
22 Developer SME IT 8+ JS
23 Developer LE IT 9+ Java
24 Full Stack Developer SME IT 3+ JS,Python
25 Developer SME ES 3+ C/C++

Disaster Rank OWASP Top 10 # of Breaches
Root Cause

% of Breaches
Root Cause

1 Components with
known vulns 12 24%

2 Security misconfiguration 10 18%
3 SQL-injection 4 8%
4 Weak Authentication 3 6%
4 Sensitive Data Exposure 3 6%
5 Function level Access control 2 4%

…

https://snyk.io/blog/owasp-top-10-breaches/

Developers keep using vuln deps…
Derr et al. [1]:

Many dependencies are vulnerable, but
could be easily updated

Huang et al. [2]:
`Easy’ update would have broken
around 50% of dependent projects

Kula et al. [3]:
Many Java libraries do not react on

security updates

Pashchenko et al. [4]:
Some vulnerabilities are in test/dev

scopes, hence, not exploitable
1. E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes. 2017. Keep me updated: An empirical study of third-party
library updatability on Android. In Proc. of CCS’17.
2. J. Huang, N. Borges, S. Bugiel, and M. Backes. 2019. Up-To-Crash: Evaluating Third-Party Library Updatability
on Android. In Proc. of EuroS&P’19.
3. R.G. Kula, D.M. German, A. O. TakashiIshio, and K.Inoue. 2017. Do developers update their library
dependencies? Emp. Soft. Eng. Journ.
4. I. Pashchenko, H. Plate, S.E. Ponta, A. Sabetta, and F. Massacci. 2018. Vulnerable Open Source Dependencies:
Counting Those That Matter. In Proc. of ESEM’18.

Developers may not be entirely irrational in not always updating dependencies

We interviewed developers of 25 companies from 9 countries:

ØSelecting new dependencies

ØUpdating currently used dependencies

ØUsing automatic dependency management tools

ØMitigating bugs and vulnerabilities, for which there is no fixed

dependency version

Analysis approach
Interviewee
identification

Interview collection

Transcription &
Sharing

Open Coding

Selective coding Code groups

Saturation check

Additional
confirmation

Code co-occurences

MemberCheck
Summary/Full paper

Yes
No

Yes

Done

Observations and
Implications

Automation of dependency management:
ØSensitive tasks (e.g., updates) performed manually
ØCurrent dependency analysis tools (if used) only facilitate the

identification of vulnerabilities in the project dependencies
ØDependency tools produce many false-positive and low-priority alerts

Unfixed vulnerabilities:
Øassess whether this vulnerability impacts their projects;
Øwait for the fix or a community workaround;
Øadapt own project: disable affected functionality or rollback to a safe

version;
Ømaintain own fork of a dependency project (possibly fixing and making

a pull request to the dependency project).

E-mail: ivan.pashchenko@unitn.it
Skype: ivanpashchenko
Web-site: http://disi.unitn.it/~pashchenko

Interviewees in our sample

*For complete findings, please, refer to: I. Pashchenko, D.L. Vu, and F. Massacci. 2020. A qualitative study of dependency management and its security implications. To appear
in Proc. of CCS’20. (https://bit.ly/pashchenko2020qualitative)

http://www.postersession.com/
https://snyk.io/blog/owasp-top-10-breaches/
mailto:ivan.pashchenko@unitn.it
http://disi.unitn.it/~pashchenko
https://bit.ly/pashchenko2020qualitative

