
w w w . p o s t e r s e s si o n . c o m

www.postersession.com

Towards Using Source Code Repositories to Identify Software Supply Chain Attacks
Duc-Ly Vu1, Ivan Pashchenko1, Fabio Massacci1,2, Henrik Plate3, Antonino Sabetta3

 1University of Trento (IT), 2Vrije Universiteit Amsterdam (NL), 3SAP Security Research (FR)

Contact information

Identification of Code Injections

1. For each package, identify the source code repository by mining metadata properties (e.g.,
homepage)

2. Clone the repository and extract all the commits in the master branch. For each commit, check out
involved file, calculate the file hash, and collect the file content. The file hashes and contents are
stored into a database

3. Download and extract all artifacts of the package. For each extracted file, we calculate the hash and
collect the file content.

4. Compare the file hashes and contents from step (3) with those extracted from step (2). This
comparison results in files (and their lines) whose hashes differ from the source code repository

5. For the unknown lines, check the presence of API calls (e.g., urlopen) and imports (e.g., base64
using regular expressions

Third-party package repositories (e.g., npm, pypi) are an attractive target for software supply chain attacks

We used the malware dataset collected by Ohm et al.2

○ 23 packages

○ 34 malicious artifacts

The top ten most downloaded packages in PyPI.

○ urllib3, six, botocore, requests, python-dateutil, certifi,

s3transfer, idna, chardet, pip.

○ 2587 artifacts

E-mail: ducly.vu@unitn.it
Skype: vuly16
Web-site: lyvu.me

Preliminary Findings
Malicious artifacts (34)
○ The setup.py files are the most common file being injected (22

artifacts)
○ One artifact injects code into the __init__.py file, three attacks

inject code into the functional modules (e.g., _common.py of the
package python3-dateutil)

○ The median number of different files in distributed artifacts is 2
○ Attackers can build a new malicious package (e.g., 20 new files

in openvc-1.0.0)
○ Most common imported libraries are urllib3 (591 occurrences),
socket (13 occurrences), base64 (12 occurrences)

Distributed artifacts of top most downloaded packages (2587)
○ 97% of the artifacts feature no difference from their source code

repository.
○ Some artifacts contain

■ https proxy issues fixes
■ compatibility and encoding fixes
■ version declaration fixes
■ changes in test files.

Software supply chain attacks: source repo != package repo

Dataset

Future work

Definition: Software supply chain attacks occur when an
attacker hijacks the complex software development chain to
insert malicious code1

Observation: Distributed artifacts in the package repository do
not necessarily correspond to the source repository due to
benign (developer’s carelessness) or evil reasons (malicious
code injections)

1T. Herr, J. Lee, W. Loomis, and S. Scott. 2020. Breaking Trust: Shades of Crisis Across an Insecure Software Supply Chain.
https://www.atlanticcouncil.org/in-depth-researchreports/ report/breaking-trust-shades-of-crisis-across-aninsecure-
software-supply-chain/.

2M. Ohm, H. Plate, A. Sykosch, and M. Meier. 2020. Backstabber’s Knife Collection: A Review of Open
Source Software Supply Chain Attacks. In Proc. of DIMVA’20..

Automatic Detection Of Malicious Code Changes

We consider extracting the following features:
● File-level analysis.

○ number of new added files
○ number of modified files

● Code-level analysis
○ presence of sensitive APIs (e.g., urlopen)
○ presence of new imports

Our approach is motivated by an intuition behind the reproducible builds [3]: it is
suspicious if the code in the source code repository differs from the code in the
artifacts distributed in the package repository.

1. https://reproducible-builds.org/

Publishes
package

A new malicious package with a similar name
(Package Name Squatting)

Hijack credentials
and upload a
malicious version
(Account
Compromise)

Package repo
(e.g., npm, PyPI)

Source repo
(e.g., Github)

Publishes
source

Installs
package

Checks
source

!=

http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/
http://www.postersession.com/

