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Security Events and Vulnerability Data for Cyber
Security Risk Estimation
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Current industry standards for estimating cyber security risk are based on qualitative
risk matrices as opposed to quantitative risk estimates. In contrast, risk assessment in
most other industry sectors aims at deriving quantitative risk estimations (for example
Basel II in Finance). This paper presents a model and methodology to leverage on the large
amount of data available from the IT infrastructure of an organization’s Security Operation
Center to quantitatively estimate the probability of attack. Our methodology specifically
addresses untargeted attacks delivered by automatic tools that make the vast majority of
attacks in the wild against users and organizations. We consider two-stage attacks whereby
the attacker first breaches an Internet-facing system, and then escalates the attack to
internal systems by exploiting local vulnerabilities on the target. Our methodology factors
in the power of the attacker as the number of ‘weaponized’ vulnerabilities he/she can
exploit, and can be adjusted to match the risk appetite of the organization. We illustrate
our methodology by using data from a large financial institution, and discuss the significant
mismatch between traditional qualitative risk-assessments and our quantitative approach.
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1. INTRODUCTION

IT systems are affected by a multitude of
vulnerabilities that might be exploited by an at-
tacker, (1) and whose exploitation may affect and
propagate to other systems in the infrastructure. (2)

The quantitative estimation of the risk posed by
these vulnerabilities is a critical step towards a
more efficient allocation of resources and a more
secure overall environment. (3) Indeed, quantitative
risk analysis (QRA) is being increasingly adopted in
most industry sectors. Apostolakis characterizes the
adoption process in three phases: (4) first, best prac-
tice adopts only traditional ‘safety analysis’, with
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no risk quantification in place; second, the policy
maker integrates ‘safety analysis’ with the additional
insights identified by the new quantitative methods;
finally, the policy maker trusts the quantitative pre-
dictions enough to relax the original safety analysis
predictions and prioritize quantitative insights. This
process can be identified in many industry sectors,
including nuclear energy, space, and insurance (e.g.
for natural catastrophes). (4,5) Unfortunately, in the
cyber-security risk domain this process has been
withheld by technical and organizational difficulties.
For example, security information is often difficult
to analyze to extract actionable information, as
big datasets (e.g. reporting perimeter alarms from
an Intrusion Detection System (6)) are often of an
unstructured nature.

Partially addressing these issues, recent re-
search advancements propose new data-extraction
algorithms and models for big data. For example,
Khorshidi et. al (7) proposes a technique for the
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aggregation of qualitative data features with the
aim of fostering the risk management activities
of complex systems whose data sources may be
incomplete or not sufficient for the purpose of
the analysis. Similarly, but going in the opposite
direction, Susto et al. (8) propose a method for the
aggregation of multiple data sources to build models
of the data with interpretable regressors.

Other research has gone in the direction of
statistically linking security alarm data in IT
infrastructures to security events and, ultimately,
risk. (9) Yet, the inherent limitations of security
monitoring technologies (10) limit the applicability
to risk modelling of the data they generate. (11,12)

Similarly, risk assessment procedures prescribed by
standards and best practices often fall short in
providing quantitative instruments for risk esti-
mation. For example, NIST’s Information Security
Handbook prescribes the usage of ‘risk matrices’
to qualitatively estimate the risk associated with
a particular event. (13) Yet, it is known that risk
matrices may cause risk mis-categorization, and even
wrong risk prioritization. (14,15) This issue is further
aggravated by the fact that whilst the estimation of
a vulnerability’s exploitation technical impact is well
understood (e.g. the Common Vulnerability Scoring
System - CVSS), (16) current measures for ‘exploita-
tion likelihood’ have been widely questioned. (17,18,19)

For example, recent work has shown that patching a
hundred vulnerabilities bundled in automated attack
tools yields a risk reduction of 40% of attempted
attacks in the wild; in contrast, the recommendation
of the Payment Card Industry Security Council, (20)

which is only based on the qualitative impact
indicator of the CVSS, (21) only yields a 4% risk
reduction and requires looking at thousands of vul-
nerabilities. (19) Due to the general permeation of the
IT infrastructure in most industrial infrastructures,
these issues can potentially impact several industry
domains. For example, Basel’s banking treaties tie
a bank’s capital requirements to a quantitative
assessment of operational risk (IT risk being an
instance) or to a much larger flat allocation if only
qualitative measures are used.

The lack of a shared framework for the quan-
tification of risk makes the adoption of sound and
comparable measures for risk mitigation currently
impossible. Whilst estimating impact is also well un-
derstood in practice, (22) the subjectivity of qualita-
tive attack likelihood estimations, stemming from the
absence of a shared quantitative estimation method-
ology, (23) has raised many concerns: (24) existing

approximations are known to be often unrealistic or
based on implicit and untested assumptions. (23)

To address these shortcomings, in this work
we propose a risk estimation model that explicitly
quantifies likelihood of attack by leveraging on data
available to any organization deploying common
perimeter defenses such as Intrusion Detection
Systems (IDS) and performing periodic vulnerability
assessments. (25,26) Addressing current concerns on
the quantification of uncertainties, (27) our methodol-
ogy factors in the risk model a measure of probability
(or, in the definition of Aven, vulnerability (27)) that
explicitly accounts for the level of knowledge used
for the assessment (i.e. the IDS alarms and the
technical vulnerabilities discovered on the system)
and does not involve ‘subjective’ assessments oth-
erwise explicitly or implicitly included in current
quantitative risk assessment procedures in IT. (23) We
illustrate our methodology by using actual data from
a large financial institution. Our analysis shows how
the qualitative risk assessment methodology based
on risk matrices used by cyber-security standards
can lead to widely different estimations of risk from
those derived quantitatively from the data. Following
Apostolakis, (4) we see our model as a contribution in
the transition between ‘traditional’ risk assessment
methods and ‘quantitative’ risk assessment methods
that, in the IT sector, are still lacking behind. (4,23)

In the rest of the paper we first define the
scope of this work (§2), and discuss existing risk
assessment procedures in a large financial institution
(§3); we then discuss the theoretical limitations of
these practices (§4), and illustrate our quantitative
methodology to address them (§5). Next, we show
how to extract the relevant data from the IT
infrastructure (§6), apply the methodology to a real
case study of a large financial institution (§7), and
conclude the paper (§8).

2. TYPES OF CYBER-RISK AND SCOPE
OF THIS WORK

The applicability of a risk assessment method-
ology is tied to the nature of the risk it addresses.
Broadly speaking, cybersecurity risks are typically
generated by a ‘human’ or ‘sentient actor’ that
initiates the attack.3 Following Ransbotham and

3We do not consider here software or hardware failures as

part of the cyber-security risk scenario as these can be

appropriately studied along the guidelines of traditional safety
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Mitra (28) we can distinguish between two types of
attacks by type of initiating actor:

• ‘Targeted’ attacks typically involve strategic
players that may react strategically to the
defender’s choices. (29,30) By definition, these
events are caused by attacks targeted solely or
almost exclusively at specific facilities (such as
the cases of the Stuxnet and Duqu malware),
and that typically require an extreme level
of sophistication. The limitations of PRA’s
applicability to this type of scenarios is akin
to terrorism threats and is well discussed
in the literature, (31,32) as well as its impli-
cations for cyber-security. (30) Recent studies
estimate that only few cyber-attacks against
organizations and consumer system are of this
type. (33,34) Targeted attacks are often referred
to in the risk analysis literature as ‘Black
Swans’, (35) or ‘Advanced Persistent Threats’
(APT) in the computer security literature. (36)

• ‘Untargeted’ attacks are attacks whose targets
are not distinguished one from the other by
any specific property or characteristic and
just happen to be reached by the attack. (28)

These attacks are typically launched using
automated tools such as exploit kits (37) and
are known to drive the vast majority of attacks
in the wild. (38) Untargeted attacks have a wide
range of potential victims and are known to
affect individuals, (37) organizations, (28) and
industrial systems alike. (39)

The importance of untargeted attacks in the
overall risk scenario has been outlined by recent
industry reports; (40,41,42) for example, a recent study
classifies Crimeware and Web attacks as the source of
about 70% of the attacks suffered by the Financial
sector, (40) a figure in clear accordance with trends
previosuly quantified in the literature. (38) Because
attacks of this type are largely automated, the attack
process typically follows a two-stage mechanism (37)

whereby the attacking tool: (1) attack probing : the
attack ‘probes’ the victim machine, (9,6) for example
to identify if it is vulnerable (43) or if it satisfies
some desirable characteristics such as geographic
location; (44) (2) attack delivery : the attack’s payload
(e.g. shellcode, malware, bash scripts,..) is delivered
to the target, for example by exfiltrating data

analysis and QRA in the same fashion that natural risks are
studied.

or executing otherwise unwarrented actions on the
system. (37,45) Due to the prevalance of untargeted
attacks in the overall risk scenario, (46,47,38) in this
paper we focus on this type of attacks.

3. CYBER RISK ASSESSMENT IN A
LARGE FINANCIAL INSTITUTION

(Cyber) Security risk assessment in industry is
largely constrained by compliance to regulations and
adherence to standards. To illustrate this, Table I re-
ports some of the regulations and industry mandated
technical standards that must be satisfied by a large
financial company, here anonymized as Company,
that offers integrated services in finance, logistics,
and mobile communication with a turnaround of
around 24 billion Euro and 150 thousands employees.
The Baseline illustrates some norms that must be
addressed to achieve a minimum compliance whilst
the Perimeter is the set of affected Services and
Applications.

In order to achieve this security baseline a large
security infrastructure is needed: a security operation
center (SOC). There are several best practices to
build a SOC (25,26) and an average SOC can quickly
generate several GB of security events per day
which can create a significant stress on the human
responders. (48) For example, our anonymized and
aggregated dataset for Company’s IT infrastructure
is over 2GB of data for just a month of processing.
Yet, as we shall see, this infrastructure is hardly used
by the risk assessment standards. We will return to
the key components of a SOC in Section 6 when
discussing how to concretely extract data from the
infrastructure to feed in our quantitative model.

Once the minimal security measures are in place,
the particular risk assessment process to follow
might be mandated as well by the regulations.
The ISO/IEC 27005 (49) and ISO/IEC 31000 (50) are
typical standards used to undertake risk manage-
ment at the corporate level. The NIST SP 800-
30 is another widely used standard for security
risk assessment in the US. (51) Other approaches
to security risk assessment, with stronger focus on
audit, are the COBIT methodology sponsored by the
ISACA institute, (52) SABSA used by Accenture, (53)

or the COSO Enterprise Risk Management. (54)

While several definitions of risk exist, including
concepts such as probability and impact, uncertainty
and consequence, and expected consequence (55), in
industry standards they all ultimately collapse to the
intuitive relation Risk = Impact · Likelihood.
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Table I . Security and compliance requirements over diverse perimeters in a financial organization.

Perimeter Description Compliance requirements Security requirements

Privacy Protection of personal,
sensitive and judicial
data

National Law and Technical An-
nexes, Internal Guidelines

Security guidelines, ISO
27001:2013

Financial
Data

Protection and track-
ing of financial transac-
tions, money transfers
and financial informa-
tion

National Law and Technical An-
nexes, Internal Guidelines

PCI-DSS, Security
guidelines for protection
of payment systems

Central
Bank

Compliance with pro-
visions of management
and control issued by
CB

National Authority Regulation, Na-
tional Regulator Terms of Reference

Security guidelines for
electronic payments

Traffic Data EU Communication
Directive, Traffic
(Phone/Internet) Data
Management

Nat. Authority Regulation, Techni-
cal Annex to Law, Internal Guide-
lines

Guidelines for critical
infrastructure

To calculate the two parameters and the result-
ing risk, the default application of an Information
Security Risk Management Process (ISRM) is basi-
cally broken down in the following steps: (49)

(1) Asset and Process Identification captures
the overall enterprise architecture;

(2) Business Impact Analysis focuses on the
information used by each service and the
impact of an attack;

(3) Risk Assessment is then performed in order
to identify impact, gaps and current risk
levels for all assets;

(4) Security Requirements Identification ad-
dresses those gaps and produces a plateau
of security measures for the Service Owner
to choose;

(5) Risk Treatment is performed by the Service
Owner on the basis of the risk analysis
and the business considerations, whilst the
ICT Department implements the technical
solutions.

The first step of the process generates an
enterprise architecture that spans all layers: from
Services to Processes, from People to Facilities. For
each layer a detailed analysis of impacts and security
controls is conducted through several interviews with
Service and System Owners. Table II illustrates part
of this effort for a large financial company (22)

The Business Impact Analysis accounts for
the type of data that is processed, the relevance
of compliance perimeters, the impact of security
compromise (e.g. severity of consequential criminal

Table II . Example of Risk Assessment Interviews for ISRM

- From (22)

Level Questions Time Unit

Business
Information

16 1hrs Service

Process/People 300 3hrs Process
Applications 250 3hs Application
Software compo-
nents

200 2hrs Type of Asset

Infrastructure 200 2hrs Type of Asset
Facilities 100 1hrs Facility

charges), the economic relevance of the service (e.g.
amount of losses due to service downtime), up to the
monetary benefit that a competitor might gain.

At Company, these assessments are mapped
in five macro categories from C1 (lowest level) to
C5 (highest level), to be compliant with the 1-5
ordinal levels identified by the ISO standard. At
the lower level (C1) we have services that do not
manage personal data and are not associated with
security perimeters; at the highest (C5) we have
services that are fundamental for the company from
a business perspective and that are bound to relevant
security and compliance perimeters. There might be
different mechanisms for doing so that are company
dependent. (22)

Likelihood estimations are built by considering
the average threat level posed by a vulnerability and
the estimated probability of receiving an attack by a
certain attacker. For example, attacks of type T may
be assigned a certain probability Pr(AttackType =
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Table III . Example of a 3x3 risk matrix.

Impact:

Minor Severe Critical

Rare Low Low Med.
Likelihood: Frequent Low Med. High

Certain Med. High High

T ), and the probability of an attack on a system s is
given by Pr(s ∈ Attack) = Pr(AttackType = T ) ×
Severity(v ∈ s), where Severity(v ∈ s) is a function
that considers the severity of the vulnerabilities in
the system s. This function may be a transforma-
tion of the average or maximum severity. This is
what currently prescribed by many standards for
Information Risk Management (including PCI-DSS,
ISO 27001, NIST 800-30), that suggest to consider
a positive correlation between vulnerability severity
and likelihood of attack. (56,57,17) Pr(AttackType =
T ) is typically estimated using pre-defined tables (see
for example Table V , defined over Eurocontrol’s
guidelines).

Other methods focus on using feature extraction
to enumerate security events (e.g. as recorded
by network sensors) and estimate probability of
occurrence from there. This is however known to be
a poor indicator of likelihood of attack. (10,58) As a
result, likelihood of attack is typically assessed by
means of expert judgment. (23)

To perform the final evaluation both ISO/27001
and NIST 800-30 standards suggest the use of risk
matrices as a tool to support such decisions. Table III

reports a simple example of a 3x3 risk matrix,
where the interaction between the rare, frequent,
certain likelihood levels and the minor, severe,
critical consequence levels, results in a final 3-level
risk evaluation from low to high.

4. LIMITATIONS OF CURRENT RISK
ASSESSMENT METHODOLOGIES

Risk quantification considers the measurement
of quantities representing the uncertainty and the
consequences of an event. Several definitions of
risk exist, (59) and its mathematical form may vary;
however risk should be ideally represented as a
cardinal value resulting from some function trans-
forming uncertainty and consequence assessments in
a synthesized risk value. (14) This process is often
aided by technological means to measure or estimate
those parameters. (4) For example, probabilistic risk
assessment is often based on historical data (e.g.

measured by sensors such as seismographs, or records
of past nuclear incidents) which goes in input to
data and risk models that provide the final risk
estimate. This same process is applied to IT risk.
Several models for cyber-risk quantification exist in
the literature. A summary of approaches to cyber-
risk estimations is given in Table IV .

Attack trees and graphs aim at quantifying risk
of cyber-attacks, both in generality and applied to
specific risk scenarios. (2) Attack graphs represent
network or system structures, where each node
corresponds to a vulnerability and an edge indicates
the possibility for an attacker to exploit two vulner-
abilities in sequence. Weights on the edges of the
graph represent the probability of receiving attacks
on the specific vulnerability chain. This model has
proven to be very successful in the literature with
several applications to a number of cases such as
industrial control systems (72,73) and organization
networks. (68) While attack graphs are a powerful
method to reason over cyber-risk, the model param-
eters are assumed to be known or measured by other
means. (64) Other models enumerating security events
or vulnerabilities have also been proposed in the
literature. (63,60) Similarly, vulnerability estimation
and assessment methodologies provide a quantitative
way of measuring weaknesses and formulate impact
estimations. (57,65) However, the resulting estima-
tions are widely regarded as unrealistic, as recently
showed in scientific studies comparing vulnerability
exploits with resulting metrics, (17,19) and industry
reports openly criticizing vulnerability models and
measures as effective proxies for risk of attack. (74)

More advanced models consider the complex
interactions between system vulnerabilities and at-
tacker actions to devise so-called time-to-compromise
models that provide a general framework to evaluate
the probability of successful attack given certain
starting preconditions on the system and the
attacker. (69,70) On the same line, but from an
economic perspective, other approaches consider the
interplay between attacker and defender to define
game-theoretic models with the goal of deriving
mixed equilibria (whose outcomes are defined in
terms of impacts and probabilities) leading to
different risks. (66,75) However, these approaches leave
the estimation of “likelihood of event” to the
judgment of an expert that either directly sets
probabilities of attack, or sets some parameters of
the computational or game theoretical model that
derives the quantitative probabilities as a function of
that input. (68)
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Table IV . Summary of quantitative methodologies for cyber-risk estimation. An overview of related patents is given in the

Appendix, Tab. I .

Ref. Quantification methodology Likelihood estimation

(60,61)
Attack-surfaces measure the entry points that an
attacker can exploit to breach the system. Attack
surface estimations rely on vulnerability scanners
data or vulnerability models (for a practical example,
see (62)). Attack surfaces do not explicitly measure risk
of attack, but assume that this is proportional to the
number of identified entry points.

Probability of attack is assumed to (positively)
correlate with attack surface (‘attack opportuni-
ties’). For example Howard et al. evaluate “targets
and enablers, channels and protocols, and access
rights” to estimate attack likelihood. (61) The
quantitative relation between attack surface and
likelihood is however not defined.

(2,63)
Attack graphs are graphs where a node is a vulnerabil-
ity exploited by the attacker, and edges represent the
occurrence of an attack leading the attacker from one
vulnerability to the next. Probabilistic attack-graphs
attach probabilities of exploitation as weights to those
edges.

Attack graphs do not provide an indication on
how to estimate probabilities of attacks. Some
methodologies apply a Bayesian approach for the
probability estimation based on an initial belief.
No indication on the update function or informa-
tion used for the update is provided. For example,
Poolsappasit et al. propose a formal model of belief
propagation on top of previous approaches, where
prior probabilities are “subjectively assigned by
the administrator”. (64)

(57,65)
Vulnerability-oriented methodologies estimate risk of
attack by considering the characteristics of the vulner-
abilities. For IT systems, several studies suggest the
usage of the Common Vulnerability Scoring System
(CVSS) metric (21) to make probability estimates. For
example, in (64) the authors state “we use the metrics
defined in NIST’s Common Vulnerability Scoring
System (CVSS) to estimate the attack likelihood”.

The association between severity and likelihood
estimations in the CVSS score is not substantiated
by empirical evidence, (19,17) and is not claimed by
the standard itself. (21)

(66,67)
Game-theoretic models consider the interplay between
a strategic attacker and a defender to derive equilib-
rium points where the resulting mixed strategies are
the outcome of the strategic game. The probabilities
assigned to each strategy correspond to the probability
of an attack following a certain mitigation action by
the defender.

The estimation of “likelihood of event” is left to
the judgement of an expert that either directly sets
probabilities of attack, or sets some parameters of
the computational or game theoretical model that
derives the quantitative probabilities as a function
of that input. (68)

(69,70)
Time-to-compromise models are also used as proxies
to perform risk estimations. Probability quantifica-
tions are possible based on the underlying model. For
example, Henry and Haimes assume known vulnera-
bility and exploit distributions for the estimation of
the time required for the attack to succeed. (70)

The estimation of the probability distribution of
attack are expert-based (see for example (71)).

Patented methodologies often employ a mixture
of system (76,77) and game-theoretic (78) approaches
to evaluate overall system risk. These models build
on top of attack graphs and derive risk estimates
based on graph traversing (76) or determination of
minimal graph cut-sets (79) to block attacks out.
Attack probabilities are obtained by employing one
(or a combination thereof) of the methods presented
in Table IV . (79,80)

Overall, quantitative methodologies for cyber
risk estimations estimate attack likelihoods by
assuming an underlying distribution of attacks (e.g.

a poissonian distribution) whose parameters are
assessed by an ‘oracle’ (that, for example, estimates
the number of expected occurrences λ). This is
often a problem of lack of data models that can
transform observations in predictions. For example,
Cherdantseva et al. report “In order to deal with the
absence of historical data, some PRA methods rely
on subjective data such as expert opinion. In some
cases, expert opinion is more easily available and
may even be more valuable than historical data.” (23)

Indeed, even when security data is available (e.g.
for network events), it is known to be extremely
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noisy (10) and fraught with errors of unknown size
(see for example the discussion provided in (74)).
Hence the need to “[..] devote more attention to
techniques for capturing, formalising and ultimately
turning into numeric values expert knowledge”. (23)

This situation is worsened by the current lack
of formal procedures to share incident data that
may reveal mounting attack trends, or new attacks
(something that the recent EU 2013/0027 NIS -
Network and Information Security - Directive tries
to address; similarly, the US NTIA and the US
Department of Commerce’s Internet Policy Task
Force are currently addressing these issues in a set
of call for comments with the Industry. (81)) Official
guidelines such as NIST’s Information Security
Handbook (13) prescribe a qualitative assessment of
risk over its quantitative estimation, as it allows the
decision maker to operate within easily understood
intervals that separate a ‘likely’ attack from an
‘unlikely’ attack, and a ‘severe’ consequence from
a ‘minor’ consequence. Inevitably, moving from a
quantitative to a qualitative framework causes some
loss in resolution. Worse still, Cox (14,15) shows that
this loss in resolution may cause mis-categorization
of risks and misguide the decision maker in believing
that a certain risk is qualitatively higher than
another, while the opposite is true quantitatively.
In the absence of data, a qualitative assessment of
probability of attacks is often necessary, although
it is well known that ‘expert assessments’ of highly
uncertain events are generally unreliable . (82,83)

To address this, we propose a quantitative assess-
ment methodology that allows the user to objectively
estimate likelihood of (untargeted) attacks against
his/her infrastructure.

Our method can be combined with any approach
for the quantification of impact. Several studies on
the quantification of impact exist, including impact
from direct losses, (84,85) technical impacts, (60) finan-
cial impacts, (86) and reputational and operational
impacts. (87)

5. A QUANTITATIVE MODEL FOR
LIKELIHOOD OF CYBER ATTACKS

The definition of Probabilistic Risk Assessment
(PRA) by Ezell et al. (88) links the relation between
risk, probability of attack attempt (Attack), proba-
bility of successful attack (Comprimise), and impact

(Impact):

Risk = Likelihood · Impact =

Pr(Compr|Attack) · Pr(Attack) · Impact
(1)

Brown et al. (89) have critiqued this definition, as
they deem critical the interpretation of the term
Pr(Attack), and consequently question the condition
on the second term: these probabilities can not
be reliably estimated without knowing the ‘reason
why’ an attacker attempts the attack. This also
assumes that Impact is a deterministic function.
In contrast, the operational risk literature treats
both Impact and Likelihood as uncertain variables
by considering compound risk distributions that
account for the associated uncertainty. (90) This is
for example the standard Basel-II approach used in
the banking and financial sectors. These distributions
are of the type

∑N
j=1 Impactj , where Impactj

is the randomly distributed severity of a single
loss. Assuming independence between losses and
frequency of occurrence (the standard insurance
modeling approach used in Basel-II (90) def. 3.5, pp.
98), one can rewrite Eq.1 as

Risk =

∞∑
z=0

Prz(Compromise|Attack)·

Prz(Attack) ·
z∑

j=1

Pr[Impactj < x]

(2)

where Prz(·) is the probability associated with z
incidents, x is the total loss, and

∑z
j=1 Pr[Impactj <

x] is the total probability of loss for z incidents.
The risk estimate can then be obtained by deriving
the convolution of the probability and impact
distributions (for an introductory discussion see (90)

Ch. 3.4.3, pp.102). Whereas several studies on the
quantification of impact exist, (84,85,60,86,87) current
risk assessment methodologies lack of a well-specified
method for the measurement of attack likelihood. (23)

As discussed in Section 2, in this work we
specifically refere to untargeted attacks. While the
dynamics driving the production of this class of
cyber-attacks are not fully specified in the literature
yet, (91) their empirical distribution is known or can
be obtained from the data. For example, distribution
of attacks against web software components seem to
follow a log-normal distribution whereby for certain
software types 95% of attacks are driven by as little
as 5% of the software’s vulnerabilities (46). Hence, the
frequency and impact distributions defined in Eq. 2
can be collapsed to a single probability estimate for
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a given number of events z. We can therefore specify
the likelihood of attack for a certain system s in the
organization’s infrastructure as:

Likelihoods = Pr(s ∈ Compromise|s ∈ Breach)·
Pr(s ∈ Breach|s ∈ Attack)·
Pr(s ∈ Attack|Attack) · Pr(Attack)

(3)

where Pr(s ∈ Attack|Attack) is the probability the
attack against the organization will materialize as an
attack on a particular system type, Pr(s ∈ Breach)
captures the chances of the attack to breach into the
system, and Pr(s ∈ Compromise) is the probability
of the final successful compromise.

To compute these components from the technical
infrastructure, empirical evidence suggests that if the
automated attack tool has incorporated the exploit
of a vulnerability present on the system, then success
of the attack is almost certain. (92,37,47) Therefore
the probability of a successful intrusion equals the
probability that the appropriate combination of
vulnerabilities is present on the attacked system
(v ∈ s), and that the attacker actually weaponized
v in his or her toolkit (v ∈ Weapon): Pr(s ∈
Compromise|s ∈ Breach) · Pr(s ∈ Breach|s ∈
Attack) ≈ Pr(v ∈ s ∧ v ∈ Weapon|s ∈ Attack).
As the presence of a technical vulnerability is an
intrinsic property of the configuration, and is not
dependent on the attacker selecting the particular
system s, we have Pr(v ∈ s ∧ v ∈ Weapon|s ∈
Attack) = Pr(v ∈ s ∧ v ∈ Weapon). We can then
re-write Eq. 3 as:

Likelihoods ≈ Pr(v ∈ s ∧ v ∈Weapon)·
Pr(s ∈ Attack|Attack) · Pr(Attack)

(4)

The two distinct attack phases (attack probing
and attack delivery) identified in the computer
security literature (37,28) and introduced in Section 2
naturally emerge from Eq. 4. Figure 1 visualizes
a schematic representation of the two-phase attack
process and its relation with the mathematical form
expressed above.

An agreement on how to measure Pr(Attack)
still does not exist. Adopting a purely frequentist
approach, Pr(Attack) could be for example the
fraction of malicious incoming network packets
in which case we would obtain Pr(Attack) ≈
0. (10) If we consider the fraction of days with at
least an attack we would obtain Pr(Attack) ≈
1. (93,94) From the perspective of prioritizing risk

treatments between systems within the organization,
this value would be mostly immaterial. In this
respect qualitative estimates might be appropriate
and might as well take into account the motivation
of the attackers as advocated by Brown et al. (89) For
example Table V , derived from the Eurocontrol Air
Traffic Management Risk Tool Kit, shows a fine grain
classification considering different incentives and
dis-incentives for attackers. Quantitative estimates
can be obtained empirically by assuming a certain
probability function of arrival of attacks (for example
Binomial or Poissonian) and deriving the expected
value by means of Monte Carlo simulation or
equivalent approaches (90). Naturally, the underlying
distribution assumption is of central importance
to obtain realistic estimates and is currently an
unsolved problem in the cyber-security domain. (23).

In contrast, P (s ∈ Attack|Attack) and Pr(v ∈
s∧ v ∈Weapon) are technological measures and can
therefore be objectively estimated using tools and
procedures commonly available, and often mandated
by compliance, in any complex-enough organization
as well from the technological assumptions about the
power of the attacker.

In absence of complete information on existing
exploits (e.g. because the vendor of the security tool
did not find the exploit yet), the defender can only
assume that the attacker possesses an unknown set
of vulnerabilities of size k that he/she may use out of
the Vtot present in the target infrastructure.4 Hence,
the attack against system s will fail if the attacker
has chosen a set of k exploits that does not include
any vulnerability among the Vtot − Vs that do not
affect system s. More formally, the attack fails if
the attacker chooses a set of attacks of size k from(
Vtot−Vs

k

)
out of the possible

(
Vtot

k

)
choices he or

she has. We can then estimate the probability of a
successful attack for an attacker with weaponizing

4Estimates for k can be derived from the literature. For

example, the study of exploits kits as software artefacts by
Kotov and Massacci (43) showed that each kit uses on average

11 exploits. Even an allegedly nation-state malware such as
Stuxnet with 30 fully automated functionalities (including

updating itself and communicating to the remote command

and control server, etc.) only exploits 8 vulnerabilities overall.
Similarly, the Duqu malware exploited one kernel vulnerability

in Windows to breach the system and then exfiltrated and

propagated itself in the network.



Security Events and Vulnerability Data for Cyber Security Risk Estimation 9

Attack launched
by an attacker

Pr	(𝐴𝑡𝑡𝑎𝑐𝑘) Pr 𝑠 ∈ 𝐴𝑡𝑡𝑎𝑐𝑘	 𝐴𝑡𝑡𝑎𝑐𝑘) Attack received
by system s

Pr(𝑣 ∈ 𝑠	&	𝑣 ∈ 𝑊𝑒𝑎𝑝𝑜𝑛)

Phase 1
The attack reaches a system (s) in the infrastructure

Phase 2
The attack exploits a vulnerability (v) present on system (s)

The attack exploits a  
vulnerability v selected by 
the attacker and present 
in system s

Phase 1. The infrastructure is attacked with a certain prior probability Pr(Attack) and targets a specific

system s with probability Pr(s ∈ Attack|Attack). The prior probability of attack is evaluated over the
whole infrastructure and is therefore immaterial to calculate relative risks for each system. Pr(s ∈
Attack|Attack) can be obtained by evaluating the exposure of the system to incoming traffic as reported

by network sensors. Phase 2. Once the attack reaches a system s, the probability of successful compromise
is equal to the probability of a vulnerability exploit being included in the attack (v ∈Weapon) and the

match between those and the vulnerabilities on system s (v ∈ s). The resulting probability, Pr(v ∈
s ∧ v ∈Weapon) is therefore the probability of successful attack.

Fig. 1. Conceptual representation of the two-phases model and the relationship with its mathematical form.

Table V . Example of attack’s likelihood assessment derived from the Eurocontrol Air Traffic Management Risk Tool Kit.

Likelihood

Frequent Likely Occasional Unlikely Rare

Skills Automated
attack

Semi-automated
attack

Attack needs re-
engineering

Highly skilled at-
tacker

Insider & skilled

Attack
vector

Any Known public
technique

Marketed access Limited access Unique access

Profit High Significant Modest Little None
Attention Media coverage

world-wide
National interest Local interest Little attention

from media
No attention

Attack
identifica-
tion

Impossible to de-
tect attack

Unlikely to detect Likely to detect Detection almost
certain

Obvious

Prosecution No chance Little chance Likely High chance Certainty

power k as follows.

Pr(v ∈ s ∧ v ∈Weapons|AttackerPower = k) =

1−
(
Vtot−Vs

k

)(
Vtot

k

) ≈ 1−
(

1− Vs
Vtot − k

)k

(5)

The latter approximation can be derived by either
using Stirling approximation for the binomial coef-
ficient with Vtot � Vs > 1 or by simply drawing k
vulnerabilities from Vtot with replacement.

This estimation can be refined if it is possible
to discriminate between network exploitable vulner-
abilities Vn and locally exploitable vulnerabilities Vl,
as the former are typically used to establish just a
breach of the system and the latter to gain complete
control of it. For example, the recent RIG exploit kit
only features kn = 6 vulnerabilities5 and the dropped

5See for example the technical analysis at http://

www.kahusecurity.com/2014/rig-exploit-pack/, last visited
June 2017.

malware may be executed thanks to some local mis-
configuration (e.g. acquiring privileged access to the
system, or vulnerabilities in the antivirus software
- see Table VII ), i.e. kl = 2. In the past, the
successful worm Conficker and subsequent iterations
exploited a network vulnerability in Windows RPC
service (MS08-067), propagated thanks to Http
pull mechanisms, anonymous network shares and
weak network share passwords (kn = 4). Conficker
could propagate locally by exploiting removable
media content auto-execution (kl = 1).6 Hence
we can break down the ability of attackers to
weaponize kn network facing vulnerabilities and
kl local vulnerabilities as the complement of the
probability that the attack fails either because the
network attack failed (Phase 1), or because the local
attack failed (Phase 2) even if Phase 1 succeeded.

6See technical report at https://www.icann.org/en/system/

files/files/conficker-summary-review-07may10-en.pdf,
last visited June 2017.
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This yields the following equation:

Pr(v ∈ s ∧ v ∈Weapons|Power = kn + kl)

= 1−
(
V n−V ns

kn

)(
V n
kn

) −

(
1−

(
V n−V ns

kn

)(
V n
kn

) ) (
V l−V ls

kl

)(
V l
kl

)
≈ 1−

(
1− V ns

V n− kn

)kn

−
(

1− V ls
V l − kl

)kl

+

(
1− V ns

V n− kn

)kn
(

1− V ls
V l − kl

)kl

(6)

where
(V n−V ns

kn
)

(V n
kn

)
denotes the probability that the

attack fails in Phase 1, and (1 − (V n−V ns
kn

)
(V n
kn

)
)
(V l−V ls

kl
)

(V l
kl

)
denotes the probability of failure in Phase 2 given a
successful Phase 1 attack. As the attacker needs to
reach at least one network vulnerability to breach the
system and one local vulnerability at least to avoid
detection, we assume kn ≥ 1 and kl ≥ 1.

To estimate the probability that an automated
attack is actually directed towards a particular
system s we leverage on the information gathered
by perimeter sensors such as border firewalls or
intrusion prevention systems (IPSs) and intrusion
detection systems (IDSs) which log unwanted or
anomalous incoming traffic toward the organization.

Unfortunately, IDS technology is known to have
a relatively low true detection rate and therefore
can not be considered to be directly related to
successful attacks (10) albeit vulnerability and port
scans detected by IDS are known to be followed by
attacks (95,96). Still, the relative distribution of alerts
per system can give us a practical proxy measure for
the probability of an attack being directed towards
a system (type) s, given that an attack happened.

Pr(s ∈ Attack|Attack) ≈ |Alertss|
|Alerts|

(7)

At this point we have all necessary information
to calculate the quantitative value of Likelihoods
for system s by using Equation (4) with the values
from Equation (7), and the values for Equation (5) or
(6) can extracted from the IT system infrastructure;
overall, we consider:

(1) IPS/IDS Alerts, both global and system
specific, can be obtained from IPS and IDS
data and can be used to evaluate system
exposure to malicious traffic (Eq. 7).

(2) Vulnerabilities, both global Vtot and system
specific Vs (possibly broken down into net-

work or locally exploitable), can be obtained
from internal pen-testing scans or from VAs
and can be used to evaluate a system’s
vulnerability to attacks (Eq. 5, 6).

(3) Power of the attacker k derived from
analysis of malware and exploit kits in the
wild or simply procured from intelligence
services by security companies (Eq. 5, 6).

This data is generated by a cyclic process man-
dated by several IT security management standards
such as ISO 27001 and 31000. The VA process
is typically run periodically by network scanning
tools, (a requirement defined by compliance, see
for example Req. 11 of PCI-DSS (20)). IDSs and
IPSs are constantly monitoring the network traffic
and the underlying infrastructure generates periodic
reports. (25) We illustrate how to concretely obtain
this data from the technical infrastructure in the next
section.

6. INFRASTRUCTURAL TOOLS TO
EVALUATE SYSTEM RISK

Figure 2 exemplifies the considered attack
dynamics on a typical network infrastructure with
the key components of a security operations infras-
tructure. (26) The first entry barrier for an attacker
is the border router or some first-level firewall that
filters incoming traffic. The external IDS monitors
all incoming traffic, including traffic that will be
filtered by the first-level firewall and the border
router. More specific filtering and traffic monitoring
can be implemented at the second and lower levels
of the network (e.g. to detect attacks against specific
services).

The attacker may then initiate a probing
phase of the network (P1A) in an attempt to
obtain some information about the organization’s
infrastructure. Because these network scans often
follow specific patterns, they are likely to be reported
by perimetral sensors such as IDSs or firewalls.
More in general, firewalls and IDSs will report all
‘suspicious’ incoming network packets (P1B), e.g.
matching a signature for a known attack. Further,
alarms reported by perimeter sensor technologies
often report additional information such as detected
threat, source and destination of the network packet,
and time of report. This can be used to infer the
exposure of an internal system to external threats.
Table VI reports an example of entries for an IDS
alarm log. In this example, on the 7th of March
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Table VI . Example of IDS alarms.

Time Src IP Dst IP Src Port Dst Port Description Status

3/3/16
11:50:01

ip1 ip2 39033 https/443 Http S Apache ClearT-
ext DoS

Detected event

7/3/16
20:17:20

ip3 ip4 58171 84 UDP Port Scan Detected attack (vuln not
scanned recently)

24/3/16
21:55:02

ip5 ip6 http/80 27710 Script Evasive Concate-
nation

Detected event

30/3/16
09:50:39

ip7 ip8 http/80 40231 JavaScript Packer Delta Attack failure (blocked by appli-
ance)

Public	services	
• Front-facing	

webservers
• Content	delivery	

systems

Data	services

Backend
services

Organization’s	
border	router

Internal	router

External	IDS

First-level	IDS

First-level	firewall

Second-level	firewall

Second-level	IDS

Internet

Internal
clients

Internal	network

VA	
service

attacker

Second-level	
firewall

P1A Phase	1	
attack

Phase	2	
attack

P1

P2

P2

P1B

Regular	
traffic

Attack
traffic

VA
traffic

Firewalls and IDSs are replicated at different levels in
the network to monitor traffic towards specific subnets

or allow for easier correlation between network and

system events (e.g. the external IDS does not typically
see the internal network as it sits outside). Further, a

Vulnerability Assessment (VA) service is in place that
scans configurations for known vulnerabilities in the
organization’s systems (scans represented by green arrows).
An attacker has initially to probe the network (P1A) to

collect information necessary to deliver the attack, e.g.
operating system used by internet-facing systems or a

spear-phished employee invoking an exploit kit (P1B).
The attacker can further propagate the attack to internal
systems, e.g. drop some self-propagating malware, or use
the internal network interface of public services to bypass
the first-level firewall (P2).

Fig. 2. Schematics of a typical network infrastructure and
attack scenario.

2016 an UDP port scan was detected and reported.
Similarly, on the 30th of March an attack from a
service acting on HTTP port 80 was blocked by the
firewall. The alarms generated by perimetral sensors
can give the assessor an objective proxy measure
of the exposure to attacks of a certain network,
subnetwork or network component. (95)

The second phase of the attack (P2) consists
in the execution of malicious behaviour on the
breached network host. This can be in the form of
a malware software (e.g. a rootkit or ransomware),
or system commands that may exfiltrate data or
contact other systems (e.g. bypassing the first-level
firewall in Fig. 2). This may be allowed by some mis-
configuration (e.g. ineffective application filtering) or
by some software vulnerability that the attack can
exploit to freely operate on the system.

Table VII reports an example of a VA
report. Each entry is a vulnerability detected on an
internal system in the organization, and indicates
(where available) the type of affected service, and
a description of the threat and its severity. For
example, an attacking tool reaching system D could
run system commands with admin privileges.

To link a Phase 1 network attack with its
Phase 2 effects, it is necessary to link a system’s
exposure to network attacks with the system’s
vulnerabilities. In several configurations this may
not be straightforward. This is because an outward-
facing network interface reachable from the Internet
masks the real, private IP addresses of the internal
systems. This ‘translation’ from public to private
addresses is usually performed by border routers (e.g.
by Network Address Translators). Depending on the
position of the IPS/IDS on the network topology, it
may therefore be not possible to immediately map
an alarm generated externally (e.g. by the external
IDS in Fig. 2) with the vulnerable system.

The analyst can however reconstruct this trans-
lation process by using the routing table of the border
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Table VII . Example of a vulnerability assessment report for four systems.

Sys ID Type Service Severity (1-3) Vulnerability description

A Local - 3 A code execution vulnerability is present in some
versions of Oracle Java SE and Java for Business.

B Network ftp (21/tcp) 2 A listening not necessary service has been detected on
the host.

C Network snmp (161/udp) 2 A SNMP community name is set to the default value
(e.g. public or private).

D Local - 2 Detected presence of user with administrative privileges
E Local - 2 A vulnerability exists in the scanning functionality in

McAfee products that may allow malware to bypass
scans.

Table VIII . Example of information necessary to map
perimeter logs with VA logs (if sensor is outside of the

network’s border).

Dst IP Dst Port Real
Dst IP

Sys.
ID

Real Dst
Port

ip2 ftp/21 ipa B ftp/21
ip4 MySQL

/3306
ipb . . . custom/555

ip6 http/80 ipc . . . http-
alt/8080

ip8 snmp/161 ipd D snmp/161

router that the organization controls. The informa-
tion necessary for the translation is typically of the
form Dst IP, Dst Port, Real Dst IP, Real Dst

Port. Table VIII reports an example of information
needed to map incoming traffic toward a certain
public IP (ip{2,4,6,8}) and port with the correct real
destination.

If this information is not immediately available
or is difficult to gather, it is still possible to
approximate it by looking at classes of functionally
similar systems rather than individual systems.
For example, in some cases systems might be
multiplexed for load balancing to multiple, identical
virtual machines. It is thus reasonable to assume
that whichever duplexed system the attack was
directed to, it would be affected by the same
vulnerabilities as any other system of the same
type. For example, the probability of an infection
(Pr(s ∈ Compromise|s ∈ Attacks)) directed
toward a web server (http/80) would likely be the
same regardless of the actual system it reaches, as
most webservers would be configured very similarly
or identically. In this scenario we can link the
destination port of the incoming traffic (Dest Port

in Table VI ) with the service available on the system
scanned by the VA (Type: Network in Table VII ).

Vulnerabilities not associated to a network service
are local vulnerabilities.

Table IX gives a summary overview of the
information used to estimate the probabilities of
attack and infection and the relevant infrastructural
technology needed to gather that information.

7. APPLICATION EXAMPLE: THE CASE
OF A LARGE FINANCIAL
ORGANIZATION

We now consider the application of this method-
ology to the case of Company, an anonymized large
financial organization. This analysis reports the
example of the organization’s Intrusion Detection
System and Vulnerability Assessment data for the
month of March 2016. The IDS data reports 106

fired alarms, generated from more than 5000 unique
IP addresses. The VA reports data relative to 376
unique systems inside the organization.

To minimize the disclosure of potentially sen-
sitive information, we report normalized quantities
for each system and aggregate IDS and VA data by
service type (the coarsest granularity described in
Section 6). We aggregate network services to nine
service types. Table II in the Appendix describes
the nine categories. To map each TCP port to
a service type category as previously described,
we extended the Common Ports table provided
by Microsoft7. Table X reports the distribution
of the unique services running on systems in the
organization (a system may run more than one
service). At a first approximation we map one IP
address to one (either physical of virtual) system.

7Port Assignments for Commonly-Used Services https:

//msdn.microsoft.com/en-us/library/cc959833.aspx, last
visited June 2017
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Table IX . Summary of probability estimates and of the relevant information used for the estimation.

Estimate Technology Alert info Topology-dependent

P (Attack) None Security expert’s per-
ception of attack likeli-
hood

No

P (s ∈ Attack|Attack) IDS Suspicious traffic
directed toward an
internal or external
system

Yes. Outward-facing sensors may not be directly
correlated with internal systems. Sensors with
specialised functionalities (e.g. detect attacks
against SQL ) may be weighted differently than
non-specialised sensors.

Firewalls/
IPS

Unwanted traffic or ap-
plication protocol usage
detected.

Yes. Depending on position in the network,
firewalls may provide more detailed traffic
analysis (e.g. static vs stateful filtering vs
application filtering).

Pr(v ∈ s|s ∈ Attack) VA A vulnerability on the
system exist that could
lead to data exfiltra-
tion or other security
breaches.

No.

Table X . Number of service types on unique systems.

System service type Occurrences

Auth 2.59%
Chat 14.92%
Http 15.44%
Infrastr 12.63%
Mail 5.32%
RemCtrl 16.22%
RPC 2.42%
Share 7.66%
SQL 6.66%
Other 16.13%
tot. 100.00%

The organization’s infrastructure has roughly the
same number of Chat, Http, Infrastr, and
RemCtrl services. Share, Mail, SQL, services are
the second most common; RPC, SQL, and Auth
are the fewest. Uncategorized services (Other) are
about 16% of the total. Other are services that
rely on the UDP network protocol and/or use non-
default port numbers. As UDP typically supports
most TCP applications (Domain Name resolution
Services being an exception), we do not count UDP
services as these are already likely accounted for as
TCP services.

7.1 Data analysis

In Table XI we report the exposure to network
attacks of defined service types. As expected, the

Table XI . Service exposure by relative frequency of IDS
alarms per system type

System Type IDS Alert Frequency

RPC 8.54%
SQL 0.39%
Mail 0.47%
Http 89.63%
Infrastr 0.39%
RemCtrl 0.26%
Chat 0.15%
Share 0.03%
Auth 0.14%

most suspicious network activity is directed toward
Http services. They are typically outward-facing
and therefore more easily identifiable by the attacker.
RPC services account for the second largest fraction
of suspicious incoming traffic; these services allow
remote systems (e.g. owned by the attacker) to
interact with procedures implemented locally, and
potentially execute arbitrary, privileged actions on
the target systems. The remaining services receive
substantially fewer network requests raising alarms.
Among these, SQL, Mail, Infrastr and RemCtrl
services are cumulatively exposed to about 1% of the
incoming traffic. SQL and Mail services are services
that typically need to be exposed to external network
traffic for their normal functionality. In contrast,
Infrastr and RemCtrl services are typically
inward-facing, meaning that it is more difficult for an
attacker to reach them from outside the network. Yet,
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Table XII . Overall distribution of vulnerabilities per

system type.

Sys. type % of vulnerabilities

Auth 0.46%
Chat 1.73%
Http 4.52%
Infrastr 3.69%
Mail 0.64%
RemCtrl 2.83%
RPC 1.79%
Share 1.07%
SQL 0.79%
Local 73.88%
Other 8.6%

potentially malicious traffic toward these resources
reaches the external border of the network.

Table XII reports the overall distribution
of vulnerabilities per system type. The category
Local indicates vulnerabilities that do not belong
to network-reachable systems, and that can therefore
be only exploited by an attacker that has already
gained local access to the system. Overall, the largest
fraction of vulnerabilities are of this type. Hence, the
attack surface exposed only locally to the attacker is,
on average, higher than the network attack surface.
This is desirable as a reduced network attack surface
minimizes the likelihood of breach, and indicates the
employment of good practices by the organization.
Among network vulnerabilities, Http and Infrastr
services share the highest fraction.

For illustrative purposes, we now consider an
attacker that launches a spear-phishing attack
against an employee, and is capable of attacking
kn = 8 network vulnerabilities (43), and relies on the
employee’s administrative privileges and antivirus
misconfiguration to run the malware locally (kl = 2).
The attacking tool has therefore power k = 10. The
exposure of system services to Phase 1 attacks can be
visualized by plotting the relation between exposure
to malicious network traffic and network vulnerabil-
ities that can be remotely exploited. Figure 3 plot
this relationship. Each dot represents a service type,
and its position on the graph indicates the relation
between network alarms to which it is exposed
(vertical axis, logarithmic) and the probability that
an attacker of network power k = 8 successfully
breaches the system. The farther toward the top right
corner a service type is, the higher the associated
likelihood according to Eq. (7). Services on the
bottom left of the plot have low exposure and
low probability of first breach. For example, RPC
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scale) against probability of a successful network attack
for an attacker with network power kn = 8: Pr(vn ∈ s ∧
vn ∈ Weapons|Power = kn = 8) (Phase 1). Each dot
represents a service type. The higher the network exposure

of the service type and the higher the probability of success,

the higher the chance of a successful network attack.

Fig. 3. Exposure and success probability of network attacks.

services suffer from the highest probability of a
network breach (≈ 1%), but are exposed to an
order of magnitude less malicious connections than
Http services. In contrast, Http services receive
the largest fraction of malicious traffic, but face a
relatively small probability of breach.

We now consider the Phase 2 risk of a propa-
gation or escalation of the attack that impacts the
organization. The success probability of this attack
phase is proportional to the number of additional
local vulnerabilities that the attacker can exploit on
the breached system. This depends on the specific
configuration of the attacked system. Figure 4
reports the probability of a successful network attack
(x-axis) versus the probability of a successful local
breach subsequent to the network attack (y-axis).
RPC systems show the highest overall probability
of breach (≈ 0.005%, i.e. one out of twenty thousand
automated attack is expected to be successful), as
opposed to Chat systems for which the probability
of breach is a fifth of RPC’s.

Further, we can visualize the discrepancy be-
tween the proposed risk estimation and current
practice. Figure 5 shows a bubble plot of the
classification yielded by the quantitative proposed
methodology (y-axis), and the classification yielded
by the qualitative risk assessment currently employed
in the organization (based on ISO 27001:2013)
on the x-axis as described in Section 3. Circle
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Fig. 4. Probability of breach by service type.

size is proportional to the number of systems in
the service type. Estimations along the diagonal
are similar for both methods. Chat, SQL, and
RemCtrl systems are classified similarly by both
the qualitative and quantitative methodology. Auth,
Mail, and Share services are assigned the highest
risk level of all services by the qualitative approach.
On the contrary, the proposed quantitative risk
estimation assigns a minimum risk level to these
services. Similarly, RPC services are qualitatively
assigned a ‘low risk’ profile, while quantitatively they
are assigned the highest risk level among all services.
This inversion in the assigned risk level is coherent
with what previously predicted by Cox, (14) and may
lead to a systematic mis-allocation of resources.8

Figure 6 reports a contour plot of the the
final probability of attack Pr(v ∈ s ∧ v ∈
Weapons|Power = kn + kl) for varying attack
powers. The values for vn and vl are those of
the proposed case study and are here distributed
uniformly among system types. Displayed values are
therefore only realistic, and do not represent the
real risk profile of Company. The power k of the

8This analysis does not report the final ‘risk estimate’ as this
depends on the impact of an attack on the systems. However
this is immaterial for the discussion at hand as all systems

will be multiplied by the same value for both quantitative and
qualitative probability estimates.
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same categorization of risk in the proposed case study.

Auth, Mail and Share services probability estimates are
significantly overestimated by the qualitative approach.

RPC probability of breach is significantly underestimated.

Fig. 5. Bubble plot of probability of breach estimations per

service type.
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Fig. 6. Probability of attack at varying the number of kl
local and kn network weaponized vulnerabilities

attacker may be set by the organization depending
on its risk appetite. Even a powerful attacker
with twelve network vulnerabilities and seven local
vulnerabilities achieves an average probability of
success of 2%. More specific assessments can be run
for each service type by considering the known levels
of vn and vl for the specific system as opposed to
their average.
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7.2 Application of the model to other
scenarios

Organizations can be very different one from the
other; for example, many large organizations may
have WANs spanning the whole globe and others may
have much simpler structures localized in a single
city or even building. The generality of the presented
model allows our methodology to be applied to
a large number of real settings by capturing the
main aspects of an attack. For example, the network
structure exemplified in Figure 2 can be extended
to include additional subnets or virtual lans (e.g.
controlled by managed switches). Still, the effects
of different network structures is encoded naturally
in the meaning of IDS and security event data
recorded by the sensors: if security control measures
are in place to limit access to a system, this will
necessarily be reflected in a low rate (or null rate)
of alarms towards that system, i.e. in our model,
Pr(s ∈ attack|attack) ≈ 0→ Risks ≈ 0. Combining
network effects can also be useful; however, in
practice most IDS data is aggregated (e.g. on a
periodic basis by the managing infrastructure).

Integration with other risk models. Our model
can be integrated in any system-level risk assessment
methodology following the directions indicated by
Haimes (97) (the limitations of which are well dis-
cussed by Aven (27)). For example, the estimation
of likelihood of attack from our model can be used
to weight a system’s attack surface by considering
its exposure to external attacks. Similarly, attack
graphs incorporating network topologies can use
computed probabilities as the prior distribution in
place of the expert assessment. Expert judgment
can then be used to update those probabilities
with additional evidence or considerations (e.g. how
difficult a vulnerability exploitation is).

Black swan events. Our model does not refer
to rare security events. There are other techniques
that can be applied to black swan scenarios. Our
approach could be generalized by considering the
adversarial nature of the attacker, following the
guidelines proposed in the literature. (29) The study
of these events requires the joint analysis of the
defender and attacker’s strategies, and need consider
the information asymmetries that exist between the
two players in the definition of the equilibrium
conditions. For example, the ‘unknown unknowns’
of a black swan attack (e.g. a 0-day vulnerability
known by the attacker but not the defender) require
the distinction between uncertainty and probability

that is still part of the debate in the risk analysis
literature. (59) This may require the investigation of
attacker motives (e.g. to appropriately define an
utility function), and the definition of the conditions
under which the attacker can be regarded as
rational. For example, very powerful attackers such
as governments may not aim at maximising a specific
utility function, as opposed to using cyber-attacks to
(un)balance political relations between countries or
other political and economical forces. (98)

7.3 Limitations

The example application proposed in Section 7
should not be interpreted as evidence that the
quantitative methodology proposed in this paper is
a better approximation of reality than traditional
qualitative assessments. Unfortunately this would
require ground truth data that does not typically
exist or is very limited in nature. This limitation
is intrinsic to any risk assessment methodology
and is one of the problems behind the transition,
historically, from traditional risk assessment and
quantitative risk assessment. (4)

Differently, our model results (as depicted in Fig-
ure 5) highlight the difference between a replicable
and objective criteria for risk quantification, and a
qualitative measurement based on expert judgement,
and stresses the resulting relative distances in
risk levels. This directly informs the process of
introducing quantitative methods for risk assessment
in standard practices as it already happened in the
Nuclear Energy sector in the seventies and the space
industry later on. Apostolakis provides and excellent
discussion on this. (4)

8. CONCLUSIONS

The current industry adoption of qualitative
risk matrices, recommended by world-wide standards
such as ISO 27001:2013 and NIST 800-30 and related
‘handbooks’, makes cyber-risk assessment essentially
a function of the expert’s belief that a particular
attack will happen in the future. Assessments based
solely on expert opinions are known to be biased (82)

and may lead to hard to compare risk assessment. (55)

Further, qualitative evaluations of risk using risk
matrices can lead to decisions that are systematically
opposite to those indicated by a quantitative measure
of risk. (14,15) This may lead to suboptimal resource
allocation. (99,100)

Our methodology proposes a quantitative way
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to evaluate likelihood of untargeted attacks. This
mitigates the ‘loss of resolution’ caused by the
employment of risk matrices discussed by Cox (14),
and provides comparable risk measures between
systems and organizations. Most importantly, this
measure is generated by technical data that all
medium-large organizations already have in their
infrastructure. This data is currently often used in
an unstructured way to either generate automatic
reports on vulnerability severity, or to try to trace-
back known incidents. Our methodology proposes
to correlate this data to measure on one side the
exposure of a system to potential attacks, and on
the other the opportunities that a successful attack
has to breach a vulnerable system and escalate to
the infrastructure. By enabling users in performing
objective estimations of risk, our methodology
makes a step forward toward the establishment of
comparable measures for security. (101,102)

To compute an organization absolute risk there
is still the need to estimate the probability that the
organization is attacked Pr(Attack). For the purpose
of prioritization within the organization (99) this is
not necessary as all systems would be subject to the
same value. Its full individual assessment might also
not be necessary for untargeted attacks, which are
the focus of this paper, so that one might calculate
its value by sector (e.g. financial institutions or
small enterprises). The calculation of Pr(Attack) is
instead necessary to achieve comparable measures
of risk and to provide a baseline to assess the
risk of targeted attacks. This requires the definition
of models that jointly evaluate attacker’s and
defender’s strategies: (89)several independent studies
showed that most attacks are driven by a handful
of vulnerabilities only, suggesting that attackers
choose vulnerabilities to exploit as opposed to launch
attacks drawn randomly from a pool of exploits for
all vulnerabilities. (47,103,46) Capturing these aspects
may require to integrate socio-economic models to
evaluate attacker’s incentives in marketing or buying
a new vulnerability (91,102) or choosing a target. (89)

We consider these aspects for future work.
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Table I . Review of patents for cybersecurity risk assessment.
Reference Patent name Contribution

US 20050193430 A1 Method for risk detection

and analysis in a com-
puter network

Automated method for the assesment of system risk based

on attack graphs and vulnerability assessment. The method
approximates likelihood of attack as a function of number of steps

in the attack graph to reach the target.

US 20120203590 A1 Technology risk assess-
ment, forecasting, and pri-

oritization

”Environmental scoring of security risks for prioritization. No
specific measure of likelihood is defined, whereas the relative

distribution of severities makes for the final prioritization index.”

US 20070067845 A1 Application of cut-sets to
network interdependency

security risk assessment

”Risk assessment of interconnected systems in a network.
Likelihood measures are calculated o the relative complexity

of developing an exploit, in terms of technical equipement or

knowledge required.”
US 7752125 B1 Automated enterprise risk

assessment

Risk assessment methodology based on the collection of informa-

tion related to risk factors that influence overall risk level of the
system. No specific measure or metric for likelihood of occurrence

is provided.

US 8195490 B2 Agent security via ap-
proximate solvers

General framework for the evaluation of threat realization with
unknown adversaries. Probability distributions are assumed to be

known.

US 8402546 B2 Estimating and visualiz-
ing security risk in in-

formation technology sys-

tems

Discretization of security risks for single or multiple networked
systems. Probabilities are defined as probability of losses and are

proxied as the “fidelity” of the security assessment.

US 8650637 B2 Network security risk as-

sessment

Simulation-driven approach to risk assessmenet whereby threats

are characterized by the interaction between a vulnerability and a

remote website. Probabilities are results of the simulation process
based on different browsing profiles as the proportion of infectious

malware sites time the proportion of malware type instances.

US 20050144480 A1 Method of risk analysis
in an automatic intrusion

response system

”The method comprises data from an introsion response system
to evaluate overall risk of attack. Probabilities of attacker are

not explicitly definied, whereas the frequency of an attack is used
among other parameters to evaluate final risk levels.”

US 20060064740 A1 Network threat risk as-

sessment tool

Method that provides the user with an overview of the risk

levels of the system. The method uses multiple sources to gather
intelligence on probabilities of “pervasive” attacs. The overall

threat score is computed as a linear combination of a “probability

score” and other metrics computed by the method.
US 20090024663 A1 Techniques for Informa-

tion Security Assessment

The method identifies factors for the evaluation of a final risk

score. No specific definition of probability of attack is provided.

Frequency of malware infections and other historical parameters
are referenced as “informative” for the process.

US 8539586 B2 Method for evaluating

system risk

Method for the evaluation of system risk related to a threat and

a vulnerability. Probability of event is computed as a function of
past events. An aggregate estimation of risk is given by weighting

the risk probabilities relative to the affected system.
US 20090106843 A1 Security risk evaluation

method for effective

threat management

”Threat evaluation method that account for impact degree of

attack, asset value, and frequency of attack. No specific definition

of probability of attack is provided.”
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Table II . Service type categories and relative service and port examples.
Service type Service description Service ex. Port

ex.

RPC Technology that allows programs to ‘call’ and execute procedures and
functionalities on remote systems. An attacker can exploit this technology

to remotely access resources local to the victim (104).

RPC client, rpc-
rstatd (32778/tcp)

1500,
2500,

32786

SQL Service that allows interaction with SQL database servers. An attacker may
misuse the SQL language to interact with the underlying database and possibly

exfiltrate or modify data without system authorization (105).

SQL session, sqlnet 139,66

Mail Network services that allow resolution of email addresses and forward messages
from one mail infrastructure to another. An attacker may compromise the

exchange protocol to read or modify messages without the knowledge of either

the receiver or the sender (61).

IMAP, SMTP 143,
25

Http Network services responding to http(s) traffic. An attacker may interact

with the remote server to modify some content on the webpage (e.g. store
malicious scripts returned with server’s content), or exploit some configuration

vulnerability to read and potentially modify the traffic (e.g. connection

downgrade) (61,38).

http, http-admin,

apache server

80,

8080,
9090

Infrastr Set of services enabling functionalities internal to the company. An attacker

may exploit service misconfiguration to interact with it remotely and gain

privileged access to otherwise protected resources (61).

NNTP, LDAP 119,

389

RemCtrl Set of services and protocols used to remotely control an operating system. The

attacker may send arbitrary commands to the remote system by breaching the

service (e.g. encryption downgrade) (106).

SSH, Telnet 22, 23

Chat Services that enable user communication. This is typical of complex

and distributed organization environments where employees may need to

communicate at a distance. An attacker may obtain sensitive information by
breaching these systems (61).

IRC, MSN 531,

569

Share Services used to share content (e.g. documents) in a network. An attacker may
gain access to sensitive information and possibly modify or delete it (61).

FTP, AFP 21,
548

Auth Services that enable remote authentication. An attacker may exploit software

and configuration weaknesses to gain privileged access to network and local
resources (106).

Kerberos, login 543,

513

Other Other unidentified network services, e.g. operating on non-standard ports or

on protocol other than TCP. The organization may limit the fraction of Other
systems by surveying the network systems.

- udp

1434


