
Anatomy of Exploit Kits�

Preliminary Analysis of Exploit Kits as Software Artefacts

Vadim Kotov and Fabio Massacci

DISI - University of Trento, Italy
surname@disi.unitn.it

Abstract. In this paper we report a preliminary analysis of the source
code of over 30 different exploit kits which are the main tool behind drive-
by-download attacks. The analysis shows that exploit kits make use of
a very limited number of vulnerabilities and in a rather unsophisticated
fashion. Their key strength is rather their ability to support “customers”
in avoiding detection, monitoring traffic, and managing exploits.

Keywords: exploit kits, web threats, malware analysis.

1 Introduction

Over the last few years, the volume of web-borne malware significantly increased.
According to various security reports [1,10] malicious URLs attacking browsers
and their add-ons constitute the majority of all Internet threats. They exploit
vulnerabilities in the web browsers and their add-ons in order to download mal-
ware executable onto the victim machine. This kind of attack is called drive-by-
download [11]. In the worst cases compromised clients behind a company firewall
can be used to wreak havoc on critical systems. In the best ones, they lay the
basis for a large malware infrastructure that can be used for identity theft or
banking fraud.

Drive-by downloads are managed by a so called exploit kit (or exploit pack)
- a server application delivering malware instead of web content [12]. Its key
feature is that in order to deploy it a “customer” of this tool does not need to
be more expert in web technologies than a lousy system administrator. One only
need to pay the developer of the kit for the code and possibly other services
(such as obfuscation). These characteristics ultimately increase the number of
possible attackers and the risks for the community at large.

1.1 Our Goals and Contribution

In this paper we explore the leaked source code for some popular exploit kits.
In our analysis we pursued the following goals:

� Work partly supported by the European Union by the Erasmus Mundus Action 2
Programme and the Project EU-FP7-SEC-CP-SECONOMICS.

J. Jürjens, B. Livshits, and R. Scandariato (Eds.): ESSoS 2013, LNCS 7781, pp. 181–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

182 V. Kotov and F. Massacci

– Study the functional aspects of exploit kits and offer a taxonomy for the
routines implemented in them;

– Classify the exploit delivery mechanisms;
– Uncover web crawler evasion techniques that are used by exploit kits.
– Understand the user interface of an exploit kit, find out what data it provides

and what management capabilities are available to the customer.
– Investigate the code re-use in various exploit kits and determine if there is

a common code base used by malware authors.
– Study the methods of code protection mechanisms that are aimed to prevent

unauthorized code distribution and complicate the analysts’ work.

The results of our study are quite surprising. We expected exploit delivery mech-
anisms to be sophisticated - to work as snipers, performing a careful study of the
remote machine and then delivering only the right exploit to the right victim.
While the study is performed by most kits, its results are not used in a significant
way to select the exploit. Instead the attack is performed in machine-gun style.
It seems that the main purpose of victim fingerprinting is to make statistics
and “dashboards” of traffic and malware installations. In other words exploit
kits’ main target is to “improve the customer experience”. A large number of
successfull infections is expected to come by large volumes of traffic instead of
sophisticated attacks.

2 Related Works

Very few papers have examined exploit kits as a class of software artefacts. Most
studies on infiltrations (such as those by Savage, Paxson and their groups [4,9])
usually focus on a single tool and try to reconstruct the whole food chain from
the web-user to the final bad guy monetizing the result. For example, Motoyama
et al. [9] analyzed the private messages exchanged in 6 underground forums.
They analyzed whether sellers did re-use the same ID, whether transactions
were moderated, or reputation systems were in place. A similar study focusing
on the Chinese sites has been done in [13]. Yet they did not consider analyzing
the actual malware posted on those forums. Franklin et al. [4] and Herley et al. [8]
have analyzed (with opposite conclusions) the whole chain for spam and malware
goods distribution but have not considered the individual artefacts at the start
of the chain. Grier et al. [6] described the landscape of exploit kits and malware
families, with more detailed focus on the latter. Their main result is a statistical
analysis that shows which exploit kits are used to distribute which malware on
what kind of traffic. For example, the authors determined that modern exploit
kits deliver 32 different malware families including, ZeroAccess, SpyEye and Zeus
as ones of the most famous. But there were no analysis of exploit kit technologies
as much.

Only the author of [7] did study exploitation capabilities of the popular mal-
ware toolkits. However, the paper only considers a small number of instances
and does not provide a comparison of their features as software artefacts. Our

Anatomy of Exploit Kits 183

Fig. 1. Scheme of drive-by-download attack

perspective is to take a wider look and investigate the structure of the crime-
ware packs. Another paper in which the actual instances have been considered
is the work by Cova et al.[3] which focuses on fishing kits.

3 Background

An exploit kit is a software tool traded on the black market and used by cy-
bercriminals to perform drive-by-download attacks. From an implementation
point of view an exploit kit is an HTTP server-side application, that, based on
request headers, returns a page with an appropriate set of exploits. Its main
purpose is silently downloading and executing malware on the victim machine
by taking advantage of browser vulnerabilities. Errors in applied programming
interfaces or memory corruption based vulnerabilities allow an exploit to inject a
set of instructions (called shellcode) into the victim process. Shellcode on its turn
downloads a malware executable to the victim’s hard drive and executes it. The
executable that gets installed on the target system is completely independent
from the exploit pack (see [6] for a distribution of malware families provisioned
by the different exploit kits). An owner can “arm” it with any malicious appli-
cation of her choice.

Fig. 1 depicts the generic scenario of drive-by-download attack [11]. A vic-
tim visits a compromised web site, from which she gets redirected to the ex-
ploit kit page. Various ways of redirection are possible: an <iframe> tag, a
JavaScript based page redirect etc. The malicious web page then returns an
HTML document, containing exploits, which are usually hidden in an obfuscated
JavaScript code. If at least one exploit succeeds, then a victim gets infected.
Successful exploitation means, that the shellcode injected has finished flawlessly
and hence accomplished its task - to download and execute a malicious program.

184 V. Kotov and F. Massacci

How successful an exploit kit is depends on such factors as an operating system
version, type and version of a browser and its add-ons, presence of security
measures.

Apart from the exploits a kit has an administrative panel - a dashboard that
provides statistics and allows a user to configure the tool. Even the earliest kits
such as Mpack and IcePack had this feature [12].

Exploit kits are usually constructed from open-source components such as an
Apache web server, a PHP server-side scripting engine and a MySQL database.

In order to protect users from drive-by-download attack, two main strategies
are normally deployed:

1. Protect end users with malware scanners and other security means which
intercept the malware on the fly or stop the exploit from completing;

2. Build black lists of URLs (such as those behind Google Safe Browsing). These
lists are constructed by security web crawlers, which instead of indexing
the site content, check the web page with malware scanners or analyze its
behavior in a sandbox. In fact this can be done by the search engine’s robots
in addition to traditional content indexing.

These two defence mechanisms determine the presence of yet another feature of
an exploit kit: detection evasion. In this sense a kit can implement the following
self-protection measures:

– Code obfuscation, deployed in order to fail malware scanners’ signatures and
heuristics. For example the Black Hole exploit kit [5] applies a polymorphic
obfuscation algorithm to its malicious JavaScript code.

– Checking itself with antiviruses to find out whether the signature for the
current obfuscation scheme already exists and whether it is time to update
the obfuscation algorithm.

– Restricting search robots activity by disallowing indexing policy in the
“robots.txt” file.

– Mimicking an innocent web page when encountering an unsupported user
agent (search robots, downloading software, etc.).

– Looking itself up in the black lists of URLs and IP addresses (like Google
Safe Browsing) and, if found, rebind itself to another server/domain.

Finally, an exploit kit is a software product in itself and therefore must have some
features of legitimate software such as source code protection, licensing, binding
to single server/domain, etc. For example the Fragus exploit kit is protected
with a commercial tool IonCube1, which also makes it impossible to run the kit
under the domain/server [2] that is different from the customer’s.

To better understand the idea of exploit kit let’s consider the following exam-
ple: a user running Firefox 1.0.4 with Adobe Reader v.8.1.1 under the Windows
XP opens a web page from a compromised server. An invisible iframe (left by
the hacker) loads a page from another web server hosting the Eleonore 1.4.4mod
exploit kit. On the server side a corresponding PHP script parses the client’s

1 www.ioncube.com, checked on 14 Aug 2012

www.ioncube.com

Anatomy of Exploit Kits 185

HTTP request headers and retrieves the following information: name and version
of the browser (Firefox 4.0), name and version of operating system (Windows
XP). Based on that the PHP script selects the set of exploits such as one for
CVE-2005-2265 vulnerability (targeting Firefox 1.0.4). The exploits selected are
wrapped in the JavaScript code, which then gets obfuscated and returned to
the client. If the exploit succeeds (if nothing stops it from executing), then the
shellcode takes control over the browser’s execution. It calls the URLDownload-
ToFile (Urlmon.dll) and then WinExec (Kernel32.dll) functions to download and
execute an instance of Zeus trojan that is stored on the attacker’s web server.
Once the shellcode makes the request to the exploit kit server (to retrieve the
trojan), the corresponding PHP script adds the successful exploitation record to
the database and returns the contents of the binary. The owner of this malicious
server in the administrative panel can see how many visitors were lured to the
malicious page and how many of them were infected.

The features that we have listed above are the capabilities of an exploit kit
that could be implemented. Whether they are really used in real-world tools and
if yes then to what extent - is the question that we try to answer in this paper.

4 Collected Data

To collect the data for analysis two sources of information were used:

– A list of exploit packs, available at Contagio Malware Dump 2 security blog.
– Advertising and leaked code on various black hat forums.

Altogether we identified information for more than 70 exploit kits and out of
those we were able to successfully deploy 33 instances of 24 families. Our seman-
tics of successful is that the kit installs, runs, and is able to deliver a prototype
malware of our choice to an appropriate client. We are now running a more
sophisticated experiment in which we benchmark whether all claims about num-
ber of successful installations by the exploit kit developer in terms of successful
installation are correct. The full list of deployed kits is presented in Table 2. Our
collection includes the most famous products on the black market, according to
the reports of Kaspersky Lab [12], Sophos [5] and Symantec [2].

Among all deployed exploit kits there is one that we can not yet fully analyse
- Crimepack v.3.1.3. It was obfuscated with a powerful commercial protector
named IonCube for which, to our knowledge, there is no good deobfuscation
tool. But we were still able to extract some information from Crimepack using
black box analysis of the deployed sample.

Figure 2 shows the connections between an exploit kit and some related enti-
ties such as the victim, the malware scanner or security crawler and the devel-
oper.

All the kits in our collection were written in PHP and were designed to work
in bundle with MySQL database. They present the following key architectural
components:

2 http://contagiodump.blogspot.it/2010/06/

overview-of-exploit-packs-update.html, checked on 14 Aug 2012.

http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.html
http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.html

186 V. Kotov and F. Massacci

Fig. 2. Exploit kit use cases

Offensive Component which is responsible for analyzing and ultimately at-
tacking vulnerable machines;

Defensive Component that protects the toolkit from detection by malware
scanner (such as obfuscation of pages);

Management Component which supplies the reporting and configuration
components of an exploit kit to support the customer;

Protection Mechanisms , which includes means of protection applied to an
exploit kit for preventing unauthorized distribution and complicating the
process of reverse engineering.

5 Offensive Component

To identify the operation of the offensive routes we performed code inspection,
debugging and sandboxed code execution. The offensive routine consists mainly
of two parts. The first one occurs on the request of the web client, when a
victim gets redirected to the bad page. If the exploit is successful, the second
part is activated on shellcode request after it has taken control over the target
application.

The first part consists of the following steps:

1. User agent detection determines operating system (OS) and user agent (UA)
used by the victim.

2. IP blocking blocks a visitor on the next visit (based on IP address).
3. UA validation - If the OS or the UA are not supported do either of the

following actions:
– output an innocent looking page like “Site is under construction”, and

provide the response status 200 (OK);
– redirect a visitor to another page or web site by specifying its address in

the “Location” header of the server response;
– output an error page and provide the response status of error (e.g. 404);
– deliver anyhow some exploits in the hope that the client is vulnerable.

4. Exploits selection - Select the subset of exploits for the determined OS and
UA or follow corresponding execution branch.

Anatomy of Exploit Kits 187

Table 1. Presence of the offensive routine steps

Step Present (%) Absent (%)

User agent detection 100% 0
IP blocking 79% 21%
UA Validation 88% 12%
Exploits selection 82% 15%
Exploits obfuscation 82% 18%
Executable Delivery 100% 0%

5. Exploits obfuscation - Obfuscate the generated malformed HTML page. By
this we mean the on-line obfuscation, when the attacking page goes through
some transformations that change its appearance.

The second part has only one step, which is:

1. Delivery of malware executable - returns the malware executable file and as
a follow up updates the successful exploitation statistics.

Each exploit kit largely follows the proposed scenario, irrespective of the year
of deployment: Icepack kit appeared in 2007, while Phoenix is a comparatively
recent product, its 3.1 update was released in 2012. Therefore we conjecture that
the functional architecture is essentially stable.

A summary of the findings is shown in Table 1. The full analysis of the server
side attack scenario can be found in Table 2. The results do not sum up to 100%
as in some cases it was not possible to ascertain exactly what the kit does. Out
of these results we can make some conclusions:

1. 88% of exploit kits perform user agent validation, which means that if a
browsing robot wants to detect an attack it must send a user agent string
of a vulnerable browser (Internet Explorer 6 under Windows XP is going
to work for every kit analyzed) or, on the other hand, a user can change
the user agent string to an unsupported one (e.g. wget under OpenBSD) in
order to “trick” the kit and avoid infection.

2. 64% of exploit kits perform both IP blocking and Exploits selection, which
complicates the analysis of a kit in the wild. Offensive capabilities of an
exploit kit in the wild can only be revealed from different IP addresses and
using different user agent strings.

3. All exploit kits in our collection have a separate piece of code responsible
for executable delivery. Thus, exploit kits can keep an accurate score of the
machines that were actually infected.

4. In a surprisingly large number of cases (36%), irrespective of the result of
the UA validation, the exploit kit will anyhow throw some attacks. The UA
validation code does not seem to be used in a significant way to select the
exploit appropriately.

In terms of vulnerability analysis the picture was surprising: among the 70+
exploit kits that we had identified only a bit more than 110 vulnerabilities are

188 V. Kotov and F. Massacci

Table 2. Full data set and offensive component analysis results

Name Version IP Block. UA Detec. UA Valid. Follow-up Sel. Obf.
0x88 UNK

√ √ √
ATTACK

√ √
adpack UNK1

√ √ √
INNOCENT

√ √
adpack UNK2

√ √
NONE

armitage 1.0 beta
√ √ √

INNOCENT
√ √

bleeding life 2
√ √

INNOCENT
√

crimepack 3.1.3
√ √ √

INNOCENT UNK
√

cry217 UNK
√ √

NONE
eleonore 1.2

√ √ √
ATTACK

√ √
eleonore 1.4.4 mod

√ √ √
ATTACK

√ √
firepack 0.18

√ √ √
ERROR

√ √
firepack UNK

√ √ √
INNOCENT

√ √
fragus 1.0

√ √ √
ATTACK

√ √
fragus black

√ √ √
ATTACK

√ √
gpack UNK

√ √ √
INNOCENT

√ √
icepack platinum beta

√ √ √
EMPTY

√ √
icepack platinum

√ √ √
INNOCENT

√ √
el fiesta 1.0

√ √
INNOCENT

√ √
el fiesta 1.8

√ √ √
INNOCENT

√ √
life UNK

√ √
NONE

mpack 0.81
√ √ √

INNOCENT
√ √

mpack 0.86
√ √ √

INNOCENT
√ √

mpack 0.91
√ √ √

INNOCENT
√ √

mpack 0.99
√ √ √

INNOCENT
√ √

mypolysploit 1.0
√ √

ATTACK
√ √

neon UNK
√ √ √

ATTACK
√ √

nuke UNK
√ √

INNOCENT
√ √

phoenix 2.3
√ √ √

INNOCENT
√

rds 2.0
√ √

NONE
√

salo UNK
√ √

ATTACK
√

seo UNK
√ √

INNOCENT
√ √

shaman’s dream 2.0
√ √ √

ATTACK
√ √

unique UNK
√ √ √

INNOCENT
√ √

yes 2.0
√ √

REDIRECT
√ √

Explanation of the table columns:

Name - name of an exploit kit;
Version - exploit kit version or UNK if we could not determine it;
IP Block. - presence if IP blocking: YES (

√
) or NO.

UA detec. - detection of the user agent: YES (
√
) or NO.

UA valid. - user agent validation, i.e. an action taken if a user agent is not supported: INNOCENT
| REDIRECT | ERROR | ATTACK | NONE, where INNOCENT means an innocent looking
page; REDIRECT - a redirection provided is “Location” header; ERROR - an error page;
ATTACK - throw some exploits; NONE - if no action is taken.

Sel. - presence of exploit selection: YES(
√
) if, based on user agent information, execution path of

the kit changes, otherwise NO.
Obf. - presence of exploit obfuscation: YES(

√
) or NO.

actually exploited. An average exploit kit had around 10 exploits (µ = 11.1)
which are not always fresh. Table 3 shows the mean number of exploits of certain
age over the sample of 30 kits. Age of an exploit was calculated relatively to the
year this kit first appeared. On average, most exploits are aimed at 1 and 2 years
old vulnerabilities, which may imply that malware authors prefer to use public
exploits, rather than private ones. An alternative explanation is that the time
to market a reliable piece of code exploiting commodity software is significant.

The affected software is also very limited, showing a preference among exploit
kit developers for easy exploits based on popular software. Figure 3 shows how
many vulnerabilities affecting a given software are present in the overall sample.

Anatomy of Exploit Kits 189

Table 3. Average number of exploits by age

6 y.o. 5 y.o. 4 y.o. 3 y.o. 2 y.o. 1 y.o. 0 y.o.

0.17 1.03 1.4 2.1 2.57 3.93 1.9

MSIE Acrobat Java Windows Office Flash Player Firefox Opera Other

Affected Software

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

E
x
p
lo

it
 K

it
s

Distribution of Exploited Software

The figure shows a number of exploit kits (vertical axis) that exploit par-
ticular software or class of software (horizontal axis). Player denotes various
video/audio players (such as Real Player, Quick Time etc.), Windows includes
exploits for components of Windows operating system, Other denotes various
other types of exploited software (such as components of Microsoft Visual Stu-
dio, audio/video format converters, messengers etc).

Fig. 3. Preferred Software for Exploits

The entry ’Player’ denotes various proprietary or open source video/audio
players (such as Real Player, Quick Time etc.), while ’Windows’ includes ex-
ploits for various components of Windows operating system of different ver-
sions. The category ’Other’ denotes various other types of exploited software
(such as components of Microsoft Visual Studio, audio/video format converters,
messengers etc).

5.1 Defensive Component

Defensive means of exploit kits include IP blocking, payload obfuscation, crawlers
evasion and active measures such as checking itself in various virus databases
to catch the time, when it got recognized by the malware scanners in order to
update the obfuscation scheme.

As we mentioned, IP blocking and obfuscation are popular measures routinely
deployed in the offensive component.

190 V. Kotov and F. Massacci

Crawlers evasion can be implemented in two ways (not mutually exclusive):

1. Settings the specific indexing policy in a “robots.txt” file, which may keep
search robots from collecting the information about malicious pages of an
exploit kit;

2. Match a user agent string in HTTP request against known crawlers.

To find possible evasion techniques, we searched for the “robots.txt” in exploit
kit files and the indexing policy it defines; we also looked for known crawler
user agent strings (“Googlebot”, “Yahoo!”, “Bingbot”, “YandexBot”, etc.) from
UserAgentString.com and scan through all source files for their presence. If found
- analyse the context in which the string appears.

Out of this analysis we found that the large majority of exploit kits analyzed
do not pay attention to crawler evasion. There are just few cases:

1. Crimepack 3.1.3, Eleanore 1.4.4 mod and both versions of Fragus have
robots.txt that disallows any indexing.

2. Firepack has a list of crawlers’ names.
3. 0x88 looks for the “bot” substring in user agent name in HTTP request

header.

To determine whether virus database checks were done by the exploit kit, we
performed the following checks:

1. String search for the strings “virustotal” (a virus scan web service3) and
“virtest” (a popular anonymous virus scan web service4), that can locate
the code snippets responsible for virus database checks.

2. Looking at administrative panels of exploit kit to find the pieces of user
interface that might indicate the presence of the virus database checks.

No exploit kit (except Crimepack 3.1.3 for which it is unknown) checks itself in
the virus databases. However, we have not examined the source of Black Hole
exploit kit. So we cannot confirm [5], which reports that it has the ability to
check itself against two virus scan services.

Figure 4 shows a Venn diagram where the explicit number of items in each
subset is represented by the number of crosses. Whether a kit may use or not the
IP Blocking, an overwhelming majority uses obfuscation. Therefore the absence
of obfuscation in a page seems a good indication that the page is unlikely to be
malicious.

6 Management Component

The customer-oriented part of an exploit kit should provide an access to visits
and exploitation statistics and offer some settings to manage the toolkit.

A step-by-step work flow can not be proposed here, because the customer
handles the exploit kit by an interactive user interface. The main use cases are
the following:

3 http://www.virustotal.com, checked on 14 Aug 2012
4 http://www.virtest.com, checked on 14 Aug 2012

http://www.virustotal.com
http://www.virtest.com

Anatomy of Exploit Kits 191

The figure shows a Venn diagram of the defences implemented in the exploit kits
analyzed. The number of items in each subset is represented by the number of
crosses.

Fig. 4. Venn diagram of defensive capabilities

1. Installation - Install the exploit kit, i.e. allocate all resources needed for
successful run.

2. Authentication - Authenticate exploit kit user.
3. Control Cockpit which normally includes

– site visit statistics;
– successfull exploitation statistics;
– exploit kit settings;

Since we dealt with leaked code, the analysis of the installation step can only be
preliminary, because automated installers might have been removed after setting
up the kit. Therefore we can not say whether an automatic installer supposed
to come with the software or not.

Authentication is present in every admin panel, so we do not discuss it further
in detail.

The two important functions of customer oriented component are statistics
reporting and settings. All kits feature some basic setting up and statistics, and
a more fine grained classification is reported below:

1. Toolkit statistics includes the information about the exploit kit’s work: total
visits, exploited systems, browsers and operating systems.

2. Market statistics includes the information that helps a customer to man-
age her interaction with related markets (e.g. traffic market). The typical
information of this type are referers5 and/or countries.

3. Exploit statistics allows a customer to track the effectiveness of individual
exploits.

We have similar three grades metric for the settings, that can be offered to the
customer:

5 A URL from which the victim came. It can be determined from the HTTP header
“Referer”.

192 V. Kotov and F. Massacci

Toolkit Market Exploit

Statistics

Basic

ASU

AMU
S
e
tt

in
g
s

2

1

121

1

1

6

CrimepackShaman's Dream

Fragus (Both)

Bleeding Life

Neon

The figure shows a magic quadrant depicting the exploit kits in the statis-
tics/settings coordinate axes.
The grades for the settings axis:

Basic allows a customer to change her credentials and replace malware exe-
cutable

ASU (Advanced single-user gives a customer more flexibility (manage ex-
ploits, build black lists by country, referer etc.)

AMU (Advanced multi-user) provides the settings for multi-user environ-
ment.

The grades for statistics axis:

Toolkit includes the information about the exploit kit’s work: total visits, ex-
ploited systems and browsers etc.

Market statistics includes the information that helps a customer to manage
her interaction with related markets (e.g. traffic market).

Exploit statistics allows a customer to track the effectiveness of individual
exploits.

Fig. 5. Statistics/Settings Quadrant

1. Basic settings - allows a customer to change her credentials and replace
malware executable.

2. Advanced single-user settings (ASU) - allows a customer to enable/disable
exploits or/and add new ones or/and manage block lists (IP, referrers, coun-
tries) etc.

3. Advanced multi-user settings (AMU) - provides the settings for multi-user
environment, i.e. customizable user profiles.

To perform this analysis we need to have a look at every administrative panel
of our exploit kit collection and enumerate the reported statistics and the con-
figuration options that are offered to the customer.

In Figure 5 we provide a magic quadrant depicting the exploit kits in the
statistics/settings coordinate axes. The number inside the circle is a count of
exploit kits that fell upon the corresponding point in the quadrant.

Anatomy of Exploit Kits 193

It can be seen that the majority of exploit kits analyzed produce advanced
statistics, but offer the simplest settings possible. From statistics/settings per-
spective Crimepack, Fragus and Shaman’s Dream are the most advanced. The
conjecture is that the closer an exploit kit is to the top right corner of the quad-
rant the higher is its potential of supporting complex business models. In other
words the advanced statistics and settings allow customers to

– keep track of the traffic they actually received, possibly to match it against
what they may have bought in order to avoid waste of money in useless
traffic,

– learn which exploits contribute more to the victim infecting process in order
disable the bad ones (or detectable ones) and so forth.

This gives a customer a high level of flexibility in organizing the infection process
and ways of its monetizing. Top right corner is the place where the Black Hole
exploit kit would have been placed.

7 Code Protection

Presence of protection in an exploit kit source code can be detected based on one
of the two features: (1) there is a byte code and markers of the commercial tools
(Zend Guard6 or IonCube) or (2) the code is put through some permutations
and then executed. Otherwise the code is clear to read.

In summary our findings are reported below:

– Crimepack 3.1.3 - is the only kit in our collection that uses IonCube.
– Neon, Life and FirepackUNK use Zend Guard.
– 0x88, Eleonore 1.4.4 mod, El Fiesta 1.0 and Unique use various ad-hoc meth-

ods of protection.
– Other kits (25) do not use any code protection.

Yet these results can not be taken as conclusive because we were dealing with
leaked sources. For example, Fragus exploit kit, according to [2] is obfuscated
with IonCube, while we obtained a clean version. All conclusions that are made
from this analysis can give only general idea of the code protection within exploit
kits. One of the reason the Black Hole exploit kit is not included in the study is
that we could not fully restore the source code.

8 Code Re-use

Investigating the cases of code re-use could help us to better understand the
production of an exploit kit. To address this question we use a token-based
copy-paste detector phpcpd7. It reveals the snippets of repeating code among
multiple PHP scripts.

6 http://www.zend.com/en/products/guard/ , checked on 14 Aug 2012
7 https://github.com/sebastianbergmann/phpcpd/, checked on 14 Aug 2012

http://www.zend.com/en/products/guard/
https://github.com/sebastianbergmann/phpcpd/

194 V. Kotov and F. Massacci

Table 4. Numbers and functionality of code re-use cases per pair

Kit1 Kit2 # of matches Repeated Code Functionality

0x88 life 7 Admin. panel routines, obfuscation, database functions
fragus icepack 5 Obfuscation
adpack gpack 3 User agent detection, database functions
armitage icepack 3 User agent detection
mpack 0x88 3 Obfuscation
rds 0x88 3 Admin. panel routines, obfuscation, database functions
eleonore shaman 2 User agent detection, obfuscation
firepack icepack 2 Obfuscation
nuke seo 2 Admin. panel routines, user agent detection
yes icepack 2 User agent detection
lefiesta fragus 1 Obfuscation
neon armitage 1 Array of countries names
salo adpack 1 Obfuscated array of countries names

The detected re-used code can be divided into three groups:

1. the code repeated among different versions of the same exploit kit;
2. the code, that corresponds to open source libraries, that are used by different

kits;
3. the code repeated in different families of exploit kits.

The first group of code is not interesting because the results of the analysis were
predictable. The kits of the same family have a lot of common code.

In the second group the only open source PHP library that we have found in
our collection was Geo IP8 which allows to determine the country by IP address.
This library is frequently used in exploit kits to provide country related statistics.

The third group of repeated code snippets consists of the those appearing
in the different exploit kit families. The summary of code re-use cases between
different families of exploit kits is shown in Table 4.

The highest volumes of “copy-paste” can be found at (0x88, life) and (fra-
gus, icepack) pairs. Interestingly there is a code obfuscation algorithm that was
implemented in 5 different kits (Mpack, Fragus, RDS, Life and 0x88).

In our collection there are total of 24 exploit kit families, since the number of
possible pairs is C2

24 = 24!
2!(24−2)! = 276 and the number of pairs with at least one

repeated snippet is 13, then the rate of code re-use (based on token analysis) is
13/276 = 0.047. This means that based on analysis of the PHP language tokens
similarity there is no common code base that is used by the malware authors. We
can use the above observation to conclude that the market is also fragmented
with multiple kit providers.

9 Conclusion

In this paper we have reported the first analysis of exploit kits as software
artefacts. We have collected information on 70+ popular tools for malware

8 http://php.net/manual/en/book.geoip.php, checked on 14 Aug 2012

http://php.net/manual/en/book.geoip.php

Anatomy of Exploit Kits 195

distribution. Out of those we have been able to successfully deploy and test
30+ kits. They have been further analyzed.

In order to understand the nature of the class we have collected a set of leaked
source code files of previously private exploit kits. Each of them we have tried
to deploy, and those that we succeeded to run were selected for analysis. We
used a combination of analysis techniques such as static and dynamic reverse
engineering.

The result of the work can be summarized as follows:

– Exploit kits have very similar functionality, largely following the work flow
described in this paper. The victim is fingerprinted (user agent and operating
system information together with IP address are collected partly for exploit
selection and partly for statistical purposed), a set of moderately old exploits
is provisioned within an obfuscated web page in order to download and
execute a malware program. Very few vulnerabilities are exploited.

– Exploit kits use IP blocking, user agent validation and code obfuscation.
Very rarely they try to evade web crawlers.

– Most exploit kits provide customers with statistics and settings, allowing
them to customize a toolkit and track its activity. A customer can use them
to interact with other types of black markets - traffic, malware executables,
hosting services, etc.

– Results of token based copy-paste analysis show that the kits analyzed seem
to be written mostly independently one from another, without a common
code base.

– Some exploit kits use commercial code protection (e.g. Crimepack), which
means that malware authors expect to get significant amounts of money
from the crimeware toolkit sales.

We expect the exploit kit technology to evolve further in direction of detection
evasion and enhancement of the customer’s experience. The evidence of this we
can see already in the latest kits, such as Black Hole v.2. The little emphasis
on exploit delivery seems to imply that a better protection can stem from large
scale detection rather than individual protection.

References

1. Internet security threat report (April 2012),
http://www.symantec.com/threatreport (Checked on September 10, 2012)

2. Coogan, P.: Fragus exploit kit changes the business model (February 2010),
http://www.symantec.com/connect/blogs/

fragus-exploit-kit-changes-business-model

(Checked on September 10, 2012)
3. Cova, M., Kruegel, C., Vigna, G.: There is no free phish: an analysis of ‘free’ and

live phishing kits. In: Proceedings of WOOT 2008, pp. 4:1–4:8 (2008)
4. Franklin, J., Paxson, V., Perrig, A., Savage, S.: An inquiry into the nature and

causes of the wealth of internet miscreants. In: Proceedings of CCS 2007, pp. 375–
388 (2007)

http://www.symantec.com/threatreport
http://www.symantec.com/connect/blogs/fragus-exploit-kit-changes-business-model
http://www.symantec.com/connect/blogs/fragus-exploit-kit-changes-business-model

196 V. Kotov and F. Massacci

5. Fraser, H.: Exploring black hole exploit kit (March 2012),
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit

(Checked on September 10, 2012)
6. Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C.J., Levchenko, K.,

Mavrommatis, P., McCoy, D., Nappa, A., Pitsillidis, A., Provos, N., Rafique, M.Z.,
Rajab, M.A., Rossow, C., Thomas, K., Paxson, V., Savage, S., Voelker, G.M.:
Manufacturing compromise: the emergence of exploit-as-a-service. In: Proceedings
of the 2012 ACM Conference on Computer and Communications Security, CCS
2012, pp. 821–832. ACM, New York (2012)

7. Guido, D.: A case study of intelligence-driven defense. IEEE Security Privacy 9(6),
67–70 (2011)

8. Herley, C., Florencio, D.: Nobody sells gold for the price of silver: Dishonesty,
uncertainty and the underground economy. In: Economics of Information Security
and Privacy (2010)

9. Motoyama, M., McCoy, D., Savage, S., Voelker, G.M.: An analysis of underground
forums. In: Proceedings of ICM 2011 (2011)

10. Namestnikov, Y.: IT threat evolution: Q1 2012 (May 2012),
http://www.securelist.com/en/analysis/204792231/

IT Threat Evolution Q1 2012 (Checked on September 10, 2012)
11. Naranie, R.: Drive-by downloads. The web under siege (April 2009) (Checked on

September 10, 2012)
12. Preuss, M., Diaz, V.: Exploit kits - a different view (February 2011),

http://www.securelist.com/en/analysis/204792160/

Exploit Kits A Different View(Checked on September 10, 2012)
13. Zhuge, J., Holz, T., Song, C., Guo, J., Han, X., Zou, W.: Studying malicious

websites and the underground economy on the chinese web. In: Proceedings of
MIRES, pp. 225–244 (2009)

http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit
http://www.securelist.com/en/analysis/204792231/IT_Threat_Evolution_Q1_2012
http://www.securelist.com/en/analysis/204792231/IT_Threat_Evolution_Q1_2012
http://www.securelist.com/en/analysis/204792160/Exploit_Kits_A_Different_View
http://www.securelist.com/en/analysis/204792160/Exploit_Kits_A_Different_View

	Anatomy of Exploit Kits
	Introduction
	Our Goals and Contribution

	Related Works
	Background
	Collected Data
	Offensive Component
	Defensive Component

	Management Component
	Code Protection
	Code Re-use
	Conclusion

