# Anatomy of Exploit Kits

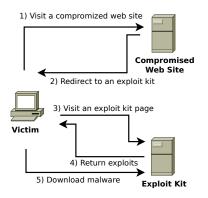
Preliminary Analysis of Exploit Kits as Software Artefacts

Vadim KOTOV Fabio MASSACCI

{kotov, massacci}@disi.unitn.it University of Trento, Italy

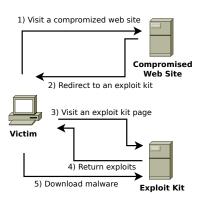
ESSoS 2013

#### Table of Contents


- Drive-by-download attacks problem
- What is drive-by-download attack?
- Our contribution
- 4 Structure of an exploit kit
- Offensive component
- 6 Defensive component
- Management component
- Source code
- Onclusions and future work

# Drive-by-download attacks problem (2012) Kaspersky Lab's statistics\*

| Rank | Name                  | No. attacks   | % of all attacks |
|------|-----------------------|---------------|------------------|
| 1    | Malicious URL         | 1 393 829 795 | 87.36%           |
| 2    | Trojan.Script.Iframer | 58 279 262    | 3.65%            |
| 3    | Trojan.Script.Generic | 38 948 140    | 2.44%            |
| 4    | Trojan.Win32.Generic  | 5 670 627     | 0.36%            |
|      |                       |               |                  |


<sup>\*</sup>http://www.securelist.com/en/analysis/204792255/Kaspersky\_Security\_Bulletin\_2012\_The\_overall\_statistics\_for\_2012

# What is drive-by-download attack?



- Victim loads a compromised web site with an *iframe* pointing at the malicious URL
- The attacking page is about to be loaded within the iframe
- Victim sends an HTTP request to the malicious server (without knowing it)
- An HTML document containing exploits is loaded within the iframe
- An exploit downloads and starts a malware executable

# What is drive-by-download attack?



- Victim loads a compromised web site with an *iframe* pointing at the malicious URL
- The attacking page is about to be loaded within the iframe
- Victim sends an HTTP request to the malicious server (without knowing it)
- An HTML document containing exploits is loaded within the *iframe*
- An exploit downloads and starts a malware executable

A server application that stands behind the drive-by-download attack is called EXPLOIT KIT

#### Our contribution

Analysis of exploit kits as software artefacts



#### Our contribution

Analysis of exploit kits as software artefacts

#### The data

- Leaked source codes of 30+ exploit kits
- Vulnerability and exploit information on 70+ kits

#### Our contribution

Analysis of exploit kits as software artefacts

#### The data

- Leaked source codes of 30+ exploit kits
- Vulnerability and exploit information on 70+ kits

#### Main results

- The attacks are not that sophisticated as expected
- Exploits are outdated and affected software is limited
- Profit is to come by large numbers

# Structure of an exploit kit

#### Offensive component

- Fingerprint victim machines
- Exploit vulnerabilities

#### Defensive component

- Evade AV scanners detection
- Hide from search robots

#### Management component

- Report statistics
- Provide configuring options

#### Code protection

- Prevent unauthorized distribution
- Complicate analysis



# Offensive component

#### Interesting observations

- The workflow of the attack is more or less the same in all the kits
- 88% of the exploit kits perform simple browser and operating system detection
- 64% also block repeating IP addresses
- 36% of kits throw attacks even if victim's browser and OS are unsupported

# Offensive component

#### Interesting observations

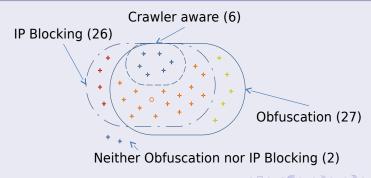
- The workflow of the attack is more or less the same in all the kits
- 88% of the exploit kits perform simple browser and operating system detection
- 64% also block repeating IP addresses
- 36% of kits throw attacks even if victim's browser and OS are unsupported

#### Vulnerability analysis

- In average an exploit kit has around 10 exploits
- Most of the exploits in a kit are 1-2 years old
  - Malware authors prefer using public exploits rather than 0-day?
  - Marketing a new exploit is time-consuming?
- Most exploited apps are: Flash, Java, MSIE, Reader

# Defensive component

#### What possibly can it be


- Trick antivirus signatures using obfuscation (82%)
- Block repeating IP to prevent probing by the analyst (78%)
- Evade search robots/crawlers (only 3 kits)
- Check itself with various antiviruses (None)

# Defensive component

#### What possibly can it be

- Trick antivirus signatures using obfuscation (82%)
- Block repeating IP to prevent probing by the analyst (78%)
- Evade search robots/crawlers (only 3 kits)
- Check itself with various antiviruses (None)

# Vienn diagram of defensive capabilites



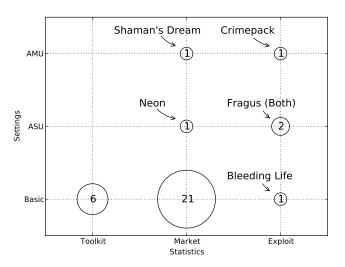
#### Management component Example



# Phoenix Exploit's Kit

○ COMES WITH TRIPPLE SYSTEM

| Simple browser statistics |        |           |         |  |  |  |
|---------------------------|--------|-----------|---------|--|--|--|
| Browser                   | Visits | Exploited | Percent |  |  |  |
| Firefox                   | 11866  | 1089      | 9.18%   |  |  |  |
| MSIE                      | 6004   | 824       | 13.72%  |  |  |  |
| Other                     | 2458   | 95        | 3.86%   |  |  |  |
| Opera                     | 768    | 12        | 1.56%   |  |  |  |


| Main Statistics |           |         |  |  |
|-----------------|-----------|---------|--|--|
| Unique Visits   | Exploited | Percent |  |  |
| 21096           | 2020      | 9.58%   |  |  |

| Exploit statistics |           |         |  |  |  |
|--------------------|-----------|---------|--|--|--|
| Exploit            | Exploited | Percent |  |  |  |
| IE6 MDAC           |           | 0.15%   |  |  |  |
| IE7 SNAPSHOT       |           | 0.02%   |  |  |  |
| PDF COLLAB         | 135       | 0.64%   |  |  |  |
| PDF PRINTF         |           | 0.1%    |  |  |  |
| PDF GETICON        |           | 0.08%   |  |  |  |
| FLASH 9            | 24        | 0.11%   |  |  |  |
| PDF LIBTIFF        | 21        | 0.1%    |  |  |  |
| JAVA DESERIALIZE   | 725       | 3.44%   |  |  |  |
| JAVA GSB           | 975       | 4.62%   |  |  |  |
| IEPEERS            | 4         | 0.02%   |  |  |  |
| PDF NEWPLAYER      |           | 0.22%   |  |  |  |
|                    | 18        | 0.09%   |  |  |  |

Menu Simple statistics Advanced statistics Countries statistics Referers statistics Clear statistics Upload .exe Exit



# Management component



The majority of the exploit kits (21) offer basic configuration options but report statistics for the owner to work with other markets.

### The technology

All the kits analyzed are built upon PHP + MySQL



#### The technology

All the kits analyzed are built upon PHP + MySQL

#### Code protection

- Several kits use commercial code protection
- Few kits have ad-hoc (and very weak) protection
- Vast majority of the kits does not have any defenses

#### The technology

All the kits analyzed are built upon PHP + MySQL

#### Code protection

- Several kits use commercial code protection
- Few kits have ad-hoc (and very weak) protection
- Vast majority of the kits does not have any defenses

#### Code re-use

- GeoIP and PluginDetect are frequently used pieces of code
- 5 different kits share the same obfuscation routine
- Code repeat rate is 4%

#### The technology

All the kits analyzed are built upon PHP + MySQL

#### Code protection

- Several kits use commercial code protection
- Few kits have ad-hoc (and very weak) protection
- Vast majority of the kits does not have any defenses

#### Code re-use

- GeoIP and PluginDetect are frequently used pieces of code
- 5 different kits share the same obfuscation routine
- Code repeat rate is 4%

Looks like there is no common code base and most of the kits were developed independently

#### Conclusions and future work

#### Conclusions

- Exploit kits from 2007 to 2012 were analyzed: 5 years same technology
- Very few vulnerabilities are exploited
- Exploits in the kits are quite outdated
- Profit is expected to come with large volumes of traffic rather than sophisticated attacks

#### Conclusions and future work

#### Conclusions

- Exploit kits from 2007 to 2012 were analyzed: 5 years same technology
- Very few vulnerabilities are exploited
- Exploits in the kits are quite outdated
- Profit is expected to come with large volumes of traffic rather than sophisticated attacks

#### Future work

- What is the real success rate of an exploit kit?
- Can we measure a quality of the particular specimen?
- To answer these question we run a set of experiments in the virtualized environment.

# That's all, folks

Thank you for your attention!