
Managing Changes with Legacy Security Engineering

Processes

Edith Felix, Olivier Delande

Thales
Palaiseau, France

{edith.felix,olivier.delande}@thalesgroup.com

Abstract- Managing changes in Security Engineering is a

difficult task: the analyst must keep the consistency between

security knowledge such as assets, attacks and treatments to

stakeholders' goals and security requirements. Research-wise the

usual solution is an integrated methodology in which risk,

security requirements and architectural solutions are addressed

within the same tooling environment and changes can be easily

propagated.

This solution cannot work in practice as the steps of security

engineering process requires to use artefacts (documents, models,

data bases) and manipulate tools that are disjoint and cannot be

fully integrated for a variety of reasons (separate engineering

domains, outsourcing, confidentiality, etc.). We call such

processes legacy security engineering processes.

In this paper, we propose a change management framework for

legacy security engineering processes. The key idea is to separate

concerns between the requirements, risk and architectural

domains while keeping an orchestrated view (as opposed to an

integrated view). We identify some mapping concepts among the

domains so that little knowledge is required from the

requirement manager about the other domains, and similarly for

security risk manager and the system designer: they can stick to

their well known (and possibly certified) internal process. This

minimal set of concepts is the interface between the legacy

processes. The processes are then orchestrated in the sense that

when a change affects a concept of the interface, the change is

propagated to the other domain.

We illustrate this example by using the risk modeling language

(Security DSML) from Thales Research and the security

requirement language (SI*) from the Univ. of Trento.

System and software engineering life cycle, Security
engineering, Security risks, Requirements, Tooling

INTRODUCTION

Change management in security engineering is a particularly
daunting task not only because of the inherently difficulty of
the task but also for two concerning factors that characterize
modern production in an industrial environment.

System and software engineering in industry is a complex
process that is subject to many standard and certification

978-1-61284-4577-0085-9111/$26.00 ©2011 IEEE

Fabio Massacci, Federica Paci

Department of Information Engineering and Computer
Science

University of Trento
Povo, Trento

{Fabio.Massacci,Federica.Paci}@unitn.it

processes, in particular when the critical security
infrastructures is at stake.
The need to show compliance with standards e.g ISO 15288
and ISO 12207, respectively for system and software
engineering makes often the engineering process quite rigid.
Such rigidity is further increased when those security aspects
must be further taken into account. Security standards or best
practices must be considered such as ISO 27000,
EBIOS,CORAS, CRAMM, OCTAVE, BSIMM [16-20]. The
design process must also be compliant with those standards.
For complex systems the security engineering process is also
inevitably supported by artefacts (UML models of the system
to be, DOORS format for requirements [9], UML risk profiles
in CORAS [17] etc), and large companies tend to adapt and
customize these artefacts to fit their needs and application
domains [14,15]. The combination of these two factors makes
each step of security engineering process highly customized
and highly rigid and de facto unchangeable, as the switching
cost would be too high. We end up with the combination of
legacy software engineering processes.
So what happens when a security requirement or a threat
model changes? For example, in the air traffic management
domain, 9/11 has dramatically changed the threat model and
implied a different design of the "interface" between cabin and
cockpit. Changes must percolate through these structures and
they might not get through completely. The solutions proposed
by most researchers is to have a unique process integrating
security requirements, risk assessment and security
architectures [1,2,3].

Contribution of the paper

In this paper we propose a security engineering process where
the presence of proprietary steps is not a liability. We focus
our attention on the interactions between the security risk
manager, the requirement manager, and the system designer
and we show how the activities performed by these
stakeholders can be orchestrated. The key feature of the
orchestrated process is separation of concern principle. An
important advantage of separation of concern is that in-depth
expertise in the respective domains is not a prerequisite. The

137

orchestrated process allows the separate domains to leverage

on each other without the need of full integration. As a

counterpart, consistency of concerns should be ensured. We
assume that security risk manager, the requirement manager,

and the system designer share a minimal set of concepts which

is the interface between their respective processes: each

process is conducted separately and only when a change

affects a concept of the interface, the change is propagated to
the other domain.

The paper is structured as follows. Section II introduces the

running example based on the evolution of ATM systems that

is taking place as planned by the Single European Sky ATM

Research (SESAR) Initiative. In Section III we instantiate the

requirement and the security and system domains with SI* and
Security DSML modeling languages respectively. In Section

IV we present the interface between the system engineering

process and the risk analysis process. In Section V, we outline

the importance of including risk analysis into system

engineering process and we illustrate a security engineering

process based on the collaboration between the security risk
manager, the requirement manager, and the system designer.

In section VI, we illustrate the orchestrated process based on

the running example in Section II. Section VII presents related

works. Section VIII concludes the paper.

II. RUNNING EXAMPLE

To illustrate the change propagation process, we will focus

on the ongoing evolution of Air Traffic Management (A TM)

systems planned by the ATM 2000+ Strategic Agenda and the

Single European Sky ATM Research (SESAR) Initiative [4].

Part of ATM system's evolution process is the introduction

of a new decision support tool for air traffic controllers

(ATCOs) called Arrival Manager (AMAN) in order to support

higher traffic loads. The main goal of the AMAN is to help

ATCOs to manage and better organize the air traffic flow in

the approach phase. The introduction of the AMAN requires

new operational procedures and functions and imposes new

security properties to be satisfied. Before the addition of the

AMAN, the Sector Team 1 had to manually perform the

operations related to the approach phase: the generation of the

arrival sequence and the allocation of runaways. Now, some of

the operations that were manually done by Sector Teams are

performed by the AMAN such as providing sequencing and

metering capabilities for runways, airports or constraint points,

creating an arrival sequence using 'ad hoc' criteria, managing

and modifying proposed sequences, supporting runway

allocation at airports with multiple runway configurations, and

generating advisories for example on the time to lose or gain,

or on the aircraft speed. The introduction of the AMAN

requires also the addition of a new role between ATCOs,

called Sequence Manager (SQM), who will monitor and

modify the sequences generated by the AMAN and will

1 . . .
The sector team consists of a Tactical Controller and a Plannmg Controller.

provide information and updates to the Sector Team.

III. BACKGROUND

We instantiate the requirement framework to SI* [3] and the

risk framework to Security DSML [13].

SI* is a requirement framework which supports both early and

late requirement analysis. SI* has several extensions, but in
this paper we focus on the trust and risk extension proposed in

[2]. We only consider a subset of SI* relations, namely

AN DIOR decomposition, means-end, require, request, and

dependency and trust relations. We also consider the business

object [5] concept which is a combination of goals, processes,

and resources.

•

Figure 1. Example of sr* model

The requirement analysis consists of five steps: I)Identify

relevant stakeholders, modeled as actor (circle) and its
structure; 2) Capture and refine actor's goals (rounded

rectangle); 3) Define means - i.e., process (hexagon) or

resource (rectangle) - to achieve their goals; 4) Model

strategic dependencies between actors in

fulfilling/executing/providing some goals/processes/resources;

5) Model specific aspects such as security or risk:
e.g introduce security goals, which are goals concerning the

fulfillment of security properties [I] or assess the achievement

level of high-level goals, such as risk level [2].

The requirement analysis is an iterative process that aims at
refining the stakeholders' goals until all goals are achieved.

The results of the analysis process are captured by a SI* model

as the one in Figure 1 illustrating the running example

introduced in Section 2. The model consists of four actors:

Planning Controller (PLC), Tactical Controller (TCC),
Radar and Flight Data Processor (FOPS). The PLC has

one main goal that is Manage Aircraft Safety that is

decomposed into Manage Aircraft in the Sector and

Manage Incoming Traffic subgoals. The latter goal is

delegated to TCC who fulfills by providing the process

138

§ Risk level
Befo re m ana gement
Sl:'Ieflty Rllk Ll'Vel HI91l
OpporrumtyRl5KLevel:High
RlskL�v�J: High

!3 Risk mana ement I
Rlsks�cufity le'/eiMedium I Stra�e9Y: R�dlictlon I

� D,amaqe Risk level § Essential Element Fail ure III the b n Risk

ts.=q", =",,=;:===lE-/m-pa-c ted---+���eafi�;oO���:� manageme t
element

TCCcomputes the provisioning of I�
eore management

J
siak�:safely

I
Human life Dam

J
,-----"-=-� -------'-'1

Supporting element Damage t<lndltion Risk
bfmhstr�ngm F'I . th .. . f Ii 1

I �TarQet

SmrityLI:'I�:Medium

l'

��a� I �lity High: Integritj a�::l
e
�qu::::�����I���O O�is7a�es

Occurrenceprobabillty:High
Threaiagenr:TCC
Threat operatorNo

I 8 Vul"",""y I l .�'� coor Ina ronworf(ro�a I
Vuln�rablI I I'! Lev�: H l gh I

Figure 2. An example of Security DSML model

Compute Arrival Sequence. This task requires the resources

Flight Data and Surveillance Data that are provided by the

FOPS and the Radar respectively.

Security DSML is the language and a tool developed to
capture the security risk analysis concepts derived from the
French EBIOS methodology [16]. As a tool, Security DSML
realizes a Viewpoint of a system Architecture Model as defined
in coming [SO 420[0 standard [23].

The main security concepts are the following:
• Essential element: an element of the system at

Business Architecture or Service-oriented

Architecture Plans.
• Damage: the impact related to a risk on the

essential elements of system.
• Target: an element of the system potentially

threatened by one or more threats.
• Vulnerability: weakness in a system, system

security procedures, internal controls, or

implementation that could be exploited.
• Threat: any circumstance or event with the

potential to adversely impact a system through
unauthorized access, destruction, disclosure,
modification of data, and/or denial of service.

• Risk: possibility that a particular threat will
adversely damage an element of the system

design.
• Security objective: expression of the intention to

counter identified risks by goals regarding the

security of the system.
• Security requirement: a functional or assurance

general specification covering one or more

security objectives.
• Security solution: a security measure that

implements a security requirement.

Figure 2 shows the A TM example. The model starts from the

activity TCC computes the sequence called an Essential
Element in Security DSML language. A potential Damage

Failure in the proVISioning of correct or optimal arrival
information is identified. The ATC02 as supporting elements
of the activity, called Targets in Security DSML, are

vulnerable to High coordination workload, and are subject to

the Threat ATCO mistake. Then the Risk Failure in the
provisioning of correct or optimal arrival information is
identified, which has a high risk level, which needs to be

reduced to at least medium.

IV. CONCEPUAL MAPPING

Even though conducted separately, the requirement analysis,
and the risk analysis processes can be orchestrated so that they
can benefit from the respective results. In order to allow the
orchestration between these processes, we need to identify a set
of concepts that is the interface between them (see Table I).

TABLE 1. INTERFACE

I Conceptual Mapping
Requirement Risk Architecture Type

Business Object Essential Elemeut Shared

Goal Security Objective Mapped

Security Goal
Security

Mapped
Requirement

Process
Security

Mapped
Solutiou

We distinguish the interface concepts in shared elements and
mappable elements. The shared elements are model elements
that conceptually have the same semantic in the three domains.
The mappable elements are elements from one domain that are
not shared by the other, but nevertheless can be mapped to
elements of the other domain.

When a change affects a mappable or shared element in one
domain such change is propagated to the other domain. The
following table summarizes the conceptual mapping.

V. CHANGE MANAGEMENT PROCESS

[nternational standards like [SO/IEC 15288:2008 and [SO/IEC

12207:2008 [2 [, 22] describe the system and software life

cycle of the engineering process and including clauses

mentioning that non-functional properties such as security
should be considered in different phases.

[n security specialty engineering, risk analysis
methodologies such as EBIOS, CORAS or CRAMM serve
security risk managers to produce a rationale for security
requirements and assess the risks in an exhaustive way, as
needed in domains such as administration or military systems.
The risk management process does not cover the entire security
engineering activities but is a key starting point to them.

Thus a first issue is to show how the risk management process
and security requirement analysis can collaborate with the
global system engineering process described in those

2
A TCO stands for Air Traffic Controller, which here means Planning

Controller (PLC) and Tactical Coutroller (TCC).

139

System Context Processes Software Specific Processes
'--Ag-:--IHme-- IlI ---' ProjlCl '------=r:-ec-:-hn -=-itil---:I---'

Proc.sses Processes Processes

_ """""
(O�UfJ

"""""""
�bDrfNKn
Proot55(�stU1l
5Y*m�b

-­ICb.o<o�·.�
Dtc&ian MlNgMlNt 5�tlmArc:hillcbr.JI

PlooMs 0&qI PIOCfts
�"1I 1"""1.01

SW Impltm.llI­
alien Processes
Sdtwn�btiGn

""",,
1a...1J.Q

��t. M»)SiSf'ftIOKS
(CI.lI.ISt71.2)

SWSupport
Proeesses

11'�Dtt:iltdo.ign ,""""
1Cb.M1JAI I ��I

II ""
",-,

(ca..M7.1J1
�rtV.cImon

.......
1""""'.2.l!

A

V
$oh __ �ifi�

'tsUlGfrcctss
(0.--7.1.1) I ��·I

Sdtw .. _
R�'OfI��

[CbuR12.1)

Software Reuse PrOCe!OSfS

Figura 3. ISOllEe 12207 vs EBIOS process

engineering standards. The difficulty resides in the necessary
iterations needed to refine the security requirements since some
vulnerabilities and risks will appear only once the system
architectural design has been set up.

This article focuses on how the risk engineering process
which has been standardized independently can be orchestrated
into the overall system engineering process. In particular we
investigate how the processes Stakeholder Requirements
Definition (Clause 6.4.1), Requirements Analysis (Clause
6.4.2), and Architectural Design (Clause 6.4.3) processes of
ISOIIEC 12207 can be orchestrated with EBIOS risk
methodology activities (see Figure 3).

The resulting orchestrated process is represented in Figure
4. The stakeholder relationship3 technical manager gets the
needs and requirements from the stakeholders (Clause 6.4.1).
He pushes the information related to security needs to the
security risk manager who expresses the unwanted damages
and defines the first security objectives. The stakeholder
relationship technical manager validates the security objectives
with the stakeholders and consolidates them before sending
them to the requirement manager. Then the requirement
manager consolidates them with requirements from other
stakeholders and sends all the requirements to the system
designer.

The system designer analyzes the requirements (Clause
6.4.2) and defines the functions of the system. Once this is
done, the security risk manager updates the essential elements
(Activity I) based on the functions of the system, updates the
damages (Activity 2), adds some security objectives (Activity
8), defines first security requirements (Activity 9) and sends
them to the system designer and to the requirement manager.

3 . .
The stakeholder relatIOnshIp manager in the majority of requirement

engineering framework is called requirement manager

The system designer validates the requirements analysis with
the design authority who propagates it.

The system designer proceeds to architectural design of the
system, allocating functions to elements of the system (Clause
6.4.3). This new organization of the model of the system is
analyzed by the security risk manager who evaluates carefully
the risks and defines security solutions (Activities 3 to 10), and
sends the updates of the security solutions to the system
designer who consolidates the system design and validates the
architectural design with the design authority who propagates
it. Architectural design and updated requirements are
propagated to the system engineering manager and the security
engineering manager for them to complete the design at
physical layer and implement it (Clause 6.4.3 and Clause
6.4.4).Once he has chosen the security solutions, the security
engineering manager sends the information to the security risk
manager for targets and vulnerabilities determination
(Activities 3 and 4) and a full update of the risk management
cycle (Activities 5 to 10).

The updates are passed through the security engineering
manager to the system engineering manager. The system
engineering manager validates the architectural design and the
existing elements of the implementation with the design
authority.

VI. APPLICA nON TO THE ATM DOMAIN

Here we illustrate some of the steps of the integrated process

that involves the security risk manager, the requirement

engineer and the system designer, by using the evolution
scenario introduced in Section II.

1) The stakeholder relationship technical manager and the

security risk manager interact to identify an initial set of

security objectives to be passed to the requirement

manager.

140

j--

Sec ; ReqUirements Requirements
RMEsse;,tial Elements,

�
' �;;;;;;;;;;;;t===t

Apivilies 1 ,2,B,9 (�:�:: 6 4 2)
Req'iirementsAnaIYSis���l;;:::;::::::;:::;t==�

i (ClaUSe64_2l!f

-----i--------------------i-------RMRisKS;--i---i isec SOlutjO��nl"= - ===:;===ton ' rChitectural
i f\ctivities 310 ' 0 1 r Design i Architectural � Lj Process

_____ �-_�!_�-�;¥��_
�

�����
�

::;::;:::lll�
,(,C:I'":":6.�43�) ����l_�-

; Ar�hltecl�1 0 ign Proce�

R�ulnerabjlitieS n
Adlvltles 310 t � I b

, ,
Architectur�1 Design Process ri,

Imple���U��!;
)
LtI �==�===i====i===�

I (Clause 6.4 4) �

Implementati recess

Figure 4.ISOIIEC 12207 sub-set of processes and EBIOS collaboration

diagram

2) The stakeholder relationship technical manager passes the
requirements proposed by the stakeholders and the initial
security objectives to the requirement manager. A change
request is triggered for the requirement domain: the SI *
model illustrated in Figure 1 is produced by the
requirement manager.

3) The system designer analyzes the SI* model provided by

the requirement manager and then passes it to the security

risk manager.

4) The security risk manager identifies the following new
security objectives:

• 01 The system shall be computed

automatically by an Arrival Manager system

that covers the risk

o Rl Failure in the provisioning of
correct or optimal arrival information
due to A TCO mistakes.

• 02 The update of the system should be handled
through a dedicated role of Sequence Manager
that covers the risk Rl.

The above security objectives are refined into the
following security requirements:
• REI The system should integrate an AMAN

(refines security objective 01)
• RE2 The organization should integrate a SQM

(refines security objective 02).
Figure 5 represents the Security DSML model

updated with the new security objectives and security

requirements.

5) The changes into the Security DSML model trigger a

change request for the requirement domain. The

requirement manager receives the new security objectives
and requirements and updates the SI* model as shown in

Figure 6: two new actors, AMAN and the SOM have been
added with their goals, process and resources.

6) The new processes Compute Arrival Sequence provided

by AMAN and Monitor and Modify provided by SOM
identified by the requirement manager has to be

propagated to the system designer and to the security risk

manager.

Figure 5. Security DSML Model after the introduction of AMAN

The security risk manager assesses the new processes

proposed by the requirement manager and defines new
security solutions to match the processes (outlined in red

in Figure 5). Then, the security risk manager passes the
identified security solutions to the system designer for
validation.

Figure 6. SI* Model after the introduction of the AM AN and SQM

VII. RELATED WORK

The predominant standards for system and software
engineering are ISO/IEC 15288 and 12207 [21,22]. Upcoming
ISO/IEC 42010 [23] standard describes the common
vocabulary and framework for working on several concerns
and specialty engineering viewpoints which all refer to a
common architecture description.

Among the security risk analysis methods CORAS [17] is
based on UML environment and has proposed new techniques
for structured diagrams. EBIOS [16] released a simplified

EBIOS 2010 methodology which is more suitable for

architectural engineering environment.
Existing requirement engineering proposals have been

extended to include security concepts in the requirement

141

conceptual models and to support security related analysis. Van
Lamswerde extended KAOS [1] by introducing the notion of
obstacles to capture exceptional behaviours and anti-goals to
model the intention of an attacker to threaten security goals.
Massacci et al.[3] have defined Secure Tropos for modeling
and analyzing authorization, trust and privacy concerns. Haley
et al. [6] extend problem frames to determine security
requirements for the system by considering possible security
threats. Elahi et al. [7] extend i* with security related notions
(e.g., attacker, vulnerability, malicious goal) for capturing and
analyzing the impact of vulnerabilities to software systems.
Asnar et al. [2] extend also i* with the notion of uncertain
events and treatments to support the risk assessment process
into requirement engineering process.

With respect to these proposals, our work does not require
to extend existing requirement frameworks at modeling and
process level but it just requires the requirement analyst and the
risk analyst to share the understanding of a set of concepts to
be able to communicate and share the results of the respective
analysis processes. Moreover, our orchestrated process has also
another advantage: it supports change propagation between the
requirement and risk domain which is enabled by the shared
interface.

In fact, only some requirement engineering proposals
provide support for handling change propagation and for
change impact analysis.

Chechik et al. [11] propose a model-based approach to
propagate changes between requirements and design models
that utilize the relationship between the models to
automatically propagate changes. Hassine et al. [12] present an
approach to change impact analysis that applies both slicing
and dependency analysis at the Use Case Map specification
level to identity the potential impact of requirement changes on
the overall system. Lin et al. [10] propose capturing
requirement changes as a series of atomic changes in
specifications and using algorithms to relate changes m

requirements to corresponding changes in specifications.

VIII. CONCLUSIONS

We have proposed a change management framework for

legacy security engineering processes. The key idea is to

separate concerns between the requirements, risk and

architectural domains while keeping an orchestrated view. The
orchestration has been based on the mapping of concepts

among the domains so that little knowledge is required from

the requirement manager about the other domains, and

similarly for security risk manager and the system designer.
The processes are then orchestrated in the sense that when a

change affects a concept of the interface, the change is

propagated to the other domain.

We have illustrated the framework using an example of

evolution taken from the air traffic management domain. We

are planning to apply the framework to other industrial case

studies e.g the evolution of multi-application smart cards.

ACKNOWLEDGMENT

This work has been partly funded by EU project - Network of

Excellence on Engineering Secure Future Internet Software
(NESSoS) and by the EU-FP7-FET-IP-SecureChange project.

REFERENCES

I. A. van Lamsweerde, "Elaborating security requirements by construction
of intentional anti-models," in Software Engineering, 2004. ICSE 2004.
Proceedings. 26th International Conference on, 2004, pp. 148-157.

2. Y. Asnar, P. Giorgini, and J. Mylopoulos, "Goal-driven risk assessment
in requirements engineering," Requirements Engineering, pp. 1-16, (to
appear).

3. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone,
"Requirements engineering for trust management: model, methodology,
and reasoning," International Journal of Information Security, vol. 5, no.
4, pp. 257-274, Oct. 2006.

4. EUROCONTROL, "ATM Strategy for the Years 2000+," 2003.

5. Y. Asnar, P. Giorgini, P. Ciancarini, R. Moretti, M. Sebastianis, and N.
Zannone, "Evaluation of business solutions in manufacturing
enterprises," International Journal on Business Intelligence and Data
Mining, vol. 3, no. 3, pp. 305 - 329, 2008.

6. C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, "Security requirements
engineering: A framework for representation and analysis," IEEE Trans.
Softw. Eng., vol. 34, pp. 133-153, January 2008.

7. G. Elahi, E. Yu, and N. Zannone, "A vulnerability-centric requirements
engineering framework: analyzing security attacks, countermeasures,
and requirements based on vulnerabilities," Requirements Engineering,
vol. 15, pp. 41-62, 2010.

8. L. Liu, E. Yu, and J. Mylopoulos, "Security and privacy requirements
analysis within a social setting," in Proceedings of the 11th IEEE
International Conference on Requirements Engineering. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 151-161.

9. DOORS. http://www-Ol.ibm.com/software/awdtools/doors/.

10. L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and 1. Moffett, "Introducing
abuse frames for analysing security requirements," in Proceedings of the
11 th IEEE International Conference on Requirements Engineering.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 371-372.

II. M. Chechik, W. Lai, S. Nejati, J. Cabot, Z. Diskin, S. Easterbrook, M.
Sabetzadeh, and R. Salay, "Relationship-based change propagation: A
case study," in Proceedings of the 2009 ICSE Workshop on Modeling in
Software Engineering, ser. MISE '09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 7-12.

12. J. Hassine, J. Rilling, and J. Hewitt, "Change impact analysis for
requirement evolution using use case maps," in Proceedings of the
Eighth International Workshop on Principles of Software Evolution.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 81-90.

13. V. Normand, E. Felix, "Toward model-based security engineering:
developing a security analysis DSML", ECMDA-FA, 2009.

14. Eclipse Modeling Framework
(EMF)http://www.eclipse.orgimodeling/emf/.

IS. Eclipse Graphical Modeling Framework
(G M F)http://en. wikipedia.org/wiki/Graphical_ ModelingJramework.

16. EBI OS. http://www.ssi.gouv.fr/en/confidence/ebiospresentation.html

17. CORAS, http://coras.sourceforge.net/, SINTEF.

18. CRAMM, http://www.cramm.com. Siemens.

19. OCTAVE, http://www.cert.orgloctave/, Camegie Mellon.

20. BSIMM, Building Security In Maturity Model, http://bsimm.coml.

21. ISO/IEC 15288, Systems and software engineering - System life cycle
processes, ISO, 2008.

22. ISO/IEC 12207, Systems and software engineering - Software life
cycle processes, ISO, 2008.

23. ISO/IEC FCD 42010, Architecture description, draft.

142

