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Abstract

A common conceit is that the typical cyber attacker is assumed to be all powerful and
able to exploit all possible vulnerabilities with almost equal likelihood. In this paper we
present, and empirically validate, a novel and more realistic attacker model. The intuition
of our model is that a mass attacker will optimally choose whether to act and weaponize
a new vulnerability, or keep using existing toolkits if there are enough vulnerable users.
The model predicts that mass attackers may i) exploit only one vulnerability per software
version, ii) include only vulnerabilities with low attack complexity, and iii) be slow at
introducing new vulnerabilities into their arsenal. We empirically test these predictions by
conducting a natural experiment for data collected on attacks against more than one million
real systems by Symantec’s WINE platform. Our analysis shows that mass attackers fixed
costs are indeed significant and that substantial efficiency gains can be made by individuals
and organizations by accounting for this effect.

Keywords: Cyber Security, Dynamic Programming, Malware Production, Risk Management
JEL Classification: C61, C9, D9, L5

Vulnerabilities in an information systems allow cyber attackers to exploit these affected
systems for financial and/or political gain. Whilst a great deal of prior research has focused
on the security investment decision making process for security vendors and targets, the
choices of attackers are less well understood. This paper is the first attempt to directly
parameterize cyber attacker production functions from first principles and the empirically
fit this function to empirical data.

Our main results challenge the notion of all powerful attackers able to exploit a broad
range of security vulnerabilities and provides important guidance to policy makers and po-
tential targets on how to utilize finite resources in the presence of cyber threatsE
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!An early security reference on this conceit can be found in (Dolev and Yao||1983a), page 199) where a
protocol should be secured “against arbitrary behavior of the saboteur”. The Dolev-Yao model is a quasi
“micro-economic” security model: given a population with several (interacting) agents, a powerful attacker
will exploit any weaknesses, and security is violated if she can compromise some honest agent. So, every
agent must be secured by mitigating all vulnerabilities. A more gentle phrasing suggests that the likelihood
that a given vulnerability is exploited should be at maximum entropy and hence the only dominating factor
will be the criticality of that vulnerability.
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A natural starting point when attempting to evaluate the decision making of attackers is
to look at the actual ‘traces’ their attacks leave on real systems (also referred as ‘attacks in
the wild’): each attempt to attack a system using a vulnerability and an exploit mechanism
generates a specific attack signature, which may be recorded by software security vendors.
Dumitras and Shou (2011) and Bilge and Dumitras| (2012)) provide a summary of signature
identification and recording, whilst |Allodi and Massacci (2014)) shows how they can be linked
to exploit technology menus. By observing the frequency with which these attack signatures
are triggered, it is possible to estimate (within some level of approximation) the rate of
arrival of new attacks. Evidence from past empirical studies suggests a different behavior
depending on fraud type; for example, Murdoch et al.| (2010]) shows that attackers focussing
on chip and pin credit cards, which require physical access, are very proactive and rapidly
update their menu of exploits; for web users, Allodi and Massacci| (2014) and Nayak et al.
(2014) indicate that the actual risk of attacks in the wild is limited to hundred vulnerabilities
out of the fifty thousand reported in vulnerability databases. Mitra and Ransbotham, (2015))
confirm these findings by showing that even (un)timely disclosures do not correlate with
attack volumes.

These empirical findings are at odds with the classical theoretical models of attacker
behaviour by which attackers can and will exploit any vulnerability Dolev and Yao (1983a),
and remain largely un-explained from a theoretical perspective. This paper fills this gap by
identifying a new attacker model that realistically unifies the attacker’s production function
with empirical evidence of rates of arrival of new attacks worldwide. The current corpus of
results provide strong prima-facie evidence that attackers do not quickly mass develop new
vulnerability exploits that supplement or replace previous attack implementations. This col-
lective behavior is at odds with the classical theoretical models of attacker behaviour [Dolev
and Yao (1983b): attackers should exploit any vulnerability. We must therefore conclude
that attackers are rational, that the effort required to produce an exploit and hence deploy-
able malware is costly, and that they will respond to incentives in a way that is consistent
with classical models of behaviour (Laffont and Martimort 2009). Finally, this work di-
rectly impacts the development of risk models for cyber-attacks by identifying empirical and
theoretical aspects of attack and malware productionﬂ

Figure [1] shows the fractions of systems receiving attacks recorded by Symantec, a large
security vendor, for two different cases: the red line plots the fraction of systems receiving
two attacks at two different times that target the same software vulnerability (CVE). The
abscissa values represent the time, in days, between attacks, hence we would expect that
the red line would decrease (which it does) from near unity to zero. The black dashed line
represents the opposite case: the same system and the same software are attacked but the
attacker uses a new vulnerability, different from the original attack. The attack data suggests
that it takes more than two years before the number of attacks using new vulnerabilities
exceeds the number of attacks using the same vulnerabilities, and about 3-4 years before a

2Whilst challenging the maximum entropy notion may initially appear to the informed reader as attacking
a straw man, the underpinning ideas of Dolev-Yao persist into to the internet era (through all phases), see
for instance comments in [Schneier| (2008]) that cover similar ground. Variants of the all-powerful attackers are
proposed (e.g. honest-but-curious, game-based provable security models) but they only changed the power
and speed of attacks not the will: if there is weakness that the attacker can find and exploit, they will. Papers
analyzing web vulnerabilities |Stock et al.| (2013), Nikiforakis et al.| (2014)) report statistics on the persistence
of these vulnerabilities on internet sites as evidence for this all powerful effect and broad coverage of security
vulnerabilities. We would like to emphasize that we are not arguing, necessarily, that there is systematic
over-investment in information security, but that presuming the probability mass function relating likelihood
of a successful attack to exploitable vulnerabilities, by severity category, is at or close to maximum entropy
is sub-optimal for security investment decision making.
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Figure 1: Distribution of time between of subsequent attacks with similar signatures.

Note: Fraction of systems receiving the same attack repeatedly in time (red, solid) compared to
those receiving a second attack against a different vulnerability (black, dashed). The vertical line
indicates the number of days after the first attacks where it becomes more likely to receive an
attack against a new vulnerability rather than against an old one.

complete refresh occurs.

Our methodological contribution is twofold. First, we specify a novel theoretical model
of the dynamic decision making process of the attacker that is based on Stokey’s logic of
inaction, see |Stokey| (2008). We model the timing of effort by the attacker as a dynamic
programming problem, which we initially solve in its generality. For the purpose of empirical
analysis we then restrict it to the case of an attacker focusing on the ‘next’ update.

Our main prediction is that the complexity of implementation of a vulnerability endoge-
nously interacts with the update time and attackers will predominantly flock to the low
hanging fruit of vulnerabilities with low complexity and high impact. Second, we capture
such relations by deriving, directly from the theoretical model, a corresponding robust para-
metric regression model of equilibrium update times and hence reverse engineer part of the
malware production function, a first in this literature. To ensure that the causal relations
predicted in the theoretical model are captured in our empirical study, we control for several
factors related to the characteristics of the user and their system for each recorded pair of
attacks in the data (e.g. user geographical locations). This work is the first to explicitly
consider an attacker with fixed-costs, and to validate the theoretical predictions with an
empirical analysis derived directly from the analytical model.

The remainder of this paper is organized as follows § provides a brief review of the
current research on attacker technologies and production functions. § provides a dynamic
model of attacking effort in continuous time with discrete update intervals, this model is
then used to compute a linear equilibrium between updates of attackers technologies and the
intensity (measured by machines attacked). We utilize the specific insights from this model
to determine the Markov conditions needed to estimate an empirical model in § utilizing
over two million attack signatures and the the vulnerabilities targeted by those signatures.
We then provide some brief commentary on the results in § and then outline implications
and directions for future work in §.



1. Background

The economic decision making and the organization of information system security has
been explored from a target perspective quite thoroughly in recent years. [Anderson| (2008)
provides a good summary on the early extant literatureEl Commonly, the presence of vul-
nerabilities has been considered as the starting point for the analysis, as it could allow an
attacker to take (total or partial) control of a system and subvert its normal operation for
personal gain.

\Asghari et al.| (2013)), Van Eeten and Bauer| (2008), [Van Eeten et al.| (2010) address the
economic incentives (either perverse or well aligned) in addressing security threats. Market
based responses, such as bug bounty programs, are discussed in Miller| (2007)) and |[Frei et al.|
(2010) whilst Karthik Kannan (2005) and Finifter et al. (2013)) also address the issue of
vulnerability markets and the value of vulnerabilities to developers, organizations that may
potentially be targeted, and indeed attackers.

The consensus in the security literature appears to have settled on the view that the
severity of the vulnerability, as measured by a series of metrics, should be used as a direct
analogue of risk. For a broad summary of the metrics and risk assessments involved in this
domain see [Mellado et al. (2010) (technology based metrics); Sheyner et al. (2002), Wang
et al. (2008), Manadhata and Wing (2011) (attack graphs and surfaces); and Naaliel et al.
(2014), [Wang et al.| (2009), Bozorgi et al|(2010),/Quinn et al.| (2010) (severity measure metrics
and indexation). From an economic perspective Ransbotham and Mitral (2009)) studies the
incentives that influence the diffusion of vulnerabilities and hence the opportunities of the
attacker to attack a target’s systems (software and infrastructure). The standard de facto
metric for the assessment of vulnerability severity is the Common Vulnerability Scoring
System, or Cvsﬂ in short (CVSS-SIG| (2015). Hence, the view is that any open vulnerability
will eventually be exploited by some form of malware and the target organization will then
be subject to a cyber attack.

Recent studies in the academic literature have challenged the automatic transfer of the
technical assessment of the ‘exploitability’ of a vulnerability into actual attacks against end
users. Bozorgi et al. (2010 and [Allodi and Massacci (2014)) have empirically demonstrated
on different samples a substantial lack of correlation between the observed attack signatures
in the wild and the CVSS type severity metrics. The current trend in industry is to use
these values as proxies demanding immediate action (see Beattie et al.| (2002)) for operating
system security, PCI-DSS| (2010) for credit card systems and (Quinn et al.| (2010) for US
Federal rules).

In particular, prior work suggests that only a small subset of vulnerabilities are actually
exploited in the wild (Allodi and Massacci|2014), and that none of the CVSS measures of
severity of impact predict the viability of the vulnerability as a candidate for an implemented
exploit (Bozorgi et al.[2010). Bozorgi et al.| (2010) argue that besides the ‘technical’ measure
of the system’s vulnerabilities, other factors should be considered such as the value or cost
of a vulnerability exploit and the ease and cost with which the exploit can be developed and
then deployed.

Mitra and Ransbotham) (2015) also indicate that early disclosure has no impact on attack
volume (number of recorded attacks) and there is only some correlation between early dis-

3Policy, cost sharing and incentives have also been comprehensively explored from a target perspective in
[August and Tuncal (2006} 2008, [2011)) and |Arora et al.| (2004} 2008).

*The CVSS score provides a standardized framework to evaluate vulnerability severity over several metrics,
and is widely reported in public vulnerability databases such as the National Vulnerability Database
maintained by the National Institute of Standards in Technology (NIST).
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closure and the ‘time-to-arrival’ of exploits: hence providing additional evidence reinforcing
the lack of ‘en mass’ migration of attacks to newly disclosed vulnerabilities.

On a similar line, Herley| (2013) posits the idea that for a (rational) attacker not all attack
types make sensible avenues for investment. This is supported by empirical evidence showing
that attack tools actively used by attackers embed only ten to twelve exploits each on the
maximum (Kotov and Massacci2013} Grier et al.|2012), and that the vast majority of attacks
recorded in the wild are driven by only a small fraction of known vulnerabilities (Nayak et al.
2014, Allodi|2015). It is clear that for the attacker some reward must be forthcoming, as the
level of costly effort required to implement and deliver the attack observed in the wild is far
from negligible. For example, Grier et al. (2012) uncovers the presence of an underground
market where vulnerability exploits are rented to attackers (‘exploitation-as-a-service’) as
a form of revenue for exploit writers. |[Liu et al. (2005 suggest that attacker economic
incentives should be considered when thinking about defensive strategies: increasing attack
costs or decreasing revenue may be effective in deterring the development and deployment of
an attack. For example, |Chen et al.| (2011) suggests that a possible mean to achieve this is to
‘diversify’ system configurations within an infrastructure so that the fraction of attackable
system by a single exploit diminishes, hence lowering the return for any given attack.

The effort needed to engineer an attack can be generally characterized along the three
classic phases from [Jonsson and Olovsson| (1997): reconnaissance (where the attacker iden-
tifies potential victims), deployment (the engineering phase), refinement (when the attack is
updated). The first phase is covered by the works of|[Wang et al.| (2008),[Howard et al.| (2005),
Nayak et al. (2014]), where the attacker investigates the potential pool of targets affected by
a specific vulnerability by evaluating the attack surface of a system, or the ‘popularity’ of
a certain vulnerable software. The engineering aspects of an exploit can be understood by
investigating the technical effort required to design one (see for example [Schwartz et al.
(2011) and |Carlini and Wagner| (2014) for an overview of recent exploitation techniques).
However,the degree of re-invention needed to update an exploit and the anticipated time
from phase two to phase three remain largely un-investigated (Yeo et al. 2014} Serra et al.
2015| Bilge and Dumitras 2012, provide some useful results in this direction).

Our model aggregates deployment and reconnaissance costs into a single measure, whereas
we explicitly model the expected time to exploit innovation and subsequent updating times
to include new vulnerabilities.

2. A Dynamic Attacker Model with Costly Effort

We consider a continuous time setting, such that 0 < ¢ < oo, where an attacker will
be choosing an optimal update sequence 0 < 171 < Ts < ...T;...Ty for weaponizing new
vulnerabilities v1, .., v,. The attackers technology has a “combination” of exploit technology
that undergoes periodic updates. Each combination targets a specific mix of vulnerabilities
and we presume that the attacker can make costly investments to develop the capability of
their technology.

The attacker starts their development and deployment activity at time ¢ = 0 by initially
identifying a set of vulnerabilities V' C V from a large universe V affecting a large number of
target systems IN. A fraction 6y of the IV systems is affected by V and would be compromised
by an exploit in absence of security countermeasures. Targets are assumed to deploy patches
and/or update systems, whilst security products update their signatures (e.g. antiviruses,
firewalls, intrusion prevention systems). Hence, the number of infected systems available for
exploit will decay with time.

We can represent vulnerability patches and security signatures as arriving on users’ sys-
tems following two independent exponential decay processes governed respectively by the
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rates A, and Aggy. The effect of A, and Ay on attacks has been previously discussed by
Arora et al.| (2004, 2008)), |Chen et al.| (2011]), whilst a discussion on their relative magnitude
is provided in |[Nappa et al. (2015). Assuming that the arrival of patches and antivirus sig-
natures are independent processes, and rolling them up into a single factor A = f(X\p, Asig),
the number of systems impacted by vulnerabilities in V' at time ¢ is

Ny (t) = Noye . (1)

For the given set of vulnerabilities Vtargeted by their technologies combination the attacker
will pay an upfront cost C'(V|0) and has an instantaneous stochastic profit function of

HV(t) = [T(t7 NV(t)7 V) - C(t7 V)]676t7 (2)

where (¢, Ny, V) is a stochastic revenue componentEL whilst ¢(t, V) is the variable costs of
maintaining the attackﬂ subject to a discount rate of §. We do not make any assumption
on the form that revenues take from successful attacks. They could be kudos in specific fora
(Ooi et al.|2012) or revenues from trading the victim’s assets in underground markets (Grier
et al. 2012, |Allodi et al.|2015).

At some point, the attacker might decide to perform a refresh of its attacking capa-
bilities by introducing a new vulnerability and engineering its exploit by incurring an up-
front cost of C(v|V). This additional vulnerability will produce a possibly larger revenue
7(t, Nyugoy(t), V U {v}) at an increased marginal cost c(¢, V U {v}). As the cost of engineer-
ing an exploit is large with respect to maintenance (C(v|V) > ¢(t,V U {v})) and neither
successful infection (Allodi et al.|2013]), nor revenues are guaranteed (Herley and Florencio
2010, Rao and Reiley| 2012} |Allodi et al.|[2015)), the attacker is essentially facing a problem
of deciding action vs inaction in presence of fixed initial costs as described by [Stokey! (2008)
and their best strategy is to deploy the new exploit only when the old vulnerabilities no
longer guarantee a suitable expected profit.

This decision problem is then repeated over time for n newly discovered vulnerabilities,
and n refresh times denoted by T;.

We define by Cy = C(V|0) the initial development cost and by Ciy1 = C(vig1|V U
{v1...v;}) the cost of developing the new exploits, given the initial set V' and the additional
vulnerabilities vy ... v;. We denote by N;(t) = Nyyyy,,...0,} (t) the number of systems affected
by adding the new vulnerability at time ¢. Similarly, we define 7;(¢) and ¢;(t) as the respective
revenue and marginal cost of the vulnerability set V' U {vy,...,v;}. Then the attacker faces
the following stochastic programming problem for n — oo

n Tit1
(@ T = argmax Gt [ i, o) - ) . @
(T1,Tn} 525 T

The action times Ty = 0, Tj+1 > T3, and Ty,41 is such that 7, (Th11, Np(Tht1)) = cn(Tht1)-
Since the maintenance of malware, for example through ‘packing’ and obfuscation (i.e. tech-
niques that change the aspect of malware in memory to avoid detection), is minimal and does

5This component accounts for the probability of establishing contact with vulnerable system (Franklin
et al.|[2007)), the probability of a successful infection given a contact (Kotov and Massacci|2013, |Allodi et al.
2013), and the monetization of the infected system (Kanich et al.[|2008, |Zhuge et al./|2009, |Rao and Reiley
2012).

SFor example, the attacker may need to obfuscate the attack payload to avoid detection (Grier et al.[2012),
or renew the set of domain names that the malware contacts to prevent domain blacklisting (Stone-Gross
et al.|2009).



not depend on the particular vulnerability, see (Brand et al.|[2010, § 3) for a review of the
various techniques, we have that ¢;(t) — 0 and therefore also T),4+1 — 0o. This problem can
be tractably solved with the techniques discussed in Stokey| (2008)), |[Birge| (2010) and further
developed in Birge and Louveaux| (2011) either analytically or numerically by simulation.
Nevertheless, it is useful to impose some further mild assumptions that result in solutions
with a clean set of predictions that motivate and place in context our empirical work in the
standard Markovian set-up needed to identify specific effects.

By imposing the history-less (adapted process) assumption on the instantaneous payoff,
with a risk neutral preference, the expected pay-off and expected utility for a given set of
ordered action times {T},...,T,} coincides. Risk preferences are therefore encapsulated
purely in the discount factor, a common assumption in the dynamic programming literature
(see the opening discussion on model choice in (Stokey 2008, Ch. 1) for a review).

Following (Birge and Louveaux 2011}, Ch. 4) the simplest approach is to presume risk neu-
trality (under the discount factor §) and solve in expectations as a non-stochastic Hamilton—
Jacobi-Bellman type problem along the standard principles of optimal decision making.

Under the assumption of stationary revenues, we define r as the average revenue across all
systems. The instantaneous expected time t payoff from deployed malware is approximated
by the following function:

Elr(t, Nyvugy ()] = rN (9ve’” + (Ovugey — 9\/)6”“4)) , (4)

where ¢t > T is the amount of time since the attacker updated the menu of vulnerabilities (by
engineering new exploits) at time 7". The first addendum caters for the systems vulnerable
to the set V' of exploited vulnerabilities that have been already partly patched, whilst the
second addendum accounts for the new, different systems that can be exploited by adding v
to the pool. For the latter systems, the unpatched fraction restarts from one at time 7.

Solving Eq. in expectations we can replace the stochastic integral over dw with a
traditional Riemann integral over dt and evaluate the approximation in expectations. By
solving the above integral and imposing the usual first order condition we obtain the following
decomposition for the optimal profit for the attacker.

{17,..., 1} = argmax Z Ti1,T}) — Cy)e 0 (5)
{Tlv 7Tn i=0
oy = N (o AT o~ O+ (Tig1-T)
H(E-ﬁ"&?j—l&) - )\ + 5 (91 ez_l + 91_16 ) <1 ) (6)

where we abbreviate 61 =0, 6y = 0y, and 0; = Oyypy, .0}

Proposition 1. The optimal times to weaponize and deploy new exploits for attackers aware
of initial fized costs of exploit development are obtained by solving the following n equations
fori=1,....n

81_[(1127 ﬂ—l)e_éTi_l 81_[(117:4-17 717:)6_51T

— S(IITsr . T — C e 0T i =0 7
X (T, ) — et 4 P @)

subject to To =0, Th41 = 00, §,A > 0.
Proof of Proposition [1]is given in Appendix O

Unrestricted dynamic programming problems such as that described in Proposition
typically do not generally have analytic solutions for all parameter configurations. They can
be log-solved either in numerical format, or by computer algebra as a system of n equations by
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setting z; = e i, y; = e %7 and then adding the n equations § log z; = Mlogy;. However,
we can relax the solution procedure to admit a myopic attacker who only considers a single
individual decision n = 1. This approximates the case when the true dynamic programming
problem results in 77 > 0 and 75 — oco. For an overview of the appropriate domains for the
use of this type of simplification see DeGroot| (2005).

Corollary 1. A myopic attacker, who anticipates an adapted revenue process from de-
ployed exploits subject to a decreased effectiveness due to patching and anti-virus updates
with a negligible cost of maintenance for each exploit, will postpone indefinitely the choice
of weaponizing a vulnerability v if the ratio between the cost of developing the exploit and
the maximal marginal expected revenue is larger than the discounted increase in the frac-
tion of exploited vulnerabilities, namely Cgf}l,v > )\LH(GVU{U} — 6y). The attacker would
be indifferent to the time at which deploy the exploit only when the above relation holds at

equality.

Proof of Corollary [1]is given in Appendix O

Whilst our focus is on realistic production functions for the update of malware, it should
be noted that the ‘all-powerful’ attacker is still admitted under our solution if the attacker
cost function C(v|V) for weaponizing a new vulnerability collapses to zero. In this case,
Corollary [I] predicts that the attacker could essentially deploy the new exploit at an arbitrary
time [0, +oc] even if the new exploit would not yield extract impact (v = 0u).

If the vulnerability v affects a software version for which there is already a vulnerability
in V,the fraction of systems available for exploit will be unchanged (6, = ¢). Hence, the
cost has to be essentially close to zero (C(v|V) — 0) for the refresh to be worth. In the
empirical analysis section § we report a particular case where we observe this phenomenon
occurring in our dataset. Based on these considerations we can now state our first empirical
prediction.

Hypothesis 1. Given Corollary [l a work-averse attacker will overwhelmingly use only one
reliable exploit per software version.

Engineering a reliable vulnerability exploit requires the attacker to gather and process
technical vulnerability information (Erickson |2008]).

This technical ‘exploit complexity’ is captured by the Attack Complexity metric pro-
vided in the CVSS. When two vulnerabilities cover essentially the same population (0y,) —
Oy ~ €) a lower cost would make it more appealing for an attacker to refresh their arsenal
as this would make it easier to reach the condition (C(:]lfv) ~ /\LM(GVU{U} — 0y) ~ €) when
the attacker would consider deploying an exploit to have a positive marginal benefit.

Hypothesis 2. Corollary [I] also implies that a work-averse attacker will preferably deploy
low-complexity exploits for software with the same type of popularity.

Corollary |1| describes a result in the limit and in presence of a continuous profit function.

Indeed according to Eq. the attacker expects to make a marginal profit per unit of

time equal to rN f(t) where lim; o f(t) — 0 and as a result %ﬁ:m

decreasing function and aHgTi

is a monotone

ﬁm — 0 for T;+1b — oo. In practice, the profit expectations
of the attacker are discrete: as the marginal profit drops below r, it is below the expect
marginal profit per unit of compromised computers. Hence, the attacker will consider the
time T;+1 = T™ < oo where such event happens as equivalent to the event where the marginal
profit goes to zero (T;+1 = oo) and hence assumes that the maximal revenue has been

achieved and a new exploit can be deployed.
8



Proposition 2. A myopic attacker, who anticipates an adapted revenue process from de-
ployed exploits subject to a decreased effectiveness due to patching and anti-virus updates with
a negligible cost of maintenance for each exploit, and expects a marginal profit at least equal

to the marginal revenue for a single machine (g—g > 7«(()%“//7((00)),\/)) will renew their exploit at
. 1 C(v|V) )
" = 5log < ~ s Doy — VN (8)

under the condition that CS}}{,V) > &+ /\LM(OVU{U} —Oy).

Proof of Proposition [2]is given in Appendix O

Assuming the cost and integral of the reward function over [0,7;] are measured in the
same numeraire and approximately within the same order of magnitude, the model implies
that the discount factor plays a leading role in determining the optimal time for the new
exploit deployment, the term % in Eq. . Typically the extant microeconomics literature
(see [Frederick et al.[2002)) sets exp(d) — 1 to vary between one and twenty percent. Hence, a
lower bound on 77 would be ~ [100,400] when time is measured in days. This implies the

following prediction:

Hypothesis 3. Given Proposition [2| the time interval after which a new exploit would
economically dominate an existing exploit is large, 77" > 100 days.

3. Experimental Data Set

Our empirical dataset merges three data sources, these are:

The National Vulnerability Database (NVD) is the vulnerability database main-
tained by the US. Known and publicly disclosed vulnerabilities are published in this dataset
along with descriptive information such as publication date, affected software, and a tech-
nical assessment of the vulnerability as provided by the CVSS. Vulnerabilities reported in
NVD are identified by a Common Vulnerabilities and Exposures identifier (CVE-ID) that is
unique for every vulnerability.

The Symantec threat report database (SYM) reports the list of attack signatures
detected by Symantec’s products along with a description in plain English of the attack.
Amongst other information, the description reports the CVE-ID exploited in the attack, if
any.

The Worldwide Intelligence Network Environment (WINE), maintained by Syman-
tec, reports attacks detected in the wild by Symantec’s products. In particular, WINE is
a representative, anonymized sample of the operational data Symantec collects from users
that have opted in to share telemetry data (Dumitras and Shoul[2011). WINE comprises
attack data from more than one million hosts, and for each of them, we are tracking up to
three years of attacks. Attacks in WINE are identified by an ID that identifies the attack
signature triggered by the detected event. To obtain the exploited vulnerability we match
the attack signature ID in WINE with the CVE-ID reported in SYM.

The data extraction involved three phases: (1) reconstruction of WINE users’ attack
history; (2) building the controls for the data; (3) merging and aggregating data from (1)
and (2). Because of user privacy concerns and ethical reasons, we did not extract from the
WINE dataset any potentially identifying information about its hosts. For this reason, it is
useful to distinguish two types of tables: tables computed from WINE, namely intermediate
tables with detailed information that we use to build the final dataset; and extracted tables,



Table 1: Variables included in our dataset

Variable Description

CVE1,2 The identifier of the previous and the current vulnerability v exploited on the user’s
machine.

T The delay expressed in fraction of year between the first and the second attack.

N The number of detected attacks for the pair previous attack, actual attack.

u The number of systems attacked by the pair.

Compl The Complexity of the vulnerability as indicated by its CVSS assessment. Can be
either High, Medium or Low as defined by CVSS(v2) |[Mell et al.| (2007).

Imp The Impact of the vulnerability measured over the loss in Confidentiality, Integrity

and Availability of the affected information. It is computed on a scale from 0 to 10
where 10 represents maximum loss in all metrics, and 0 represents no loss. |Mell et al.

(2007]).
Day The date of the vulnerability publication on the National Vulnerability Database.
Sw The name of the software affected by the vulnerability.
Ver The last version of the affected software where the vulnerability is present.
Geo The country where the user system is at the time of the second attack.
Hst The profile of the user or “host”. See Table |2| for reference.
Frq The average number of attacks received by a user per day. See Table
Pk The maximum number of attacks received by a user per day. See Table

containing only aggregate information on user attacks that we use in this research. The full
list of variables included in our dataset and their description is provided in Table

3.1. Understanding the Attack Data Records

Each row in our final dataset of tables extracted from WINE represents an “attack-pair”
received by Symantec users. We are interested in the new vulnerability v whose exploit has
been attempted after an exploit for V vulnerabilities have been already engineered. Hence,
for every vulnerability v identified by CVE; our dataset reports the aggregated number of
attacked users (/) and the aggregated volume of attacks (N') on the vulnerability v which
have previously (7 days before) received an attack on some other vulnerability identified by
CVE;.

Additional information regarding both attacked CVEs is extracted from the NVD: for
each CVE we collect the publication date (Day), the vulnerable software (Sw), the last vul-
nerable version (Ver), and an assessment of the Compl of the vulnerability exploitation and
of its Imp, as provided by CVSS (v2). At the time of performing the experiment we use the
second revision of the CVSS standard.

A CVE may have more than one attack signature. This is not a problem in our data
as we are concerned with the exploitation event, and not with the specific footprint of the
attack. However, attack signatures have varying degrees of generality, meaning that they
can be triggered by attacks against different vulnerabilities but follow some common pattern.
For this reason, some signatures reference more than one vulnerability.

"Researchers interested in replicating our experiments can find NVD publicly available at http://nvd.
nist.gov; SYM is available online by visiting http://www.symantec.com/security_response/landing/
threats. jsp. The version of SYM and NVD used for the analysis is also available from the authors at
anonymized_for_the_submission; the full dataset computed from WINE was collected in July 2013 and is
available for sharing at Symantec Research Labs (under NDA clauses for access to the WINE repository)
under the reference WINE-YYYY-NNN. In the online Appendix [7] we provide a full ‘replication guide’ that
interested researchers may follow to reproduce our results from similar sources by Symantec or other security
vendors.
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Table 2: Values of the Hst, Frq, and Pk control variables for WINE users.

Hst Description Frq/Pk Description
STABLE Host does not update and LOW #attacks < 1.
does not change country be- MEDIUM #attacks < 10.
tween attacks. HIGH #attacks < 100.
ROAM Host’s system is the same but VERYHIGH #attacks < 1000.
it changed location. EXTREME #attacks > 1000.
UPGRADE Host’s system was upgraded
without moving. Frq average X day
EVOLVE Host both upgraded the sys- Pk maximum X day

tem and changed location.

Table 3: Summary Excerpt from our dataset.

CVE; CVEy T U N Geo Hst
CVE-2003-0533 CVE-2008-4250 83 186 830 IT UPGRADE
CVE-2003-0818 CVE-2003-0818 146 1 1 US ROAM
CVE-2003-0818 CVE-2009-4324 616 1 1 CH EVOLVE
CVE-2003-0818 CVE-2009-4324 70 52 55 US EVOLVE

Note: Each < CVE{,CVEs2, 7, Geo, Hst,Frq,Pk > tuple is unique in the dataset. We here omit Frq, Pk,
and all the CVSS details of CVE; and CVE; for brevity. The column N reports the number of attacks
against CVE2 received T days after an attack against CVE; suffered by U systems characterised by a host
profile Hst and located in Geo.

In this case, we have no means to know which of the vulnerabilities was effectively
exploited by the attack. Out of 1,573 attack signatures, 112 involve more than one vulner-
ability; to avoid introducing counting errors on the number of attacks per CVE, we drop
these attack signatures.

Each pair also includes additional information on the type of host that received the
attack. We use this information to control the user’s profile in terms of countries he or
she connects to the Internet from (i.e. we trace whether the user moves geographically),
and whether the system he or she operates on changes. Users with profiles that change in
time may look different to the attacker, and may therefore be subject to different attacks
and attack volumes (see |Chen et al.|(2011)), Kotov and Massacci (2013), (Grier et al.| (2012),
Baltazar| (2011) for a discussion).

In particular, we report the host’s geographical location (Geo), and a number of proxy
measures of the ‘proneness’ of the host in receiving an attack. Table [2| reports the measured
values for each dimension and their definition.

The Hst variable measures whether the host changed geographical region since the first
attack happened (as this may affect their likelihood of receiving an attack), and whether
they update their system in the observation period. Frq and Pk measure respectively the
average and maximum number of attacks received per day by the host. We use them as
proxy variables measuring the ‘exposure’ of a host to attacks. Thresholds have been chosen
based on the distribution of attacks received per day by users in WINE.

Table [3] reports an excerpt from the dataset. Each row represents a succession of at-
tack pairs. The columns CVE; and CVEp report respectively the CVE-ID of the attacked
vulnerability in v and in the novel attack against V. The column T reports the time delay,
measured in days, between the two attacks. The column N reports the overall number of at-
tacks detected for CVE; after an attack against CVEq; U reports the number of single systems
receiving the same pair of attacks.
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Log-scale number of users that receives that many attacks

T T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5

Log scale of number of attacks per user (e.g. 3 = 1000attacks)

Figure 2: Distribution of attacks received per day by WINE users.
Note: Scatterplot distribution of attack frequency per user. Log-number of users is reported on the
y-axis; the x-axis reports (log) frequency of attacks. There is an exponential relationship between
the variables: few users receive thousands of attacks (> 1000 in the observed period), as opposed
to the vast majority that only receive a few.

The column Geo reports the country in which the second attack was recorded. Finally,
Hst reports the type of user affected by the attack as defined in Table The same CVE;
may appear multiple times in the dataset, as may the same pair CVEq, CVEy. For example
the third and fourth rows in Table [3| reports attacks against CVE; = CVE-2003-0818, CVE; =
CVE-2009-4324; one instance happened 616 days apart, while the other only 70. Only one
WINE system in Switzerland (CH) suffered from this sequence of attacks, whilst 52 systems
received this pair of attacks in the US. In both cases the systems considered are of type
EVOLVE, indicating that the affected systems have been upgraded and moved from some
other country to the country listed in Geo during our observation period.

Figure [2| reports the observed distribution on a logarithmic scale. It is apparent that
most WINE hosts receive only a handful of attacks per day, while few hosts are subject to
‘extreme’ levels of attack density (> 1,000/day). These may be hosts subject to network
floods sent by the attacker in a ‘scripted’ fashion, or a large number of individual users whose
actual, private IP address is behind a large proxy (e.g. by their internet service provider).

3.2. Descriptive statistics

Descriptive statistics of all variables are reported in Table [l Table [6] reports the count
distribution of the number of WINE users for each of these factor’s levels. It is apparent that
in the case of Hst users are uniformly distributed among the factor levels, with ROAM users
being the least frequent category. Most of the mass of the Frq and Pk distributions is at
the low end of the scale (i.e. most users receive few attacks per day both as an average and
as a maximum). From Table |§| it appears that users characterized by EXTREME or VERYHIGH
levels for Frq or Pk are outliers and may therefore need to be controlled for.

Finally, we evaluate the geographic distribution of attacks per user to identify geograph-
ical regions that may be more subject to attacks than others.

Figure [8]reports the distribution of the mean number of attacked systems per day in each
geographic area of the five continents. The distributions are significantly different among and
within continents with the exception of Africa, for which we observe little intra-continental
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Table 4: Descriptive statistics of variables for 7, N/, U, Hst, Frq, Pk, Geo.

Variable Mean  St. dev. Obs.  Variable Mean  St. dev. Obs.
Delay, Volume, Machines Geo
T 0.99 0.831 2.57TE406  Australia & New Zeal.  0.039 0.194 1.01E405
N 13.552 102.28 2.57E406 Caribbean 0.013 0.113 33,011
u 11.965 93.11 2.57E4+06 Central America 0.007 0.084 18,078
Central Asia 0 0.005 63
Hst Eastern Africa 0.001 0.026 1,733
EVOLVE 0.552 0.497 1.42E+406 Eastern Asia 0.043 0.202  1.09E4-05
ROAM 0.109 0.312 2.80E4+05 Eastern Europe 0.011 0.104 28,277
STABLE 0.076 0.265 1.95E405 Melanesia 0 0.008 159
UPGRADE 0.263 0.441 6.77E4+05 Micronesia 0.001 0.035 3,123
Middle Africa 0 0.007 112
Frq Not Avail. 0.112 0.316 2.89E405
EXTREME 0.004 0.063 10,099 Northern Africa 0.002 0.04 4,088
HIGH 0.179 0.384 4.61E4+05 Northern America 0.468 0.499 1.20E4-06
LOW 0.436 0.496 1.12E406 Northern Europe 0.023 0.151 60,009
MEDIUM 0.379 0.485 9.75E405  Polynesia 0 0.003 28
VERYHIGH 0.001 0.037 3,672  South America 0.008 0.09 20,794
South-Eastern Asia 0.023 0.15 59326
Pk Southern Africa 0 0.02 1031
EXTREME 0 0.011 292  Southern Asia 0.013 0.114 33,901
HIGH 0.296 0.456  7.60E4+05 Southern Europe 0.063 0.242 1.61E405
LOW 0.091 0.288 2.35E405  Western Africa 0.001 0.034 2,960
MEDIUM 0.609 0.488 1.57TE4+06  Western Asia 0.018 0.134 46,830
VERYHIGH 0.004 0.063 10,182  Western Europe 0.154 0.361  3.95E405

Table 5: Descriptive statistics for CVE; and CVE2 variables.

CVE; CVEg
Variable Mean  St. dev. Obs.  Variable Mean  St. dev. Obs.
Compley 1 i 0.009 0.094 227769 Comploy o i 0.009 0.096 23,803
Compley gy 0.42 0.494 1.08E+06 Comploy gy 0.334 0.472  8.58E+05
Comploy g1, m 0.571 0.495 1.47E406 Comploy go af 0.657 0.475 1.69E406
Inpoy g1 9.549 1.417  2.57TE406 Impoy go 9.681 1.37  2.57TE+06
Internet Explorer 0.096 0.295 2.47E405 Internet Explorer 0.04 0.196 1.03E4-05
PLUGIN 0.791 0.407 2.03E406 PLUGIN 0.9 0.3 2.31E+06
PROD 0.083 0.276  2.13E405 PROD 0.037 0.189 95,404
SERVER 0.03 0.171 77,507 SERVER 0.023 0.149 58,634
Pub. Year 2008.8 2.231 2.57TE406  Pub. Year 2009.4 2.131  2.57TE406

variance. The highest mean arrival of attacks per day is registered in Northern America, Asia
and throughout Europe with the exception of Southern Europe. The mapping of country
and region is defined as in the World Bank Development Indicators ]

4. Empirical Analysis

The data in our sample is quite obviously unique and hence prior to conducting any
correlative analysis we illustrate some scenarios that provide prima facie statistical evidence
on the validity of the hypotheses identified from our theoretical model.

In accordance with Hypothesis[I] the attacker should prefer to (a) attack the same vul-
nerability multiple times rather than for only a short period of time, and (b) create a new
exploit only when they want to attack a new software version.

To evaluate these scenarios we identify three types of attack pairs that are summarized in
Table |7} in the first type of attack pair (A;) the first attacks and the second attack affect the

8See http://data.worldbank.org/country for a full categorization and breakdown.
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Table 6: Number of WINE users in the Hst, Frq, and Pk control groups.

Hst #Users Frq #Users Pk #Users
STABLE 1,446,020 LOW 3,210,465 LOW 2,559,819
ROAM 96589 MEDIUM 311,929 MEDIUM 983,221
UPGRADE 306,856 HIGH 19,683 HIGH 3,783
EVOLVE 1,697,570  VERYHIGH 3,919 VERYHIGH 170
EXTREME 1,039 EXTREME 42

Africa Americas

Frequency
Frequency

4 )
Log of mean attacks/day by country Log of mean attacks/day by country

Asia Europe

Frequency

4 4
Log of mean attacks/day by country Log of mean attacks/day by country

Figure 3: Distribution of attacks per day received in different geographic regions.
Note: Kernel density of mean cumulative attacks per day by geographical region. Regions in
Americas, Asia, and Europe show the highest rates of attacks. Attack densities vary can vary
substantially per region. Oceania is not reported because it accounts for a negligible fraction of
attacks overall.

same vulnerability and, consequently, the same software version; in the second pair (Asg) the
first attack and the second attack affect the same software, but different CVEs and different
software versions; finally the first and second attacks affect the same software and the same
version but exploit different vulnerabilities (As). According to our hypothesis we expect
that A; should be more popular than As (in particular when the delay between the attacks
is small) whilst A3 should be the least popular of the three.

To evaluate these attacks it is important to consider that users have diverging models of
software security (Wash/|2010), different software have different update patterns and update
frequencies (Nappa et al.[2015), and different attack vectors (Provos et al.|2008).

For example, an attack against a browser may only require the user to visit a webpage,
while an attack against a word processing application may need the user to actively open
a file on the system (see also the definition of the Attack Vector metric in the CVSS
standard |CVSS-SIG] (2015)). As these clearly require a different attack process, we further
classify Sw in four categories: SERVER, PLUGIN, PROD(-ductivity) and Internet Explorer.
The categories are defined by the software names in the database. For example SERVER
environments are typically better maintained than ‘consumer’ environments and are often
protected by perimetric defenses such as firewalls or IDSs. This may in turn affect an
attacker’s attitude toward developing new exploits. This may require the attacker to engineer
different attacks for the same software version in order to evade the additional mitigating
controls in place. Hence we expect the difference between As and A3 to be narrower for the
SERVER category.

Figure [4] reports a fitted curve of targeted machines as a function of time by software
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Table 7: Sample Attack Scenarios and Compatibility with Work-Aversion Hypothesis

Type Condition Description Hypothesis
Ay CVE; = CVE2 The first attacks and the second attack af- Often for Hyp |3] as
fect precisely the same vulnerability and, T* — oo
consequently, the same software version
Ao CVE; # CVE2A The first attack and the second attack affect Less frequent for
Sweye, = Sweve, A the same software but different CVEs and Hyp [1| and Hyp [2] as
Vercyg, # Vercys, different software versions. 0< T <0
Az CVE; # CVExA First and second attacks affect the same Almost never for

Sweve, = Sweve, A
Vercye, = Vercye,

software and the same version but exploit
different vulnerabilities

Hypas Ovufwy = 0v

Note: We expect the vast majority of attacks generated by the work-averse attacker to be of type A;.
Ao should be less frequent than A;, as it requires to engineer a new exploit. As contradicts the work
aversion hypothesis and should be the least common type of attack.

— Al:Same cve A2:Diff cve diff version == A3:Diff cve same version
Internet Explorer PLUGIN
1000 A
1000 4
104
104
_‘(2 ——
S -_—\
g
= i ' ' ' 0 ' ' ' ' ' ' ' ' ' '
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o
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] o ——— — —— — ——— ——
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Delta (days)

Figure 4: Loess regression of volume of attacks in time.
Note: Volume of received attacks as a function of time for the three types of attack. A; is
represented by a solid black line; A2 by a long-dashed red line; As by a dashed green line. The
grey areas represent 95% confidence intervals. For Internet Explorer vulnerabilities the maximum
T between two attacks is 1288 days; for SERVER is 1374 days; PROD 1411; PLUGIN 1428. This
can be determined by the timing of first appearance of the attack in the WINE database.

category. As expected, A; dominates in all software types. The predicted order is valid for
PLUGIN and PROD. For PROD software we find no attacks against new vulnerabilities for
different software versions, therefore Ay = A3 = 0. This may be an effect of the typically
low update rate of this type of software and relatively short timeframe considered in our
dataset (3 years), or of a scarce attacker interest in this software type. Results for SERVER
are mixed as discussed above: the difference between Ao and Aj is very narrow and As is
occasionally higher than A,. Since oscillations occur within the confidence intervals they

might be due to chance as well.
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Internet Explorer. is an interesting case in itself. Here, contrary to our prediction, Ajz is
higher than As. By further investigating the data, we find that the reversed trend is ex-
plained by one single outlier pair: CVE; =CVE-2010-0806 and CVE; =CVE-2009-3672. These
vulnerabilities affect Internet Explorer version 7 and have been disclosed 98 days apart,
within our 120 days threshold. More interestingly, they are very similar: they both affect a
memory corruption bug in Internet Explorer 7 that allows for an heap-spray attack resulting
in arbitrary code execution. Two observations are particularly interesting to make:

1. Heap spray attacks are unreliable attacks that may result in a significant drop in
exploitation success. This is reflected in the Access Complexity:Medium assessment
assigned to both vulnerabilities by the CVSS v2 framework. In our model, this would
reflected in a lower return r(t, Ny (t), V') for the attacker, as the unreliable exploit may
yield control of fewer machines than those that are vulnerable.

2. The exploitation code found on Exploit—DBﬂ is essentially the same for these two
vulnerabilities. The code for CVEj is effectively a rearrangement of the code for CVEy,
with different variable names. In our model, this would indicate that the cost C'(v|V) ~
0 to build an exploit for the second vulnerability is negligible, as most of the exploitation
code can be re-used from CVE;.

Hence, this vulnerability pair is only an apparent exception: the very nature of the second
exploit for Internet Explorer 7 is coherent with our model and in line with Hyp. [1]and Hyp.
Removing the pair from the data confirms the order of attack scenarios identified in Table

We now check how the trends of attacks against a software change with time. Hyp.
states that the exploitation of the same vulnerability persists in time and decreases slowly at
a pace depending on users’ update behaviour. This hypothesis offers an alternative behavior
with respect to other models in literature where new exploits arrive very quickly after the
date of disclosure, and attacks increase following a steep curve as discussed by |Arora et al.
(2004)).

4.1. An Econometric Model of the Engineering of FExploits

We can use Proposition [2| to identify a number of additional hypothesis that are useful to
formulate the regression equation. At first we notice that 7% = O(log(6, — 0y )N). Therefore
we have a first identification relation between the empirical variable U (corresponding to N)
and the empirical variable 7 (whose correspondence to T* is outlined later in this section).

Hypothesis 4. There is a log-linear relation between the number of attacked systems U
and the delay T .

Since 9T /0((0, — 6y )N) < 0 a larger number of attacked systems U on different versions
(0, # 6y) would imply a lower delay T (as there is an attractive number of new systems
that guarantee the profitability of new attacks). In contrast, the baseline rate of attacks
impacts negatively the optimal time 7 as 91 /0(0yN) > 0 since a larger pool of vulnerable
machines makes it more profitable to continue with existing attacks (as per Hyp. [1f).

Hypothesis 5. The possibility of launching a large number of attacks against systems for
which an exploit already exists lengthens the time for weaponizing a vulnerability (N -(Very =
Ver,) T = T 1), whereas an increase in potential attacks on different systems is an
incentive towards a shorter weaponization cycle (N - (Very # Ver,) T = T ).

9See Exploit-DB (http://www.exploit-db.com, last accessed January 15, 2017.), which is a public dataset
for vulnerability proof-of-concept exploits. CVE; corresponds to exploit 16547 and CVE; corresponds to exploit
11683.
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Figure 5: Computing the delay (7) against different vulnerabilities.
Note: Change in the number of attacked systems for two attacks against different systems A =
T days apart. The first attack happens at t — 7 > 0 and the number of attacked systems
UOv U{v},t,T) is derived from Eq. as Oy Ne *¢=7) The number of systems attacked by
the new exploit introduced at T is derived as U(Ovu(e},t,T*) = N@VU{U}ef’\“*T*)dt.

When considering the effects of costs, we observe that, as 9T*/0C(v|V') > 0, the presence
of a vulnerability with a low attack complexity implies dC(v|V) < 0, and therefore reflects
a drop in the delay 7 between the two attacks. We have already discussed this possibility
as Hypothesis

As for revenues, it is 9T*/0r < 0 so that an higher expected profit would imply a shorter
time to weaponization. However, we cannot exactly capture the latter condition since in our
model the actual revenue r is stationary and depends only on the captured machine rather
than the individual type of exploit. A possible proxy is available through the Imp variable,
but it only shows the level of technical compromise that is possible to achieve. Unfortunately,
such information might not correspond to the actual revenue that can be extracted by the
attacker. For example, vulnerabilities that only compromise the availability of a system are
scored low according to the CVSS standard. However, for an hacker offering “booter services”
to on- line gamers (i.e. DDoS targeted attack against competitors) these vulnerabilities are
the only interesting source of revenues Hutchings and Clayton (2016).

However Imp can also be seen as a potential conditional factor to boost the attractiveness
of a vulnerability as the additional costs of introducing an exploit might be justified by the
increased capability to produce more havoc.

Hypothesis 6. Vulnerabilities with higher impact increase revenue and therefore decrease
number of attacks (Impgyg, > Impeyy, == U L)

As the time of introduction of an exploit 7™ can not be directly measured from our
dataset, we use 7 (i.e. the time in between two consequent attacks) as a proxy for the
same variable. Figure [5| reports a pictorial representation of the transformation. Each
curve represents the decay in time of number of attacks against two different vulnerabilities.
The first attack (blue line) is introduced at ¢ = 0, and the second (red line) at t = T™*.
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The number of received attacks is described by the area below the curve within a certain
interval. Let U(©y U {v},t,T) represent the number of systems that receive two attacks 7T
days apart, at times t — T and ¢ respectively. Depending on the relative position of t — T
with respect to T™, the interval within which reside the measured attacks on the pair of

[e.9]

vulnerabilities will be fmaX(T* ni (-)dt. Setting the number of attacks at time ¢ — 7 as
U(By,t —T) = NO,e *=T) and the attacks received on the second vulnerability at time ¢
as U(Oyuge,t) = NHVU{U}e_)‘(t_T*), we obtain

oo

Uyt T) = min (N8, Noyypy ™) / gy o)
max(7,T%*)

Solving for the two cases T* > T and T* < T, we formulate the following claim:

Claim 1.
log &£ — XT* + AT + log 6 if T* > T
logu(eVU{v}y t, T) = ])\\[ " ! jpp— (10)
The sign of the coefficient for T oscillates from positive to negative as T increases.
Proof of Claim [I] and its empirical evaluation are given in Appendix [6.4] O

Reviewing Figure [1| our data suggests that 7 is on average more than 100 days with
respect to T*. Therefore we have:

N
log = — AT + AXT* + log X + log Oy v}

Substituting 7* from Eq. , the number of expected attacked systems after T days is:

B 1 C(v|V) )
logbl——)\7-+/\{5log< N5

N
(Ovugey — 9V)N>] +log 5~ +logbyypy  (11)

Our regression model tests the hypotheses above by reflecting the formulation provided in
Eq. . T can be measured directly in our dataset; the cost of development of an exploits
C(v|V) can be estimated by the proxy variables Compleyg, , as the complexity associated with
exploit development requires additional engineering effort (and is thus related to an increase
in development effort) (CVSS-SIG| (2015). We can not directly measure the revenue r and
the number of systems N affected by the vulnerability, but we can estimate the effect of
an attack on a population of users by measuring the impact (Imp) of that vulnerability on
the system: higher impact vulnerabilities (i.e. (Impoy gy > Impoy ;) allow the attacker to
control a higher fraction of the vulnerable system, and therefore extract higher revenue r from
the attack. Similarly, the introduction of an attack with a higher impact can approximate
the difference in attack penetration (6yy,} — 0y )V for the new set of exploits as it allows
the attacker for a higher degree of control on the affected systems. Finally, high impact
vulnerabilities (Impey o gy), for example allowing remote execution of arbitrary code on
the victim system, leave the Oy} IV systems under complete control of the attacker; in
contrast, a low impact vulnerability, for example causing a denial of service, would allow for
only a temporary effect on the machine and therefore a lower degree of control. In Table
we report the sample correlation matrix for the variables included in the regression system
we will use to parameterize the model, from an econometric standpoint, the highest pairwise
correlations with 7; are Frq MEDIUM and Pk HIGH, however these have correlations of less
than 20%, as such the standard issues on rank and collinearity are not present.
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Table 8: Correlation Matrix of All Variables Included in the Model.

Model variable 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
1. T 1

2. Compleoy gor, -0.130 1

3. Impoy g 0.058 -0.237 1

4. Impoy po > Impoy gy 0.092 -0.097 0.055 1

5. Geo North. Am. 0.020 0.146 -0.040 -0.035 1

6. Geo Western Eu. 0.022  -0.026 0.011 -0.051 -0.410 1

7. Hst EVOLVE -0.084 0.024 -0.065 0.022 -0.057 0.015 1

8. Hst UPGRADE 0.054 0.004 0.030 -0.017 0.084 -0.042 -0.656 1

9. Frq HIGH 0.104 -0.050 0.052 0.107 0.087 -0.183 -0.225 -0.024 1

10. Frq MEDIUM 0.136 0.077 -0.103 0.127 0.014 0.096 -0.087 0.186  -0.369 1
11. Pk HIGH 0.166  -0.008 0.045 0.049 0.020 0.033  -0.288 0.034 0.678  0.052
12. Px MEDIUM -0.087 0.031 -0.054 -0.004 -0.023 -0.008 0.197 0.004 -0.549 0.101

Table 9: Summary of predictions derived from the model.

Model variable Regressor

Expectation

Hyp.

Rationale

T T

C(Vlv) Comploy pa, L

0VU{v} Impov ga, g

7, (Ovugwy —0v)  Impoype > Impoy gy

51 <0

B2 <0

B3 >0

Ba <0

Hyp.

Hyp.

Hyp. 6

Hyp.

= |

ff

3l Hyp.

Hyp.

[ |

4] Hyp.

Hyp.

() |

Shorter exploitation times
are associated with more
vulnerable systems, hence
Tt= U].

The introduction of a new
reliable, low-complexity ex-
ploit minimizes implementa-
tion costs, thus C | =
Uul.

High impact vulnerabilities
allow the attacker for a com-
plete control of the attacked
systems, hence fyyug,y T
= U

Selecting a higher impact
exploit for a new vulnera-
bility increases the expected
revenue and increases the
fraction of newly controlled
systems with respect to the
old vulnerability. r T =
U Land (Byygey—0v) T =
[Z%

To test our hypotheses, we set three equations to evaluate the effect of our regressors on
the dependent variable. The formulation is derived from prime principles from Eq. as

discussed above. Our equations are:

Model 1: log(U;) = o+ iTi+ € (12)
Model 2: log(l;) = -+ BoCompl; oy + € (13)
Model 3: log(U;) = -+ B3Imp; cvpoe g + Ba(Imp; oy pe > IMp; oy g )€i (14)

Where i indexes the pair of attacks received by each machine after 7" days, Compl; oy g9 1,
indicates that CVE3 has a low complexity, and Imp; oy o p indicates that CVEy has a High (>
7) impact. Both classifications for Compl and Imp are reported by the CVSS standard
specification. The correlation matrix of the model variables is reported in Table

The mapping of each term with our hypotheses and the predicted values of the regressors
are described in the Table [9] Further, we add the vector of controls Z to the regression to
account for exogenous factors that may confound the observation, as discussed in Section [3.2}
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Figure 6: Principal component analysis of location and user factors.
Each dot corresponds to the loading values for the geographical location and user specific factors
denoted Geo, Hst, Frq, and Pk factors. The axes report the loadings of the components for the
eigenvalues that explain the most variance. The farthest points from the graph origin (in green)
are factor levels with the highest level of independence.

Geo, Hst, Frq, Pk. Z is defined as

ZM = 3" ag(Geo; =d)+ > ag(Hst;=d)+ Y aqfrq,=d)+ >  aq(Pki =d) (15)

d€eGeo d€Hst d€Frq dePk

Given the model, it is reasonable to expect the variance in attacked systems to be related to
the level of some independent variables. For example, the variance of the dependent variable
U may depend on the value of 7. To address possible heteroskedasticity of the data, we
employ a robust regression next to a regular OLS and compare the results. To evaluate
the independence between the control factor levels over the respective contingency table we
employ a standard Principal Component Analysis. Figure [6] shows a plot of the analysis for
loadings of the principal components in Table

We select all eigenvalues that explain at least 10% of the variance: Geo has only three
eigenvalues above the threshold, whereas Hst, Frq, and Pk have four eigenvalues above the
threshold. Altogether they explain 87% of the variance for geo-location and 80% for user
characteristics. The corresponding components of the eigenvectors (corresponding to the
loadings of the controls) are identified and we select the control values that have the greatest
distance from the origin in the eigenvector space (at least 10% again as a sum of squares).
This guarantees that we select the controls with the highest degree of independence. This
results in eight selected controls, identified in green in Figure [6]

Our regression results are reported in Table We utilize two estimators as we have
little information on the error structure of the regression model. First is a simple OLS
estimator with Huber-White standard errors and second is a Robust fit model that utilizes
a WLS type estimator with iterative re-weighting and again we implement the sandwich
form standard error from the WLS iterations. The weighting function for the iterative re-
weighting is a bisquare function, experimentation with spectral and Andrews type weightings
suggest the regressions are insensitive to kernel and tuning function. This indicates that
the OLS estimates are very reliable for this purpose. For the robust fit we compute a
McFadden adjusted pseudo-R?, which sets the numerator as the log likelihood function at
the estimate and the denominator as the log likelihood of just the intercept alone. Note that
it is not appropriate to compare directly the pseudo-R? and the R? from the OLS estimates,
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which suggests that the model captures roughly 10% of the variation in numbers of attacked
machines, as opposed to explaining 35% of the model likelihood for the pseudo-R?.

The set of OLS and Robust regressions returns very similar estimations. The introduction
of the controls only change the sign of 51 from positive to negative for Model 1. This may
indicate that the type of user is a significant factor in determining the number of delivered
attacks, which is consistent with previous findings Nappa et al.| (2015). Interestingly, the
factor that introduces the highest change in the estimated coefficient ; for T is Compl (Model
2), whereas its estimate remains essentially unchanged in Model 3. This may indicate that
the cost of introduction of an exploit has a direct impact on the time of delivery of the exploit.
The coeflicients for all other regressors are consistent across models, and their magnitude
changes only slightly with the introduction of the controls. This should be expected: user
characteristics should not influence the characteristics of the vulnerabilities present on the
system. Hence, the distribution of attacks in the wild seems to be prevalently dependent on
system characteristics and independent of user type. The signs of the coefficients for the Imp
variables suggest that both the impact of a vulnerability and the relation of the impact of
the new vulnerability w.r.t. previous ones have an effect on the number of attacked systems.
Interestingly, a high impact encourages the deployment of attacks and increases the number
of attacked systems, whereas the introduction of a higher impact vulnerability requires the
infection of a smaller number of systems as revenues extracted from each machine increase.
This indicates that when introducing a new exploit, the attacker will preferably choose one
that grants a higher control over the population of users (HVU{U} > fy) and use it against a
large number of system. This goes in the same direction of recent findings that suggest that
vulnerability severity alone is not a good predictor for exploitation in the wild |Allodi and
Massacci| (2014), Bozorgi et al.| (2010)), and that other factors such as software popularity or
market share may play a role Nayak et al.| (2014]).

5. Discussion, Conclusions and Implications

This paper implements a model of the Work-Averse Attacker as a new conceptual framing
to understand cyber threats. Our model presumes that an attacker is a resource-limited actor
with fixed costs that has to choose which vulnerabilities to exploit to attack the ‘mass of
Internet systems’. Work aversion simply means that effort for the attacker is costly (in
terms of cognition and opportunity costs), hence a trade-off exists between effort exerted on
new attacking technologies and the anticipated reward schedule from these technologies. As
technology combinations mature, their revenue streams are presumed dwindle.

In this framework, an utility-maximizing attacker will drive exploit production according
to their expectations that the newly engineered attack will increase net profits from attacks
against the general population of internet users. As systems in the wild get patched unevenly
and often slowly in time (Nappa et al.2015)), we model the production of new vulnerability
exploits following Stokey’s ‘economy of inaction’ logic, whereby ‘doing nothing’ before a
certain (time) threshold is the best strategy. From the model a cost constraint driving the
attacker’s exploit selection strategy naturally emerges. In particular, we find theoretical and
empirical evidence for the following:

1. An attacker massively deploys only one exploit per software version. The only exception
we find is for Internet Explorer; the exception is characterised by a very low cost to
create an additional exploit, where it is sufficient to essentially copy and paste code
from the old exploit, with only few modifications, to obtain the new one. This finding

supports Hyp.
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2. Low complexity vulnerabilities for which a reliable exploit can be easily engineered
lower the production costs and favor the deployment of the exploit. This finding
supports Hyp. [2}

3. The attacker deploys new exploits relatively slowly over time, driven by a slowly de-
creasing instantaneous profit function; empirically, we find that attacks 1000 days apart
are still driven by the same exploits in about 20% of the cases, and that the effect of
the passage of time in between attacks (7) on the number of affected system is indeed
negative and very small given the current patching rate. This finding supports Hyp. [3]
and Hyp.

4. The presence of a high impact vulnerability increases the incidence of exploitation in
the wild. Similarly, gaining a higher control over the attacked systems heightens the
attacker’s revenue and decreases the number of systems that need to be infected to
balance development costs. This supports Hyp. [6]

The above findings suggest that risk associated with software vulnerabilities can not
be solely measured in terms of technical severity, and that other, measurable factors may
be included in the assessment, as previously suggested by some authors (see for example
Bozorgi et al. [2010, [Houmb et al. 2010, |Allodi and Massacci2014). While characteristics
of the attacker and of the user, such as skill or competence, in system security may remain
hard to measure, this paper shows how measurable environmental indexes may be used to
estimate the economic incentives that exists for the attacker (as suggested, for example, by
Anderson| 2008)).

5.1. Implications For Theory

The modeling of cyber attacks and cyber risk has traditionally been centered on the vul-
nerabilities present on systems and their technical severity. In recent years, this perspective
has been largely questioned as the typically limited attacker resources became empirically
apparent (Grier et al|2012), and advances in security modeling started distinguishing be-
tween opportunistic (i.e. untargeted) and deliberate (i.e. targeted) attacks (see Ransbotham
and Mitral[2009, for a discussion on this). However, current studies modeling cybersecurity
events typically think of the attacker as employing an undefined ‘attack generation func-
tion’, which too easily collapses to an ‘all-powerful’ attacker that may generate an attack for
whichever vulnerability exists.

Little theoretical discourse has been developed around the identification of models of
vulnerability exploit production. Most assessments on whether the attacker will be successful
are still produced by means of ‘expert estimates’ (Wang et al.[[2008)) or ‘technical measures of
vulnerabilities” (Naaliel et al.|2014]) that, however, are known not to correlate with attacker
choices as shown by Bozorgi et al.| (2010]). Researchers noted that “some vulnerabilities are
different than others” (Nayak et al.|2014)), but a rationale enabling this distinction between
vulnerabilities is yet to be fully discussed.

In contrast to the classic ‘all powerful attacker’ model (Dolev and Yao|[1983b) that
can and will exploit potentially any vulnerability, this paper develops the thesis that the
utility-maximizing attacker will generally ‘avoid to work’ until the perceived utility of the
deployment of a new attack becomes positive w.r.t. to expectations derived from the previous
attack at time 7. This economic perspective has been previously employed in game-theoretic
approaches (Manshaei et al. [2013), but it typically considers two actors (the organization
- namely the defender and the attacker) that react to each other’s strategies. While this
is significant for the case of targeted attacks, where the attacker can observe part or all
of the organization’s defenses and the defender chooses a strategy to decrease its attack
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surface (Howard et al.[[2005), it is unclear how this maps to the case of the ‘general attacker’
that deploys attacks against the vast Internet population. As the average Internet user has
little to no knowledge of computer and network security (Wash 2010), they are unlikely to
deploy defensive strategies and to react strategically to new attacks. Hence, in this case, the
attacker operates in an environment where relevant variables are not entirely exogenously
manipulated by an intelligent adversary (from the attacker’s perspective, the defender). The
strategy of the mass of defenders may only be statistically determined.

While untargeted attacks exploiting software vulnerabilities make up for a significant
fraction of all attacks recorded (Provos et al.|2008, Baker et al.|2012)), this particular setting
is largely unexplored in literature. As there is virtually no ‘purely reactive strategy’ to the
decision of the attacker, part of the debate on regulatory intervention may focus on how
to devise regulatory models that, on average, will increase the development costs for the
attacker. Even targeted attacks require fixed costs and it is unclear whether such attacks
could be captured by variation in the work aversion (or by making reward a function of costs
such as reconnaissance) (Verizon/[2011}, Bilge and Dumitras|2012]).

5.2. Implications For Information Security Management and Policy

Our findings suggest that the rationale behind vulnerability exploitation could be lever-
aged by defenders to deploy more cost-effective security countermeasures. For example, it is
well known that software updates correspond to an increased risk of service disruption (e.g.
for incompatibility problems or updated/deprecated libraries). However, if most of the risk
for a particular software version comes from a specific vulnerability, than countermeasures
other than patching may be more cost-effective. For example, maintaining network IDS
signatures may be in this case a better option than updating the software, because one IDS
signature could get rid of the great majority of risk that characterizes that system while a
software patch may ‘overdo it’ by fixing more vulnerabilities than necessary.

Further, this view on the attacker has repercussions on the impact of vulnerability disclo-
sure in terms of security of the user or organization. Work in this direction explored both the
economic incentives for sharing information security (Gal-Or and Ghose [2005, Ransbotham
et al.[2012) and the impact of vulnerability disclosure on attacks and firm value (Arora et al.
2008, (Telang and Wattal [2007)). Some of this discussion resulted in recent open debates
regarding policies for vulnerability disclosure, and the drafting of ISO standards to guide
vulnerability communication to the vendor and to the public (e.g. ISO/IEC 29147:2014).
For example, the United States Department of Commerce NTTA forum for vendors, indus-
try players, and security researchers to discuss procedures and timings of the vulnerability
disclosure process. H However, this discussion is not currently guided by a theoretical
framework that can act as a supporting tool for the decision maker. For example, this may
be applied to the case of vulnerability disclosure to evaluate or estimate the effect in terms of
the effective increase in risk of attacks that follows the disclosure, extending previous work
in this same direction by Mitra and Ransbotham| (2015).

Further, a more precise and data-grounded understanding of the attacker poses a strategic
advantage for the defender. For example, software diversification and code differentiation
has already been proposed as a possible alternative to vulnerability mitigation (Chen et al.
2011, Homescu et al.|2013). By diversifying software the defender effectively decreases the
number of systems the attacker can compromise with one exploit, effectively making the
existence conditions for Eq. harder to satisfy than by means of a patch release strategy

The NTIA forum can be found at https://www.ntia.doc.gov/other-publication/2016/
multistakeholder-process-cybersecurity-vulnerabilities, last accessed January 15, 2017.
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employed by vendors. For example, software vendors may randomize the distribution of
vulnerability patches to their users, to minimize the attacker’s chances of matching their
exploits with the vulnerabilities actually present on the system. A random distribution of
patches would simply decrease the fraction of attackable systems regardless of the attacker’s
choice in which vulnerability to exploit. Moreover, diversifying defenses may be in fact
less onerous than re-compiling code bases (when possible) or maintaining extremely diverse
operational environments.

5.3. Limitations and Extensions

Our model describes an attacking adversary with costly production of malware. The
model aims at explaining the attacker’s preference in exploiting one vulnerability over an-
other rather than casting a wide net immediately after a new vulnerability has been discov-
ered. However, this preference can not be directly measured, but must be inferred through
their real attack signatures from a record of attempted security incursions.

Records of attacks detected over a user’s machine are necessarily conditioned over the
user’s proneness in receiving a particular attack. For example, a user may be inclined to
open executable email attachments, but not in visiting suspicious websites. Thus, there
may be a disassociation between the observed attacks and those engineered by the attacker.
For our empirical dataset this limitation is mitigated by WINE reporting attack data on a
very large representative sample of Internet users (Dumitras and Shou 2011)). However, we
also need to have additional conditioning variables to permit identification of the impact on
various behavioral characteristics. Many of the additional characteristics of users that may
influence the observed volume of attacks, such as educational level and culture which, are
very difficult or close to impossible to gauge at the scale of data presented in this paper.
As proxies to control for this effect we employ the User Profile, Frequency, Peak and
geographic location variables, as these outline the user’s proneness in receiving attacks.
Further, geographic location may not only influence effects related to user culture, but also
on attack diffusion.

Software versioning information is known to be unreliable at times with respect to vulner-
ability existence (Nguyen et al.|2015). Further, software versions can not be easily ‘ordered’
throughout software types, as different vendors adopt different naming schemes for software
releases (Christey and Martin/2013) for an overview). We can not therefore order software
versions over time easily. This is however irrelevant to our study as we are interested in mea-
suring the sequences of newer attacks received by internet users, as opposed to measuring
the existence of new exploits for subsequent software releases, our model predicts that the
attacker will perform this information filtration dynamically as they view the rewards from
their activities. A limitation of our empirical dataset is obviously the market penetration of
Symantec, as of 2016 Symantec self reports that it is the largest security vendOIE by market
share in anti-virus and overall software security and hence has a broad coverage recording
attacks on customers. However, third party verifiable measurement of these claims is difficult
hence replication studies with different security vendors would be welcomed and given the
simplicity of our regression specification easily implemented.
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6. Appendix: Proofs of Propositions

6.1. Proof of Proposition

The objective of the Proposition is to demonstrate the solution condition for the optimal set of
action times {77, ..., T}, which is given by the recursive derivative:

O(Ti1,T;) s,
a7, — ¢ =0

_ ) N — (0T
O(IN(T;41,T;) — Cye + T,

(16)

subject to Ty = 0, Ty, 41 = 00, 9, A > 0.

Proof. Proof of Proposition
We solve Eq. in expectations and replace Eq. and ¢;(t) ~ 0in Eq. with the abbreviations
01 =0, 0 =0y, and 0; = 0y, .. .,}- Hence, we obtain

n Tit1
{TY,..., T} ~ arg max Z —Cie 0T ¢ / rN (Qi,le_M + (0, — 91-,1)6_)‘(’5_:%)) e Otdt  (17)
(Th,...T0} 55 T

We can now solve the integral by replacing t — z 4+ T;
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Hence we finally obtain the following result which can be rewritten as (5)
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To identify the optimal T; we take the usual first order condition and obtain for i =1...n
o1l 0 ST, ST
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End of proof. [

6.2. Proof of Corollary

Corollary 1| outlines the solution space when the attacker presumes the residual income after 77
is fixed in time t expectations, hence the attacker is myopic to action time T7.

Proof. Proof of Corollary For n =1 Eq. can be simplified as follows by substituting T, = 0 and
Thy1=o00cand T, =T

OTI(T, 0)

OM(oo,T) sy
or

— 6(T(00, T) — Cw|V)e T + o7

=0 (21)

To determine the three components of the equation above we now decompose each of the individual
terms of Eq. @ as follows:

rIN
I(T,0) = )\ 66V ( e_()‘l"s)T) and II(co,T) = i35 (Ovugey — Ov + Gve_)‘T) (22)

we can now derive the partial derivatives

ol(T,0) — (48T Ol(co,T) _ A AT
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We then replace the corresponding value in the Eq. above:

o1l rN A
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which finally yields
o1l _s7 (C|V) )
or ~ Ve ( N A v —Ov) (25)

Now observe that if % > %M(HVU{U} —6y) then the derivative is positive decreasing and it is
it is convenient to postpone the update which is eventually reached for T* — oo. This is particularly
true when 6y y,) — 6y = 0 and namely there is no change in the number of infected systems by
adding one more vulnerability

If ( |V) <5 + 575 (Ovugey —0v) the derivative is negative so any update would decrease the marginal

return. Only if ( |V) = m(QVu{v} — 0y ) then the derivative is identically zero and the attacker is
indifferent to the tlme of deployment. End of proof. O
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6.3. Proof of Proposition
The final theoretical result provides an explicit solution to the myopic version of the dynamic
programming problem and proceeds as follows:

Proof. We impose the stopping condition to the first order derivative of the profit of the attacker in
Eq. (25)

oL _ ot (CLV) 4 _r(0,Nv(0),V) _
aT = rNe < rN A + 6(9VU{U} HV) - NV(O) =T
Cllv) s
N (m ~ s o — HV)) -
1 C(v|V) )
T, = 3 log ( ” - m(QVu{u} - HV)N> (26)

As the exploit weaponization has to happen for T, > 0 we must have w - )\%ﬂs (Ovugwy—0v)N > 1
and therefore C(v|V) > r + ,\Lﬁ;(avu{v} — 6y )rN. End of proof.

6.4. Proof of Claim/[]]
The transformation of the model prediction to the number of attacks against 6y, IV systems
received T days after receiving an attack against a different vulnerability is as follows.

Proof. Setting the number of attacks on the first vulnerability at time ¢t — 7 as U(0,,t — T) =
NO,e *¢=T) and the attacks received on the second vulnerability at time ¢ as L[(HVU{U},t) =

A(

NOyye™ t=T") we obtain that the expected attacks received T days after the first attack are

as follows:
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1
loglU(Ovugey,t,T) = log 3 + min(log N0, + AT, log NOygpy + AT*) — A(max(7,T*))
Solve for the case T* > T.

As N0, < NOy gy, we have that min(log N6, + AT ,log NOy g,y + AT*) = log N0, 4+ AT, and
we obtain:

T >T
N (27)
log =log 5 +log 0, + AT — \T™*

Solve for the case T* < T.
Case 1. For log N0, + AT < log N6y .} + AT we obtain:

T* < T < Llog Dot |
{ g (28)

_ N,
IOgZ/[ = log T
which indicates that, within a small timeframe after the introduction of the exploit at time 1™, the

number of received attacks only depends on the number of vulnerable systems in the wild. This result
appears to explain the observation noted in [Mitra and Ransbotham| (2015]).
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Figure 7: (1 estimations for increasing values of 7.
Case 2. For log N0, + AT > log NOy .y + AT we obtain:

I . (29)
log =log 5 +log 0, + log Oy gy — log O, + AT™ — AT

{T > ;1 log 9";% +T*

By comparing Eq. 27] with Eq. 29 it is apparent that the impact of 7 on logi{ should change

in sign relative to 7. Figure [7] plots the estimated coefficient $; for the empirical variable 7 by

constraining intervals of 120 days (four months) for increasing values of 7 (e.g. 0 < 7 < 120, 30 <

T <150, 60 < T < 180, ...). It can be observed that the sign of 3 oscillates above and below zero

with increasing amplitude as 7 increases. This effect is present regardless of the size of the interval
and the relative increment imposed on 7.

O
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7. On-line Appendix: Replication Guide

Here we report the replication guidelines for our study and detail the construction of the tables
from WINE, our data can be reproduced by utilizing the reference data set WINE-2012-008, archived
in the WINE infrastructure.

Basic Tables from WINE

The first table we construct from WINE, LIFE, reports the full history of attacks against distinct
users in WINE. It has the following structure:

UserID AttackSignature Date SystemID IP_HASH VolumeAttacks
LIFE = .

where UserID is the unique identifier of a user in the WINE platform, and AttackSignature
is the unique ID identifying the signature that the attempted attack triggered. Date, SystemID,
IP_HASH report respectively the day, month and year of the attack; the internal ID of the operating
system build; the hash of the IP address. Finally, VolumeAttacks reports how many attacks UserID
received on that day.

The attack profile defined in the LIFE table may depend on the interaction between several factors.

In particular, we identify three main factors that may confound our observations: the platform
on which the attacked user operates; his/her geographical location; the user evolution. To control for
these factors, we extract two additional tables:

UserID SystemID OperatingSystem Version ServicePack

PLATFORM =

PLATFORM links a UserID to the type of system installed on the machine. All systems considered
in this study are running on Microsoft Windows.

UserID VolumeAttacks Day Month Year

TARGET_PROFILE =

In the TARGET_PROFILE table we record the volume of attacks that a UserID receives in a day,
irrespectively than the used platform or IP address.

UserID UserID Country SystemID
STABILITY = . . .

In the STABILITY table we record the different countries from which a specific SystemID connected.
This can also be obtained by aggregating the data in the table LIFE.

UserID User Profile Frequency Peak

USERS =
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Finally, we aggregate the data in these two tables in a third extracted table USERS, in which we
categorise each user in WINE over three dimensions: User Profile, Frequency, and Peak. The first
dimension records whether the user changes country and/or updates his or her system within the
lifetime of WINE. In Frequency and Peak we record respectively the frequency of received attacks
and the maximum volume of attacks received in a day by the user. Aggregated forms of USERS,
PLATFORMS, TARGET_PROFILE and STABILITY are disclosed.

Data merging and aggregation

Our final dataset is obtained by first joining the LIFE table with the control tables PLATFORM,
USERS, TARGET_PROFILE, and then by performing a self-join of the obtained table with itself. The
goal of the self-join is to obtain the pairs of subsequent attack signatures triggered by a single user,
and the time passed in between the two attacks. The final disclosed table is of the form:

SIGNATURES =

SID1 SID2 7 U N Country 0S 0SV 0SSP User Profile Frequency Peak

where SID_1=SignatureID and SID_2=SignatureID later identify respectively the attack signa-
ture triggered in the first and the second attack received by the user. 7 reports the days passed
in between the two attacks. U=count(machineID) reports the number of machines affected by
SignaturelID_later 7 days after receiving an attack of type SignatureID. Similarly, A'=sum(volumes
of SignatureID_later) counts how many times these two attacks triggered an alarm T days apart.
The difference with the previous field is that single machines may receive more than one attack of
this type, thus we have sum(volumes of SignatureID_later) >count(machineID). The remaining
fields are obtained with a join with the tables PLATFORM, USERS, TARGET _PROFILE.

Merging WINE with CVEs

SignaturelD and SignatureID_later are internal codes that identify which attack signature de-
ployed by Symantec’s product the attack triggered. To identify which vulnerability (if any) the attack
attempted to exploit we map WINE’s SignaturelD with the threat description publicly available at
Symantec’s Security Response datasetE In the attack description it is provided, when relevant, the
vulnerability that the attack exploits, as referenced by the unique CVE vulnerability identiﬁerE The
CVE-ID is a standard reference identifier for software vulnerabilities introduced by the MITRE orga-
nization and used by all major vulnerability databases such as the National Vulnerability Database,
NVD[M]

To characterize each vulnerability, we match the CVE-ID reported in the SignatureID with the
vulnerability summary reported in the NVD. The information on NVD comprises the name of the
affected software Sw (e.g. Flash in the example above), the latest vulnerable version Ver of the
software (in our example Flash 9.0.115 and 9.0.45), and the disclosure date Day.

Further, additional information describing the technical aspects of the vulnerability are also pro-
vided. This information can be extracted from the Common Vulnerability Scoring System (CVSS)
assessment of the vulnerability. CVSS measures several technical dimensions of a vulnerability to
obtain a standardized assessment that can be used to meaningfully compare software vulnerabilities.
However, previous studies showed that not all measures show, in practice, enough variability to char-
acterize the vulnerabilities|Allodi and Massacci| (2014)). Of the dimensions considered in CVSS, in this
study we are specifically interested in the Access Complexity and Imp measures. The former gives
an assessment on the ‘difficulty’ associated with engineering a reliable exploit for the vulnerability
Mell et al.| (2007). For example, a vulnerability that requires the attacker to win a race condition

12The reference dataset can be found at https://www.symantec.com/security_response/, last accessed
January 15, 2017.

13The classifiers are available at http://cve.mitre.org, last accessed January 15, 2017.

HFyll database can be found at http://nvd.nist.gov, last accessed January 15, 2017.
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on the affected system in order to successfully exploit kit may be deemed as a High complexity vul-
nerability (because the attacker can not directly control the race condition, thus exploitation can be
only stochastically successful). Similarly, Imp gives an assessment on the Confidentiality, Integrity
and Availability losses that may follow the exploitation of the vulnerability.
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