
Autonomous and yet Secure Evolution for
Smart Cards Applications

Fabio Massacci
Joint work with O. Gadyatskaya

DISI, University of Trento

Massacci Gadyaskaya - TUB 2011-03-10 1

The talk plan

• Where’s Trento?

• The rara avis of multi-application smart-cards

• Security-by-Contract for smart cards

• A (thin) slice of theory

• A (larger) slice of engineering

• Open problems

Massacci Gadyaskaya - TUB 2011-03-10 2

Trento in Space and Time
• 1962

– Institute of Social
Science founded
as locally funded
Institution

• 1972
– Institute becomes

private University

• 1982
– University

becomes a state
University with
special autonomy

• 2001
– University

becomes 1st in
University
Rankings

Massacci Gadyaskaya - TUB 2011-03-10 3

TRENTO

What do we do there?

• Organizational Level Security
– Governance, Risk and Compliance (FM)

– Security Requirements Engineering (FM,JM,PG)

• System Security
– Run-time enforcement at ESB (FM,BC)

– Browser Security (FM)

• Mobile/Embedded Code Security-by-Contract
– Load-time security verification (FM)

– Run-time information flow (BC)

Massacci Gadyaskaya - TUB 2011-03-10 4

The talk plan

• Where’s Trento?

• The rara avis of multi-application smart-cards

• Security-by-Contract for smart cards

• A (thin) slice of theory

• A (larger) slice of engineering

• Open problems

Massacci Gadyaskaya - TUB 2011-03-10 5

Smart cards today

• Modern computing devices

• Tamper-resistant security system

• Widely used

• But we have too many of them in our pockets

6 Massacci Gadyaskaya - TUB 2011-03-10

Open Multi-application smart
cards

• Cards with multiple applets
– allow post-issuance evolution (add/remove/update)
– from different stakeholders
– Asynchronously

• Interaction of applets on a single chip is natural:
– Applications may interact exchanging loyalty points,

transferring money or sharing valuable information.

• First paper I saw, I was a PhD Student 10yrs ago
– Information Flow Verification for Multi-Applications

Smart Card.
– The Air-France, Hertz example...

Massacci Gadyaskaya - TUB 2011-03-10 7

Java Card + GlobalPlatform

• GlobalPlatform = Middleware for secure
management of applets (with open specification)

– Lots of smart cards deployed with GP

• GlobalPlatform and JavaCard specifications

– support loading, update and un-loading of many
applications on the fly and asynchronously

– allow interactions among applications (through services
implementing Shareable interface)

• Still/Yet/But…

– We don’t really see multi-application cards in the wild.

8 Massacci Gadyaskaya - TUB 2011-03-10

What is there…

Massacci Gadyaskaya - TUB 2011-03-10 9

Malesian card
allows lot of applets
but no interaction:
firewall guarantee
security

Evolution

Interaction

Security

Most commercial cards
locked before deployment:
security of interaction
certified off line

??

The usual evocative picture

Im
ag

e
fr

o
m

 D
1

.1
 o

f
Se

cu
re

C
h

an
ge

 p
ro

je
ct

10 Massacci Gadyaskaya - TUB 2011-03-10

A more precise picture

Massacci Gadyaskaya - TUB 2011-03-10 11
Hardware

Operating System

Java API

Native API JVM
Loader

JCRE

Applet N
Applet 1

Java Firewall

Only checks bytecode
and signature from

domains

Once you are in
you are in….

How does Java Card firewall
work?

• Applets interact through firewall using shareable interfaces
• Application ePurse of Bank

– offers a service transfer_money.
– does a preliminary access control checking caller AIDs in a list

• Application jTicket of Transport
– wants to use transfer_money of ePurse

• What happens
– jTicket asks the firewall for a reference to transfer_money.
– Firewall passes call to ePurse. If jTicket is in the list, ePurse will

return a reference to transfer_money service.

• Consequences
– jTicket got a reference  can use service from now on
– ePurse wants to prevent jTicket use its service  must update itself

 Business Model of Multi-Application SC (E+I+S) not supported

Massacci Gadyaskaya - TUB 2011-03-10 12

The talk plan

• Where’s Trento?

• The rara avis of multi-application smart-cards

• Security-by-Contract for smart cards

• A (thin) slice of theory

• A (larger) slice of engineering

• Open problems

Massacci Gadyaskaya - TUB 2011-03-10 13

Security-by-Contract idea

Massacci Gadyaskaya - TUB 2011-03-10 14

SxC as Load-time verification

• General idea of SxC for mobile devices:
– Application has to be compliant with security policy of the

device
– Derived from PCC and MCC

• Well-tested for mobile platforms
– Java & .NET implementation
– Eu S3MS project
– Many publication: JCS, JLAP, Comp. & Security, SCP, Elsevier

IITR
– Policy checker could even run a small model checker

• “allowed file.size > 1024Kb “ vs “filesize < 512kb”

• But here we have a problem
– Who sets the policy of device?
– “Clear” for mobiles: operator, manfacturer, user

Massacci Gadyaskaya - TUB 2011-03-10 15

SxC for Smart Cards

• Whose policy?
– The union of the policies of all applets

• Broader Contract
– Claims

• I may provide these shareable interfaces

• I may call those methods from those interfaces

– Security Rules
• I can only be called by this Application/Package

– Functional Rules
• I need these methods from those interfaces

Massacci Gadyaskaya - TUB 2011-03-10 16

SxC workflow for smart cards

Massacci Gadyaskaya - TUB 2011-03-10 17

Claim Checker Policy Checker

Reject

Update Policy

with new arrival

• Provides = {}
• Calls = {ePurse.transferMoney}
• Sec.rules = {}
• Func.rules ={}

• Provides = {ageDiscount, loyaltyDiscount}
• Calls = {ePurse.transferMoney}
• Sec.rules = { ageDiscount {IDapplet),
loyaltyDscount {ePurse)}
• Func.rules = {ePurse.transferMoney}

• Provides = {transferMoney}
• Calls = {}
• Sec.rules = {transferMoney -> {jTicket}}
• Func.rules = {}

SxC Example
• Already installed Applet

ePurse with Contract:

• Applet jTicket arrives with
Contract:

• jTicket is loaded, cheked,
and finally installed.

• Applet i-Travel arrives with
Contract:

• i-Travel is rejected: load
process is not committed

Massacci Gadyaskaya - TUB 2011-03-10 18

Formal Model of a JC Platform

Platform Θ =

<ΔA, ΔS ,A, shareable(), invoke(), sec.rules(), func.rules()>

– ΔA = domain of applications, ΔS = domain of services

–A ⊆ ΔA
• applets deployed (installed) on the platform

– shareable(), invoke(): ΔA → p(ΔS)
• Services offered by applet (resp. invoked by applet)

– sec.rules(): ΔA x ΔS → p(ΔA)
• For any applet and its services which applets can call it

– func.rules(): ΔA → p(ΔS)
• Services that must be present in order for the applet to function

19 Massacci Gadyaskaya - TUB 2011-03-10

Why we use different names?

• Platform has

– Shareable(A)  ΔS and invoke(A)  ΔS

• Contract has

– Provides(A)  ΔS and Calls(A)  ΔS

• Same difference between reality and claims

– The first is reality, what really is there

– The seconds are the claims, they might be honest
but might also not correspond to truth

Massacci Gadyaskaya - TUB 2011-03-10 20

SxC workflow for smart cards

Massacci Gadyaskaya - TUB 2011-03-10 21

DO REALITY
MATCH CLAIMS?

Policy Checker

Reject

Update Policy

DO CLAIMS
MATCH POLICY?

The talk plan

• Where’s Trento?

• The rara avis of multi-application smart-cards

• Security-by-Contract for smart cards

• A (thin) slice of theory

• A (larger) slice of engineering

• Open problems

Massacci Gadyaskaya - TUB 2011-03-10 22

Introducing evolution to the
model

• Let B be an application, an evolved platform
Θ’ for B from a platform Θ is defined
according to the next types of changes:
– B is a new applet to be added to the platform,

– old applet B is removed from the platform,

– update of an installed applet B
• Add/remove of a service to shareable(B)

• Add/remove of a service to invoke(B)

• Add/remove of an access authorization to sec.rules(B)

• Add/remove of a service to func.rules(B)

Massacci Gadyaskaya - TUB 2011-03-10 23

Checking Changes
Incrementally

• For each type of change the Claim Checker and the
Policy checker should verify only the parts of the
platform that are touched by changes.

• For new applet B:
– Claim Checker has to verify that

• shareable(B)=ProvidesB

• invoke(B)=CallsB

• (or to extract shareable(B) and invoke(B) from the code and write
these sets into the ContractB)

– The Policy Checker has to check that for all applets A ∈ A :
• if A.s ∈ CallsB then (s,B) ∈ sec.rules(A)

• if A.s ∈ func.rules(B) then s ∈ ProvidesA

• if B.s ∈ CallsA then (s,A) ∈ sec.rules(B)

Massacci Gadyaskaya - TUB 2011-03-10 24

• Provides = {ageDiscount, loyaltyDiscount}
• Calls = {ePurse.transfer_money}
• Sec.rules ={ ageDiscount {IDapplet},
loyaltyDiscount  {ePurse)}
• Func.rules = {ePurse.transfer_money}

•Provides = {transferMoney}
•Calls = {}
•Sec.rules = {transferMoney  {jTicket}}
•Func.rules = {}

Trickier Example

• Applet ePurse:

• Applet jTicket:

• Now we update ePurse

• What happens?

Massacci Gadyaskaya - TUB 2011-03-10 25

• Provides = {transferMoney}
• Calls = { jTicket.ageDiscount }
• Sec.rules = {transferMoney  {jTicket}}
• Func.rules = {}

Secure Platform

• A platform Θ remains secure during evolution
– This is what you really want after each update
– For every applet the traces of real executions

respects its security and functional rules
• Whenever somebody calls you it is authorized
• Whenever you need to call an essential service it is still there

(provided it was there before)

• Security and functionality in terms of Contracts
– Contracts do not violate Global Policy
– Claims are consistent with bytecode
– Otherwise update is rejected

• Need to show the two coincide.

Massacci Gadyaskaya - TUB 2011-03-10 26

Security Theorem
• IF Platform was secure before the update,
• & IF shareable interfaces are only means for inter-app

communication
• & IF Claim Checker and the Policy Checker are sound and

accepted an update at the loading time,
• THEN evolved platform will be secure.

– Proving by contradiction that if security or functionality is
broken on the platform, then either the ClaimChecker, or the
Policy Checker will reject the update

• Still an Engineering gap
– In theory it could work for Application IDs in contracts,
– in practice we may need to weaken the claim to Package Ids

• Depends on what we can implement in the claim checker

Massacci Gadyaskaya - TUB 2011-03-10 27

The talk plan

• Where’s Trento?

• The rara avis of multi-application smart-cards

• Security-by-Contract for smart cards

• A (thin) slice of theory

• A (larger) slice of engineering

• Open problems

Massacci Gadyaskaya - TUB 2011-03-10 28

Our First Architecture

Massacci Gadyaskaya - TUB 2011-03-10 29
Hardware

Operating System

Java API

Native API JVM
Loader

JCRE

Applet N Applet 1

Policy
Checker

Claim
Checker

Java Firewall

Just ask results

Outside protocols

First Engineering problem

• Implemented Policy Checker
– POLICY’11 short paper

– Footprint of checker 11KB and contracts 2KB

• Require changing existing update protocols
– 1stprotocol with policy checker

– 2nd protocol with claim checker

– 3rd protocol is standard loading plus check results of 1+2

• Loader can trust policy checker, what about claim
checker?
– Needs signatures and certification

– Too small improvement to justify change update protocol

Massacci Gadyaskaya - TUB 2011-03-10 30

Loader

Our Second Architecture

JCRE

Massacci Gadyaskaya - TUB 2011-03-10 31
Hardware

Operating System

Java API

Native API JVM

Applet N Applet 1
Java Firewall

Do everything

Claim
checker

Policy
checker

Second Engineering Problem

• More Effective and Efficient

– Loader no longer trust external checks of code

– Eliminate checks of signatures beside standards

– Both checkers can be implemented in C

• But where do we put the policy?

– We need to retrieve it and store it somewhere…

– but loader is NOT loaded in the EEPROM

• We could have a “static int policy[]’’ but that’s not going
to work in the ROM

Massacci Gadyaskaya - TUB 2011-03-10 32

Loader

Our Third Architecture

JCRE

Massacci Gadyaskaya - TUB 2011-03-10 33
Hardware

Operating System

Java API

Native API JVM

Applet N Policy
Store

Java Firewall

Claim
checker

Policy
checker

Applet 1

Third Engineering Problem

• C and Java don’t mix well

– The loader can “easily” invoke the Policy Store
applet at the beginning of the process andpass
reference to it to the loader

• Just need a Java shell onto the loader

– but how to tell it the result at the end??

• It must be the checked contract and nothing else

• Who’s giving the contract to the checker?

– Must change the protocol of update…

Massacci Gadyaskaya - TUB 2011-03-10 34

Loader

Our Third Architecture

JCRE

Massacci Gadyaskaya - TUB 2011-03-10 35
Hardware

Operating System

Java API

Native API JVM

Applet N
+contract

Policy
Store

Java Firewall

Claim
checker

Policy
checker

Applet 1
+contract

Engineering Idea

• Each Applet includes contract in java package
– No need to send it separately

– Arrives and leaves with applet

– Neutral: contract update requires re-running claim
checker

– Cons: contract update requires code update
• But in this way claim checker re-run is automatic!

• Policy store references applet contract
– Keep efficiency of C implementation with Java flexibility

• Checkers do not need trust anyone

• Next validation by Smart card manufacturer

Massacci Gadyaskaya - TUB 2011-03-10 36

The talk plan

• Where’s Trento?

• The rara avis of multi-application smart-cards

• Security-by-Contract for smart cards

• A (thin) slice of theory

• A (larger) slice of engineering

• Open problems

Massacci Gadyaskaya - TUB 2011-03-10 37

• Provides = {ageDiscount, loyaltyDiscount}
• Calls = {ePurse.transferMoney}
• Sec.rules ={ ageDiscount {IDapplet},
loyaltyDiscount  {ePurse)}
• Func.rules = {ePurse.transfer_money}

•Provides = {transferMoney}
•Calls = {}
•Sec.rules = {transferMoney  {jTicket}}
•Func.rules = {}

Trickier Example

• Applet ePurse:

• Applet jTicket:

• We update ePurse

• Update is accepted

• What happens later if
jTickets wants to drop
access to ePurse?

Massacci Gadyaskaya - TUB 2011-03-10 38

• Provides = {transferMoney}
• Calls = {jTicket.loyaltyDiscount}
• Sec.rules = {transferMoney  {jTicket}}
• Func.rules = {jTicket.loyaltyDiscount}

A Conflict Resolution
Componnet?

• What happens if ePurse owner wants it to be
removed from the platform?
– jTicket needs the service ePurse.transfer_money

– But ePurse doesn’t want (now) to give him this

• Two possibilities:
– to forbid ePurse to be removed OR

– to remove ePurse and make jTicket unselectable.

• (Automatic) Conflict resolution requires
investigation of stakeholders (security domains)
hierarchy.

Massacci Gadyaskaya - TUB 2011-03-10 39

Conclusions: SxC for Smart-
Cards

Massacci Gadyaskaya - TUB 2011-03-10 40

DO REALITY
MATCH CLAIMS?

Policy Checker

Reject

Update Policy

DO CLAIMS
MATCH POLICY?

Resolve Conflicts

Lots of Engineering Decisions are Involved

Send us your applets!

fabio.massacci@unitn.it
gadyatskaya@dit.unitn.it

41 Massacci Gadyaskaya - TUB 2011-03-10

mailto:fabio.massacci@unitn.it
mailto:gadyatskaya@dit.unitn.it

