
International Journal of Information Security manuscript No.
(will be inserted by the editor)

Nataliia Bielova · Fabio Massacci

Do you really mean what you actually enforced?
Edit Automata revisited

Abstract In their works on the theoretical side of Poly-
mer, Ligatti and his co-authors have identified a new
class of enforcement mechanisms based on the notion
of edit automata that can transform sequences and en-
force more than simple safety properties. We show that
there is a gap between the edit automata that one can
possibly write (e.g., by Ligatti et al in their IJIS run-
ning example) and the edit automata that are actually
constructed according the theorems from Ligatti’s IJIS
paper or from Talhi et al. “Ligatti’s automata” are just
a particular kind of edit automata. Thus, we re-open a
question which seemed to have received a definitive an-
swer: you have written your security enforcement mech-
anism (aka your edit automata); does it really enforce
the security policy you wanted?

Keywords Formal models for security · trust and
reputation · Resource and Access Control · Valida-
tion/Analysis tools and techniques

1 Introduction

The explosion of multi-player games, P2P applications,
collaborative tools on Web 2.0, and corporate clients
in service oriented architectures, has changed the usage
models of PC users: users demand to install more and
more interactive applications from a variety of sources.
Unfortunately, the features of those applications are at
odds with the current security model.

The first hurdle is certification. Certified application
by trusted parties can run with full powers while un-
trusted ones essentially without any powers. However,
certification just says that the code is trusted rather

A preliminary, much shorter version of this paper appears in
the informal proceedings of FAST’08 [4].

DISI - University of Trento,
via Sommarive 14, 38123 Povo, Trento, Italy
E-mail: surname@disi.unitn.it

than trustworthy because the certificate has no seman-
tics whatsoever. Will your apparently innocuous appli-
cation collect your private information and upload it to a
remote server [19]? Will your corporate client developed
in out-sourcing dump your hard disk in a shady country?
You have no way to know.

Model carrying code [21] or Security-by-Contract [3]
which claim that code should come equipped with secu-
rity claims to be matched against the platform policies
could be a solution. However, this will only be a solution
for certified code.

To deal with the untrusted code either .NET [14] or
Java [10] can exploit the mechanism of permissions. Per-
missions are assigned to enable execution of potentially
dangerous functionalities, such as starting connections or
accessing sensitive information. The drawback is that af-
ter assigning a permission, the user has very limited con-
trol over its usage. An application with a permission to
upload a video can then send hundreds of them invisibly
for the user (see the Blogs on UK Channel 4’s Video on
Demand application [7]). Conditional permissions that
allow and forbid use of the functionality depending on
such factors as the bandwidth or some previous actions
of the application itself are currently out of reach. The
consequence is that either applications are sandboxed
(and thus can do almost nothing), or the user decided
that they are trusted and then they can do almost ev-
erything.

To overcome these drawbacks, a number of authors
have proposed to enforce the compliance of the applica-
tion to the user’s policies by execution monitoring. This
is the idea behind security automata [1,8,11,20], safety
control of Java programs using temporal logics [12] and
history based access control [13].

In order to provide enforcement of security policies
by runtime monitoring untrusted programs, we want to
know what policies are enforceable and what mecha-
nisms can actually enforce them. In a landmark paper [2],
Bauer, Ligatti, and Walker seemed to provide a defini-
tive answer by presenting a new hierarchy of enforcement

2 Nataliia Bielova, Fabio Massacci

mechanisms and a classification of security policies that
are enforceable by these mechanisms.

Traditional security automata were essentially action
observers that stopped the execution as soon as an illegal
sequence of actions was on the eve of being performed.
The new classification of enforcement mechanisms pro-
posed by Ligatti included truncation, insertion, suppres-
sion and edit automata which were considered as exe-
cution transformers rather than execution recognizers.
The great novelty of these automata was their ability to
transform the “bad” program executions in good ones.

These automata were then classified with respect to
the properties they can enforce: precisely and effectively
enforceable properties. It is stated in [2] that as precise
enforcers, edit automata have the same power as trun-
cation, suppression and insertion automata. As for effec-
tive enforcement, it is said that edit automata can insert
and suppress actions by defining suppression-rewrite and
insertion-rewrite functions and thus can actually enforce
more expressive properties than simple safety properties.
The proof of Theorem 8 in [2] provides us with a con-
struction of an edit automaton that can effectively en-
force any (enforceable) property.

Talhi et al. [22] have further refined the notion by
considering bounded version of enforceable properties.

1.1 Contribution of the Paper

If everything is settled why are we writing this paper?
Everything started when we tried to formally show “as
an exercise” that the running example of edit automaton
from [2] provably enforces the security policy described in
that paper by applying the effective enforcement theorem
from the very same paper. Much to our dismay, we failed.

As a result of this failure we decided to plunge into a
deeper investigation and discovered that this was not for
lack of will, patience or technique. Rather, the impossi-
bility of reconciling the running example of a paper with
the theorem on the very same paper is a consequence of
a gap between the edit automata that one can possibly
write (e.g. by Ligatti himself in his running example)
and the edit automata that are actually constructed fol-
lowing Theorem 8 from [2] or Theorem 3.3 from [15] or
Talhi et al. [22]. The edit automata constructed accord-
ing to those theorems are just a particular kind of edit
automata. We named them “Ligatti” automata.

In Figure 1 we show the relation between different
classes of automata we are investigating in this paper.
All-Or-Nothing automata at every step output the whole
input sequence or suppress the current action. The no-
tion of effective=enforcement is taken from [2]. Late au-
tomata are a particular kind of edit automata that al-
ways output some prefix of the input.

Figure 8 later in the paper shows the relations among
different classes of edit automata, even though they are
the “same” according to [2].

Fig. 1: Relation between classes of edit automata

The contribution of this paper is therefore manifold:

– We introduce a fine grained classification of edit au-
tomata and related security properties and relation
between different notions of enforcement.

– We show the difference between the running example
from [2] and the edit automata that are constructed
according to the Theorem 8 in the very same paper.

– We further explain the gap by showing that the par-
ticular automata constructed according to Theorem 8
in [2] are a particular form of late automata that have
an all-or-nothing behavior (Ligatti automata).

– We show that the construction from Talhi et al. [22]
only applies to Ligatti automata and provides a more
useful construction that is the inverse of Talhi et
al. [22] construction: namely from a policy specifica-
tion expressed as a Büchi automaton, we show how
to construct a Ligatti’s automaton that enforces it.

The remainder of the paper is structured as follows.
At first we sketch the difference between the edit automa-
ton from the running example and Theorem 8 from [2]
(§2). Then we present the basic notions of policies, en-
forcement, and automata in Section 3. We give a more
fine grained classification of edit automata introducing
the notion of Late automata (§4). Section 5 explains rela-
tion between different notions of enforcement and types
of edit automata. We provide the construction of Lig-
atti’s automaton that enforces a policy expressed as a
Policy automaton(§6). Finally we conclude with a dis-
cussion of future and related works (§7).

2 The example revised

We present the example of the market policy verbatim
from [2], we will use it throughout this paper.

Example 1 (Verbatim from [2])

To make our example more concrete, we will model a
simple market system with two main actions, take(n)
and pay(n), which represent acquisition of n apples
and the corresponding payment. We let a range over

Do you really mean what you actually enforced? 3

all the actions that might occur in the system (such as
take, pay, window-shop, browse, etc.). Our policy is
that every time an agent takes n apples it must pay for
those apples. Payments may come before acquisition or
vice versa, and take(n); pay(n) is semantically equiva-
lent to pay(n); take(n). The edit automaton enforces
the atomicity of this transaction by emitting take(n);
pay(n) only when the transaction completes. If payment
is made first, the automaton allows clients to perform
other actions such as browse before committing (the
take-pay transaction appears atomically after all such
intermediary actions). On the other hand, if apples are
taken and not paid for immediately, we issue a warning
and abort the transaction. Consistency is ensured by re-
membering the number of apples taken or the size of the
prepayment in the state of the machine. Once acquisi-
tion and payment occur, the sale is final and there are
no refunds (durability).

Looking at the example in English we propose several
sequences of actions in Table 1: some satisfy the policy
and some do not. When the sequence is not allowed by
the policy, the enforcement mechanism should change
the sequence in such a way that it becomes legal. In this
table we partition the sequences in several groups. In
the first group, sequences are not yet finished so that
we cannot define whether they are legal (which means
satisfy the policy from Example 1) or not, because they
could become good later on. For example, in sequence
1 the take(1) action can be followed by a pay(1) action
that can make the whole sequence legal; on the other
hand it can be followed by browse that will make the
sequence illegal.

The group “Legal sequences” contains sequences that
satisfy the policy: for example take(1); pay(1).

The initially illegal sequences are divided into two
groups. One group contains the sequences with an ini-
tially bad prefix but the suffix can become legal later. For
example, sequence 6 has an illegal prefix take(1) browse,
however the suffix pay(2) can be extended to legal se-
quence since it can be a beginning of sequence 5: pay(2);
take(2). The second group contains sequences that have
an illegal prefix followed by a legal continuation, such as
sequence 8 which has an illegal prefix take(1); browse,
but its suffix is a legal sequence 5.

There are some other sequences like pay(1); browse;
pay(2); take(2); take(1) that we could not add to nei-
ther of the groups. This happens because the text leaves
open a number of interpretations. It is clear that good
sequences must have a pair of take(n) and pay(n) as the
text implies, but it is not clear whether we allow inter-
leaving of pay(n) and pay(m). The text seems to imply
that this is not possible.

The enforcement mechanism by means of edit au-
tomaton proposed in [2] for Example 1 is shown in Fig-
ure 2a. The nodes in the picture represent the automaton
states and the arcs represent the transitions. The action
that is above the arc defines an input action. Output
actions are underlined and placed below the arcs. Arcs
with no underlined sequence represent transitions where

Table 1: Sequences of actions for market policy

Temporarily illegal sequences that can become good

No Sequence of actions Expected output
1 take(1) ·
2 pay(2) ·
3 pay(2); browse browse

Legal sequences

No Sequence of actions Expected output
4 take(1); pay(1) take(1); pay(1)
5 pay(2); take(2) pay(2); take(2)

Initially illegal sequences, but a later suffix can become good

No Sequence of actions Expected output
6 take(1); browse; pay(2) warning
7 take(1); pay(2) warning

Initially illegal sequences with legal continuation

No Sequence of actions Expected output
8 take(1); browse; pay(2);

take(2)
warning; browse; pay(2);
take(2)

9 take(1); pay(2); take(2) pay(2); take(2)
10 pay(1); browse; pay(2);

take(2)
browse; pay(2); take(2)

there is no output. If there is no arc for the current ac-
tion, then the automaton halts.

Let us look at sequence 4 from the Table 1: take(1);
pay(1). The edit automaton starts in the initial state
q0. When it reads the first action take(1), it moves to
the corresponding state −n and waits for the next input
action to arrive. When the action pay(1) arrives, the au-
tomaton moves back to the state q0 while outputting the
take(1); pay(1) sequence (as indicated at the output of
the arc from −n to q0).

The policy given in Example 1 can be enforced by
different edit automata in different ways. One of the
way to enforce the policy is called effective enforcement.
This notion guarantees that all legal sequences are not
changed by the edit automaton, while all illegal sequences
are changed to some legal sequences or to nothing. The
automaton in Figure 2a provides effective enforcement
of the given policy since it does not change the good se-
quences and always changes illegal sequences to the legal
ones. In the following, we will use the notion of property,
which is simply a predicate that decides whether the se-
quence is legal or not.

In [2] Theorem 8 says that any property can be ef-
fectively enforced by an edit automaton. In Figure 2b
we follow the construction from the proof of Theorem 8
in order to build the edit automaton. The automaton is
built as follows: for all possible inputs, if the input is legal
then automaton outputs it, otherwise it keeps the input
until it becomes legal again. Notice that the constructed
automaton always outputs the longest valid prefix of the
given sequence. In case of invalid prefix, this automaton
will output nothing.

4 Nataliia Bielova, Fabio Massacci

(a) Edit automaton from [2].

(b) Edit automaton from the proof of Theorem 8 [2].

Fig. 2: Different edit automata that “effectively” enforce
the market policy (Example 1).

For sake of simplicity, we show a constructed edit
automaton only partially, from the action set {take(1),
take(2), pay(1), pay(2), browse}. Here we use a browse

action just to present some other actions that the user
can do after paying before taking the apples. According
to the text, an action warning is considered to be an out-
put action in the edit automaton in [2] (see Figure 2a).
As the cardinality of input language is 5, every state will
have five outcoming arcs for all possible actions. We will
present here only some of them in order to let the reader
see the output sequences for particular input sequences.

The edit automaton from the original paper (Fig-
ure 2a) and the one constructed by the proof of Theo-
rem 8 of the same paper (Figure 2b) actually produce
different output for the same input. In Table 2 we show
some cases of input and output of both automata.

Sequence 4 is legal, hence it is not changed by both
automata. Sequence 6 has illegal prefix and not yet le-
gal suffix, hence both automata halt (let us ignore the
warning action since it can be easily added to the con-

Table 2: Difference in output for edit automata

No Input Output
Edit automa-
ton from
Figure 2a [2]

Constructed
edit au-
tomaton by
Theorem 8 [2]

4 take(1); pay(1) take(1); pay(1) take(1);
pay(1)

6 take(1); browse; pay(2) warning ·
8 take(1); browse; pay(2);

take(2)
warning;
pay(2); take(2)

·

9 take(1); pay(2); take(2) warning ·
10 pay(1); browse; pay(2);

take(2)
browse ·

struction from Theorem 8). However, for other bad se-
quences that have different nature, the automata behave
differently. The output set of the automaton from Fig-
ure 2a [2] is larger than the output of the automaton
from Theorem 8 [2].

The ”strange” behavior begins when we take the se-
quences from the group “Initially illegal sequences with
legal continuation”, like sequence 8. The edit automa-
ton from Figure 2a [2] can skip the illegal prefix take(1);
browse and output the legal suffix pay(2); take(2). How-
ever, the automaton from Theorem 8 halts as soon as an
illegal prefix does not have a legal continuation. In case
of sequences 9 and 10 both automata produce a strange
output in a sense that the agent has paid twice but never
got any apple.

Analyzing Table 2, we find out that the transformed
sequences of actions are not always the ones expected
from the edit automaton. So the question arises: Why
the output is predictable in some cases and unpredictable
in the others? The answer to this question is:

1. When the input sequence is legal both edit automata
produce the expected output (e.g. sequence 4).

2. When the sequence is illegal the output of both edit
automata is unexpected and potentially different for
each automaton.

3. The edit automaton constructed following the proof
of Theorem 8 [2] is a very particular kind of the edit
automaton.

In Figure 3, we show the relation between input and
output for edit automaton from Figure 2a [2] and edit
automata from Theorem 8 [2] with respect to the “good”
and “bad” traces. By 4;8 we mean the concatenation of
the sequence 4 with the sequence 8. By 8out we mean an
output sequence of Figure 2a automaton when processing
sequence 8 as input.

We investigate the problem of sequences with illegal
prefix followed by a valid suffix in [5]. The idea is that in
sequences such as 8, 9 and 10 the edit automaton should
output only the valid suffix ignoring the illegal prefix.
We refer the reader to [5] for more details.

In order to explain better this difference, we analyze
different classifications of edit automata that explain the
behavior of the edit automaton constructed following the

Do you really mean what you actually enforced? 5

Fig. 3: Relation between input and output for edit au-
tomaton from Figure 2a [2] and edit automaton con-
structed by Theorem 8 [2], or Theorem 3.3 [15]

proof of Theorem 8 and the edit automaton from Fig-
ure 2a [2]. For example, all theorems referring to edit
automata in [22] are about the particular kind of au-
tomata that are constructed following the proof of The-
orem 8 [2].

3 Basic notions of policies, enforcement and
automata

Similarly to [2,15], we specify the system at a high level
of abstraction, where the set Σ is the set of program
actions; the set of all finite sequences over Σ is denoted
byΣ∗, the set of all infinite sequences isΣω and the set of
all sequences (finite and infinite) is Σ∞. Executions are
denoted by σ and actions by a possibly with subscripts
or superscripts.

With · we denote an empty execution. The notation
σ[i] is used to denote the ith action in the sequence. The
notation σ[..i] denotes the prefix of σ involving the ac-
tions σ[1] through σ[i], and σ[i+1..] denotes the suffix of
σ involving all other actions beside σ[..i]. We use the no-
tation τ ;σ to denote the concatenation of two sequences.

Definition 1 (Edit automata) An edit automaton E
is a 5-tuple of the form 〈Q, q0, δ, γo, γk〉 with respect to
some system with actions set Σ. Q specifies the possible
states, and q0 ∈ Q is the initial state. The total func-
tion δ : (Q × Σ) → Q specifies the transition function;
the total function γo : (Q × Σ∗ × Σ) → Σ∗ defines the
output of the transition according to the current state,
the current input action and the sequence of actions kept
so far; the total function γk : (Q × Σ∗ × Σ) → Σ∗ de-
fined the sequence that will be kept after committing the
transition. The dependence between the transition, out-
put and keep function is following: if δ(q, a) is defined
then γo(q, σk, a) and γk(q, σk, a) must be defined.

In order for the enforcement mechanism to be effec-
tive all functions δ, γk and γo should be computable.

The intuition behind the output function γo is that
at each transition when the automaton proceeds with

one more input action, the function defines the output
of the automaton at this transition. The intuition of the
keep function γk is that at each transition it defines the
buffer containing the actions that are processed by the
automaton but not output yet. Usually, we will use the
keep function to add the input action to the buffer or
ignore the input action. In the general case, the keep
function can perform more actions on the current buffer,
for example to add arbitrary actions to it. This means
that the state search space of the automaton is Q×Σ∗,
because each state consists of the control state and the
buffer defined by the keep function.

Definition 2 (Run of an Edit automaton) Let A =
〈Q, q0, δ, γo, γk〉 be an edit automaton. A run of A on an
input sequence of actions σ = a1; a2; . . . is a sequence
of pairs

〈
(q0, ε), (q1, σ

k
1), (q2, σ

k
2), . . .

〉
such that qi+1 =

δ(qi, ai+1) and σki+1 = γk(qi, σ
k
i , ai+1). The output of A

on input σ is sequence of actions σo = σo1;σo2; . . . such
that σoi+1 = γo(qi, σ

k
i , ai+1). We denote a finite run of n

steps as

(q0, σ)
σout A(qn, σ[n+ 1..])

where σout = σo1; . . . σon and σ = a1; . . . an;σ[n+ 1..].

Our definition is slightly different from Ligatti’s orig-
inal definition [2] and the refined definition in [15]. Intu-
itively, in this paper we have just simplified the original
notions from [2] by enucleating the notions of output
and memory and always forced the enforcement mecha-
nism to progress in the processing of the input. We later
show that our actions are identical to the combinations
of atomic actions (read symbol but no output, output
symbol but don’t read input) from [15] on every non-
diverging computation.

We will present the definition of edit automata ver-
batim from [15]. Every execution of an edit automaton
is specified using a labeled operational semantics. The
basic single-step has the form

(q, σ)
τ−→ (q′, σ′)

where q is the current state of the automaton, σ is the
sequence of actions that is in the input, q′ and σ′ are the
state and sequence of actions after the automaton takes
a step, and τ is an output sequence.

An edit automaton E is a triple (Q, q0, δL) de-
fined with respect to some system with action set
Σ. As with truncation automata, Q is the possi-
bly countably infinite set of states, and q0 is the
initial state. In contrast to truncation automata,
the deterministic and total transition function δ
of an edit automaton has the form δL : (Q×Σ)→
Q × (Σ ∪ {·}). The transition function specifies,
when given a current state and input action, a
new state to enter and either an action to insert
into the output stream (without consuming the
input action) or the empty sequence to indicate

6 Nataliia Bielova, Fabio Massacci

that the input action should be suppressed (i.e.,
consumed from the input without being made ob-
servable).

σ = a;σ′ δL(q, a) = (q′, a′)

(q, σ)
a′−→ (q′, σ)

(E-Ins)

σ = a;σ′ δL(q, a) = (q′, ·)
(q, σ)

·−→ (q′, σ′)
(E-Sup)

In [15] Ligatti et al argue that this single-step seman-
tics can easily simulate multi-step semantics. In the rest
of this section we will call the edit automaton defined
in [15] by single step edit automaton.

This automaton allows diverging computation, a kind
of computation where the edit automaton will run for-
ever without reading any input while keeping outputting
data. Formally, it means that after some ith action of
some finite input, the automaton will not read any more
input symbols and will only output symbols. By Qω we
denote an infinite sequence of states from the set Q.

Definition 3 (Diverging computation) A diverging
computation starting in the state q1 of the single step
edit automaton (Q, q0, δL) and triggered by σ ∈ Σ∗ is a

sequence 〈q1, q2, . . .〉 ∈ Qω such that (qi, σ)
a′i−→ (qi+1, σ)

for some a′i ∈ Σ for all i ≥ 1.

Definition 4 (Effectively diverging computation)
An single step edit automaton E = (Q, q0, δL) has an
effectively diverging computation if there exists a finite
sequence σ ∈ Σ∗ and there exists a finite sequence of
states 〈q1, q2, . . . , qn〉 such that

1) σ = σ0, and
2) for all i ≤ n

– either (qi, σi)
a′i−→ (qi+1, σi)

– or σi = a;σi+1 and (qi, σi)
·−→ (qi+1, σi) for some

a ∈ Σ and σi ∈ Σ∗, and
3) there exists a diverging computation starting in qn

and triggered by σn.

While it was theoretically useful in [15], the very idea
that a control mechanism could possibly produce output
without any input is hardly acceptable by the users1. In
contrast, the idea that the enforcement mechanism could
spend a lot of time in order to process an input and
eventually report a long sequence of follow-up actions
was considered impractical but understandable.

So our definition is that the only way to produce an
infinite output is to get an infinite input. And differently
from the original definition, our automaton consumes the
input action a at every transition.

1 We are currently carrying on a large case study on
e-Health in the framework of the EU-ICT-IP-MASTER
project.

Proposition 1 For all enforcement mechanisms with-
out diverging computations Definition 1 edit automata
and single step edit automata [15] are identical.

Proof We show how to construct an edit automaton from
Definition 1 given an edit automaton from the original
definition [15]. For all a, σ′, q

1) if (q, a;σ′)
·−→ (q′, σ′) then δ(q, a) = q′ and for all

σk : γo(q, σk, a) = ·
2) if (q, a;σ′)

a′−→ (q′, a;σ′) then one of the two following
cases holds:
(a) let 〈q1, . . . qn〉 ∈ Q∗ be the longest sequence such

that q = q1 and (qi, a;σ′)
a′i−→ (qi+1, a;σ′) for

all 0 < i < n and (qn, a;σ′)
·−→ (qn+1, σ

′) then
δ(q, a) = qn+1 and for all σk the output function
is γo(q, σk, a) = a′1; . . . a′n−1

(b) let 〈q1, . . . qn〉 ∈ Q∗ be the sequence such that

q = q1 and (qi, a;σ′)
a′i−→ (qi+1, a;σ′) for all 0 <

i < n and then the automaton stops proceeding
the input and outputting, because there are no
successors from the state qn, then δ(q, a) = qn
and for all σk the output function is γo(q, σk, a) =
a′1; . . . a′n−1

3) otherwise let δ(q, a) = q⊥ and for all σk the output
function is γo(q, σk, a) = ·.
It is easy to show that both automata have the same

I/O relation. Even for the case 2(b) the I/O relation is
the same: even though the constructed automaton will
proceed with the input action a, since the automaton
stops executing the input, the observed behavior (out-
putting a′1; . . . a′n−1) is still the same. The only difficult
part is to show that we can never reach a state q⊥. Since
edit automaton effectively diverging computations this
means that either q⊥ is not reachable by a finite prefix
(condition (2) of Definition 4) or there cannot be a di-
verging computation starting in q (condition (3) of Def-
inition 4). So qn in the construction must exist and thus
q⊥ is not reachable. �

In the proof of Proposition 1 we did not define the
the keep function γk because it is internal function to
the automaton: it defines a new value of the suspended
sequence σk and it is used for a concrete construction of
the automaton. And single step edit automaton defini-
tion does not have a notion similar to the keep function.

4 A new classification of edit automata

In this section we will detail the classes shown in Fig-
ure 1. All omitted proofs can be found in the appendix
of this paper.

We start with a wide class of edit automata called
Late automata. They simply output some prefix of the
input. This class will be the container of other less trivial

cases when the property P̂ will be taken into account.

Do you really mean what you actually enforced? 7

Fig. 4: Example of Late automaton.

Fig. 5: Example of All-Or-Nothing automaton.

Definition 5 (Late automata) A Late automaton A
is an edit automaton that is described by a 5-tuple of
the form A = 〈Q, q0, δ, γo, γk〉 with the restriction that it
always outputs some prefix of the input:

∀i ∃j. j ≤ i ∃q∗. (q0, σ)
σ[..j]
 A(q∗, σ[i+ 1..]) (1)

We call property (1) output latency since it means
that at every step of execution automaton outputs some
prefix of the input.

The example of Late automaton is shown in Figure 4.
This automaton simply outputs the first action of the
input after reading the second and then outputs second
and third actions after reading the third action.

In order to give a formal definition of the automata

from Theorem 8 [2] for any property P̂ we present also a
wider class of automata called All-Or-Nothing automata.
These automata always output some prefix of the input
(hence it is a particular kind of Late automata). More-
over, on every transition they either output all suspended
input actions or suppress the current action.

Definition 6 (All-Or-Nothing automata) An All-
Or-Nothing automaton A is an edit automaton described
by a 5-tuple of the form A = 〈Q, q0, δ, γo, γk〉 with the
following restrictions:

– This automaton outputs a prefix of the input: (1).
– At every step of the transition either it outputs the

whole suspended sequence of actions (the input sym-
bols read by the automaton but not in the output
yet) or suppresses the current action:

γo(q, σk, a) =

{
σk; a

·
(2)

The example of All-Or-Nothing automaton is given
in Figure 5.

The next step is the refinement of this class towards

what we call Ligatti Automata for P̂ . These automata

always output a prefix of the input (hence it is a partic-
ular kind of Late automata) and they are particular kind
of All-Or-Nothing automata. Moreover, they output the
longest valid prefix. The definition of Ligatti automa-

ton for property P̂ given below was made according to
the construction of edit automaton given in the proof of
Theorem 8 [2].

Definition 7 (Ligatti automata for property P̂) A

Ligatti automaton E for property P̂ is an edit automaton
described by a 5-tuple of the form E = 〈Q, q0, δ, γo, γk〉
with the following restrictions:

– The automaton outputs a prefix of the input (1).
– Either it outputs the whole suspended sequence of

actions or suppresses the current action (2).
– Output is valid at every transition (here σ′ is an al-

ready output sequence)

P̂ (σ′; γo(q, σk, a)) (3)

– If in the state q the current sequence σ′;σk; a is valid
then it outputs the whole sequence:

If P̂ (σ′;σk; a) then γo(q, σk, a) = σk; a. (4)

At every state a Ligatti automaton for property P̂
keeps the sequence that was read till the current mo-
ment (and consists of already output sequence σ′ and
kept but not yet output sequence σk) in order to decide

whether P̂ (σ′;σk; a) holds. A possible way of implement-
ing this is Q= Σ∗. In our definition a Ligatti automaton

for property P̂ is obviously a particular kind of edit au-
tomaton. We will show that this statement holds in the
original definition as well.

Let us now remind the constructive proof of Theo-
rem 8 [2] and show that the edit automaton constructed

following this proof is a Ligatti Automaton for P̂ .
The proof of Theorem 8 in [2] constructs an edit au-

tomaton as follows:

- States: q ∈ Σ∗ ×Σ∗ × {+,−} [the sequence of actions
seen so far, the actions seen but not emitted, and
+(−) is used to indicate that the automaton must
not (must) suppress the current action]

- The initial state q0 = 〈·, ·,+〉.
- Consider processing the action a in state q.

(A) If q = 〈σ, τ,+〉 and ¬P̂ (σ; a) then suppress a and
continue in state 〈σ; a, τ ; a,+〉.

(B) If q = 〈σ, τ,+〉 and P̂ (σ; a) then insert τ ; a and
continue in state 〈σ; a, ·,−〉.

(C) Otherwise, q = 〈σ, τ,−〉. Suppress a and continue
in state 〈σ; a, ·,+〉.

Proposition 2 The edit automaton constructed follow-

ing the proof of Theorem 8 in [2] for property P̂ is a

Ligatti automaton for P̂ .

8 Nataliia Bielova, Fabio Massacci

Fig. 6: Example of Late automaton for property P̂ .

Proposition 2 also holds for the construction in the
proof of Theorem 3.3 in [15].

In a nutshell, the difference between edit automata

and Ligatti automata for property P̂ is the following:

– edit automata can suppress arbitrary actions from
the input without inserting them later and can insert
arbitrary actions in the output.

– Ligatti automata for property P̂ can only insert those
actions that were read before; suppressed actions ei-
ther will be inserted when the input sequence be-
comes valid or all subsequent actions will be sup-
pressed (in other words, it outputs the longest valid
prefix of the input).

Since the automaton constructed according to the
proof of Theorem 8 in [2] is a Ligatti automaton for

property P̂ while the automaton given in [2] (Figure 2a)
is not a Ligatti automaton, the difference between their
behaviors is clear.

Still, the automaton of Figure 2a is not a completely
arbitrary edit automaton and we propose a notion of

Late automaton for property P̂ . If the sequence is valid,
it outputs a valid prefix of the input, otherwise it can
output some valid sequence (i.e. fixing the input).

Definition 8 (Late automata for property P̂) A

Late automaton A for P̂ is an edit automaton that is
described by a 5-tuple of the form A = 〈Q, q0, δ, γo, γk〉
with the following restrictions (σ′ is with the following
restrictions (σ′ is a sequence that is in the output al-
ready, σk is a sequence of an input symbols read by the
automaton but not in the output yet):

If P̂ (σ′;σk; a) then

– Output is a prefix of the input (1), and
– Output is always valid (3).

The example of Late automaton for property P̂ is
shown in Figure 6. This automaton is similar to the one
given in Figure 2a with the only difference that it delays
the output of the first take-pay transaction.

Later in Figure 8 we will pictorially describe the rela-
tions among different kinds of edit automata. However,
in order to explain more relations present in that picture
we need first to define the notion of enforcement in the
next section.

5 Relationships among the Edit Automata
classes

The principles of soundness and transparency were pre-
sented in [2] in order to be able to compare different
enforcement mechanisms. Let us first see an intuitive de-
scription of these principles. The notion of soundness re-
quires all the observable output of an enforcement mech-
anism to be valid. The notion of transparency means that
an enforcement mechanism must preserve the semantics
of executions that are already valid. The notion of precise
enforcement by [2] obeys both of these properties.

Definition 9 (Precise Enforcement) An automaton

A with starting state q0 precisely enforces a property P̂
on the system with action setΣ if and only if ∀σ ∈ Σ∗ ∃q′
∃σ′ ∈ Σ∗ such that

1. (q0, σ)
σ′

 A(q′, ·), and

2. P̂ (σ′), and

3. P̂ (σ)⇒ ∀i ∃q′′. (q0, σ)
σ[..i]
 A(q′′, σ[i+ 1..])

According to this definition, the automaton in ques-
tion outputs program actions in lock-step with the tar-
get program’s action stream if the action stream σ is
valid. Suppose that at the current moment the automa-
ton reads i-th action in the sequence, and the sequence
σ[..i+1] is not valid. Then the automaton will not output
any other actions.

There is another notion of enforcement called “eff-
ective = enforcement” [2] (with later refinement in [15])
that obeys the properties of soundness and transparency
and output production (for any input there is an output).

Definition 10 (Effective=Enforcement) An automa-
ton A with starting state q0 effectively=enforces a prop-

erty P̂ on the system with action set Σ if and only if
∀σ ∈ Σ∗ ∃q′ ∃σ′ ∈ Σ∗ such that

1. (q0, σ)
σ′

 A(q′, ·), and

2. P̂ (σ′), and

3. P̂ (σ)⇒ σ = σ′

Then we introduce a refinement of effective=enforce-
ment, where an automaton can suppress some actions
and later insert them when the sequence turns out to be
legal. We name it Late effective=enforcement.

Definition 11 (Late Effective=Enforcement) An edit
automaton A with starting state q0 lately effectively=en-

forces a property P̂ on the system with action set Σ if
and only if ∀σ ∈ Σ∗ ∃q′ ∃σ′ ∈ Σ∗ such that

1. (q0, σ)
σ′

 A(q′, ·), and

2. P̂ (σ′), and

3. P̂ (σ)⇒ σ = σ′, and

4. ∀i ∃j. j ≤ i ∃q∗. (q0, σ)
σ[..j]
 A(q∗, σ[i+ 1..]).

Do you really mean what you actually enforced? 9

Fig. 7: Edit automaton that lately effectively=enforces

property P̂ .

The definition above obeys four properties of enforce-
ment: output production (1), soundness (2), transparency
(3) and output latency, which is originally presented in
equation (1).

Notice that edit automaton that lately effectively=en-

forces a property P̂ will always output some valid prefix
of the input. This conclusion is obvious because sound-
ness ensures that all output is valid and output latency
ensures that output is always a prefix of the input.

We show an example of edit automaton that lately

effectively=enforces a property P̂ in Figure 7.
It is easy to see from the definitions that edit au-

tomata that lately effectively=enforce a property P̂ are
a proper subset of edit automata that effectively=enforce

P̂ . An example is the edit automaton in Figure 2a that

effectively=enforces property P̂ . From an illegal input
sequence take(1); browse; take(2); pay(2) it produces
warning; take(2); pay(2) while automaton in Figure 7

that lately effectively=enforces P̂ outputs nothing.
As it is said in [2] edit automaton from Figure 2a

effectively=enforces the market policy (Example 1). But
since the market policy is given only in natural language

and the predicate P̂ is not given, statements such as “An
edit automata effectively enforces the market policy” are
a bit stretching the definition.

In Figure 8 we summarize the relations among the dif-
ferent kinds of automata that we have introduced. When
drawing two boxes separated by a space we mean that
inclusion is probably not proper. In the rest of the paper
we prove the correctness of this classification.

Proposition 3 Late automata and Late automata for

property P̂ are not a proper subset of each other.

For example, for input sequence σ = take(1); browse
the Late automaton from Figure 4 will output take(1)

action which is not valid, while the Late automaton for

property P̂ from Figure 6 will output warning action.
From Proposition 3 we can conclude that classes of

Late automata and Late automata for P̂ have some com-
mon subclass but none of them include the other.

Theorem 1 Edit automata that effectively=enforce prop-

erty P̂ are a proper subset of Late automata for P̂ .

Fig. 8: The classes of edit automata.

Proof First we have to prove that if an edit automaton

A effectively=enforces property P̂ , then A is a Late au-

tomaton for property P̂ .
By σ we denote an input sequence of the automa-

ton and σ′ is an output sequence. The automaton A

that effectively=enforces P̂ obeys the properties P̂ (σ′)

and P̂ (σ) ⇒ σ = σ′. If σ is valid, it outputs the whole

sequence, so automaton A is a Late automaton for P̂
because it outputs a valid prefix (σ is a valid prefix of
itself). If σ is invalid, automaton A can output an arbi-
trary valid sequence while Late automaton for property

P̂ can output any arbitrary sequence (valid or invalid).
Next we have to prove that if an edit automaton A is

a Late automaton for property P̂ then it is not necessary

that A effectively=enforces property P̂ .

In case of a valid input the Late automaton for P̂ will
output some valid prefix of the input and not necessary
the whole input, hence the property of effective=enforce-

ment P̂ (σ)⇒ σ = σ′ will not hold. �

For example, the Late automaton for P̂ from Figure 6
for a valid input take(1); pay(1) will output nothing
while the automaton from Figure 2a that effectively=en-

forces property P̂ will output the whole input take(1);
pay(1).

Proposition 4 Edit automata that effectively=enforce

property P̂ are not a subset of Late automata.

For example, the automaton from Figure 2a that eff-

ectively=enforces property P̂ for an invalid input take(1);
browse will output the warning action which is not possi-
ble for a Late automaton that has to output some prefix
of the input.

Theorem 2 Edit automata that lately effectively=enforce

a property P̂ are exactly those Late automata that effecti-

vely=enforce property P̂ .

10 Nataliia Bielova, Fabio Massacci

Proof Similarly to the definitions of late effective=en-
forcement and effective=enforcement, by σ we denote an
input sequence of the automaton and σ′ is an output
sequence.

(If Direction). If edit automaton A lately effective-

ly=enforces property P̂ then it obeys the property of
output latency (1) and hence A is a Late automaton. Ac-
cording to definitions 10 and 11, since A lately effective-

ly=enforces P̂ it also effectively=enforces P̂ .
(Only-if direction). If A is a Late automaton that effecti-

vely=enforces property P̂ then it always outputs some
valid prefix of the input (since it obeys soundness and
output latency) and in case of valid input it outputs the
whole input sequence (property of transparency). Hence,
first three conditions of late effective= enforcement hold.
The fourth property holds as well because A is a Late

automaton. Hence A lately effectively=enforces P̂ . �

It is immediate from the definitions the following re-
sults:

Proposition 5 Edit automata that precisely enforce prop-

erty P̂ are a proper subset of edit automata that effective-

ly=enforce property P̂ .

Proposition 6 Edit automata that precisely enforce prop-

erty P̂ are not a subset of Late Automata.

Proposition 7 All-Or-Nothing automata are a proper
subset of Late automata.

For example, the Late automaton from Figure 4 for
an input sequence take(1); browse will output only take(1)

action. The given Late automaton can not be an All-
Or-Nothing automaton because it can output some non-
empty prefix of the input sequence.

Proposition 8 All-Or-Nothing automata are not a sub-

set of Late automata for property P̂ .

For example, the All-Or-Nothing automaton shown
in Figure 5 for the input sequence take(1); pay(1); take(2)
outputs an invalid prefix of this sequence (in this case
the whole sequence) while this is not possible for a Late

automaton for property P̂ .

Proposition 9 Edit automata that lately effectively= en-

forces property P̂ and All-Or-Nothing automata are not
a proper subset of each other.

For example, the automaton given in Figure 7 that

lately effectively=enforces property P̂ for an input se-
quence take(1); pay(1); take(2) outputs the sequence
take(1); pay(1). The given automaton cannot be an
All-Or-Nothing automaton because after take(2) action
it outputs non-empty prefix of the suppressed sequence.

On the other hand, for the input sequence take(1);
pay(1); take(2) the All-Or-Nothing automaton from Fig-
ure 5 outputs the whole input sequence, which is in-
valid. This automaton cannot be considered as automa-
ton that lately effectively=enforces property P̂ because
it produces illegal output.

Theorem 3 All-Or-Nothing automata that lately effecti-

vely=enforce a property P̂ are exactly Ligatti automata

for property P̂ .

Proof We have to show that All-Or-Nothing automaton

A lately effectively=enforces a property P̂ if and only if

A is a Ligatti automaton for property P̂ .
(If Direction). If automaton A is All-Or-Nothing au-

tomaton then equations (1) and (2) hold. Since A lately

effectively=enforces property P̂ then it obeys the prop-
erties of soundness (condition 2 of Definition 11) and
transparency (condition 3 of Definition 11). Notice that
soundness means that the output is always valid, which is
exactly what equation (3) describes; transparency means
that if input is valid then output is equal to the input,
which is shown in equation (4). Hence, all the conditions

of Ligatti automaton for P̂ are satisfied.
(Only-if direction). If A is a Ligatti automaton for prop-

erty P̂ then

– It obeys properties (1) and (2) hence A is an All-Or-
Nothing automaton, and then according to Proposi-
tion 7 it is also a Late automaton;

– It obeys properties (3) and (4) and as we noticed,
they mean soundness and transparency which cor-
respond to the conditions 2 and 3 of Definition 10.

Hence, A effectively=enforces P̂ .

Therefore since A is Late automaton that effectively=en-

forces P̂ then it lately effectively=enforces P̂ according
to Theorem 2 and it is an All-Or-Nothing automaton.�

Now we will clarify which type of edit automaton is
constructed following the proof of Theorem 8 in [2] for

property P̂ and which type of edit automaton is the one
in [2] (Figure 2a).

As the Proposition 2 states, the edit automaton con-
structed following the proof of Theorem 8 in [2] for prop-

erty P̂ is a Ligatti automaton for P̂ . The edit automa-
ton given in Figure 2a [2] is an edit automaton that

effectively=enforces P̂ : it obeys soundness (the automa-
ton always outputs the valid sequence) and transparency
(in case of valid input it always outputs all the sequence).
The edit automaton given in Figure 2a [2] is not a Late
automaton because it does not always output some prefix
of the input (see examples 8 and 10 in Table 2).

Therefore, we can conclude that both automata from
Theorem 8 [2] and from Figure 2a [2] are edit automata

that effectively=enforce property P̂ . But when one wants
to construct such an automaton and follows the proof of

Theorem 8 [2], he obtains a Ligatti automaton for P̂ that

lately effectively=enforces P̂ .

Do you really mean what you actually enforced? 11

6 From the Policy to the Edit Automata

In previous sections we have shown that edit automaton
constructed by the proof of Theorem 8 [2] is actually
a Ligatti automaton, a specific kind of edit automaton.
Moreover, this automaton has infinite number of states,
which is not practical. In this section we will show how

given a property P̂ one can build a Ligatti automaton
with a finite number of states.

Till now we have presented security property as a

predicate P̂ on all possible sequences of executions. Propo-
sition 6.24 of [22] states that for any edit automaton

A effectively=enforcing property P̂ there exists a Büchi

Automaton specifying P̂ . The proof of this proposition
assumes that the edit automaton is of a particular kind,

i.e., a Ligatti Automaton for P̂ . Indeed, the authors as-
sume that each state of given edit automaton contains
the longest valid prefix σA (i.e. the sequence edited by
the automaton while reading) and the suffix of the input
σk that is suppressed by the automaton after reading.
Also the construction is made in such a way that all the
states of new Büchi Automaton are the same as in the
given edit automaton. Every time the edit automaton
suppresses an action, the next state of the Büchi Au-
tomaton is considered to be non-accepting, while when
the action is inserted the next state of the Büchi Automa-
ton is considered to be accepting. In this construction
an edit automaton can insert only all of those actions
that were read before. Therefore, this construction can

be used only for Ligatti automata for property P̂ .
In this paper we reverse the idea of [22] and construct

an edit automaton from some automaton that represents
our desired security policy. In our model we assume both
finite and infinite executions. Since Büchi Automaton
accepts only infinite sequences, we need another notion
of automaton that can represent our security policy.

Definition 12 (Policy automaton) A Policy automa-
ton is a 5-tuple 〈Σ,Q, q0, δ, F 〉 whereΣ is finite nonempty
set of security-relevant program actions, Q is a finite set
of states, q0 ∈ Q is the initial state, δ : Q × Σ → Q is
a labeled partial transition function, and F ⊆ Q is a set
of accepting states.

Policy automaton has no output or keep function, it
has only accepting states.

Definition 13 (Run of a Policy automaton) Let
A = 〈Σ,Q, q0, δ, F 〉 be a policy automaton. A run of A
on a finite (respectively infinite) sequence of actions σ =
a0, a1, a2, . . . is a sequence of states q|σ| = 〈q0, q1, q2 . . .〉
such that qi+1 = δ(qi, ai). A finite run is accepting if
the last state of the run is an accepting state. An infi-
nite run is accepting if the automaton goes through some
accepting states infinitely often.

The Policy automaton combines the acceptance con-
ditions of Büchi Automata and finite state automata.

Fig. 9: Policy automaton representation of market policy
(Example 1)

Definition 14 (Property represented as Policy

Automaton) Some property P̂A is represented as a Pol-
icy automaton A if and only if

∀σ ∈ Σ∞ : P̂A(σ)⇐⇒ A accepts σ (5)

Let us now define what kind of properties can be
represented by a Policy automaton. In [15] the authors
define the class of properties called Renewal properties.

Definition 15 (Renewal property) Property P̂ is re-
newal if the following holds:

∀σ ∈ Σω : P̂ (σ)⇐⇒

(∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ))
(6)

According to the Theorem 3.3 [15], a property P̂ can
be effectively=enforced by some edit automaton if this

property is renewal, P̂ (·) and for all finite sequences σ

P̂ (σ) is decidable. Therefore we will focus on the renewal
properties. The proof of Theorem 3.3 [15] is similar to the
proof of Theorem 8 [2] and it is non-constructive because
the number of states of the resulting edit automaton is
infinite.

Theorem 4 The set of infinite traces accepted by a Pol-
icy automaton is a renewal property.

This is a straightforward proof that the Büchi accep-
tance condition is a subset of the definition of renewal
properties.

In Figure 9 we present a Policy automaton for the
market policy from Example 1. According to the Exam-
ple 1 in English, the automaton should accept all the
sequences when take-pay transaction is finalized. Other-
wise if after take(n) action there is some action different
from pay(n) then the policy is violated and the automa-
ton halts. If after pay(n) action there are some other
actions different from pay and take then the automaton
simply waits for the take(n) action. In case of take(m)

action when m 6= n the automaton halts. In this way we
give our own interpretation to the given example.

For given renewal property P̂ represented as Policy
automaton we present a construction of Ligatti automa-
ton that is the inverse of of Talhi et al. [22] construction
from Proposition 6.24.

12 Nataliia Bielova, Fabio Massacci

Intuitively, the resulting Ligatti automaton should
have the same number of states as the corresponding
Policy automaton plus an error state. At every transi-
tion that goes to non-accepting state Ligatti automa-
ton should suppress the input action and add it to some
suppressed sequence σ. When the next state of Policy
automaton is accepting, Ligatti automaton should out-
put the whole suppressed sequence. When there is no
transition on some action in a Policy automaton, Ligatti
automaton should have corresponding transition going
to an error state. Hence, an error state should absorb all
the bad input that can never become good.

If given property P̂ accepts at least one infinite se-
quence, then the policy automaton representing it has
a cycle over accepting state. Then when we construct
Ligatti Automaton for Policy automaton from Figure 9
according to Theorem 8 [2] instead of state q2 we will
have infinite number of states, each of them will contain
some different sequence of suppressed actions: pay(n),
pay(n); a, pay(n); a; a etc.

So far in the paper we have hardly used the keep
function γk, and one may wonder what is its use. Using
the keep function is essential to obtain a finite repre-
sentation for an enforcement mechanism in presence of
finitely representable policy.

In the construction algorithm from the proof of The-
orem 8 [2] (see Figure 2b) every state itself includes
suppressed sequence, hence there is infinite number of
states. When one wants to construct Ligatti automaton,
the keep function γk should define all the actions that
are kept while input sequence is invalid. Then as soon as
some next action makes the whole sequence valid (i.e.,
accepted by Policy automaton), the output function γo
should output all the suppressed actions and the result
of the γk function should be an empty sequence.

We define 〈δ, γo, γk〉 as a function Q×Σ → Q× (Σ ∪
{∗})∗× (Σ ∪ {∗})∗. This is a restriction over the general
power that we use here for readability. The semantics of
’∗’ in a sequence σ over Σ∪{∗} is that each occurrence of
symbol ’∗’ is replaced by the sequence of kept actions σk
denoted by [∗ 7→ σk], hence we write 〈δ, γo, γk〉(q, a) =
q′|σ1|σ2 if and only if
δ(q, a) = q′

γo(q, σk, a) = σ1[∗ 7→ σk]

γk(q, σk, a) = σ2[∗ 7→ σk]

In the sequel we will only use the sequence ∗; a which
means concatenate the kept sequence σk with action a.

Following this construction, we build a Ligatti au-
tomaton shown in Figure 10, where we use the same
notation on the transitions.

Let us present a construction algorithm. For a Policy
automaton AP =

〈
Σ,QP , qP0 , δ

P , FP
〉

the Ligatti au-
tomaton A = 〈Q, q0, δ, γo, γk〉 is defined as follows.

– q0 = qP0

Fig. 10: Finite representation of Ligatti automaton con-
structed for a Policy automaton (Figure 9)

– Q = QP ∪ {q⊥}
– For all q ∈ Q, a ∈ Σ such that ∃q′ = δP (q, a)

〈δ, γo, γk〉(q, a) =

{
q′|∗; a|· if q′ ∈ FP
q′|·|∗; a otherwise

(7)

– For all q ∈ Q, a ∈ Σ such that @q′ = δP (q, a)

〈δ, γo, γk〉(q, a) = q⊥|·|· (8)

If we compare Ligatti automaton from Figure 2b and
Ligatti automaton from Figure 10, we will see that their
output is identical for the same input. The difference is
that the automaton built by a proof of Theorem 8 [2]
has infinite number of states, while we provide an ex-
tended finite representation of Ligatti automaton for re-
newal property represented as Policy automaton.

Practically the kept sequence can be easily imple-
mented by a queue. The Ligatti automaton has some
queue that keeps all the suspended actions (this notion
is similar to a very restricted form of Queue Automa-
ton [6]). In our particular case the γo function outputs
all actions in the queue (or not at all) and γk function
only enqueues elements in the queue (when there is no
output) or reset the queue to the empty one.

Theorem 5 Any security policy represented as a Pol-
icy automaton AP can be effectively=enforced by some
Ligatti automaton A.

Proof We construct a Ligatti automaton A following the
construction given above. This automaton has γo and γk
functions that define the output for the transitions and
sequence that will be kept after committing the transi-
tion. Automaton A effectively=enforces the security pol-
icy represented as Policy automaton AP because all con-
ditions of effective=enforcement are satisfied. Indeed, it
obeys soundness because the automaton A outputs some
sequence of actions σ only when the reached state is ac-

cepting (this statement is equal to P̂ (σ)). Transparency
holds as well because when the input sequence is valid it
means that the current state is an accepting state, hence
we will output the whole input sequence. �

Do you really mean what you actually enforced? 13

Corollary 1 If a Policy automaton AP representing se-

curity policy P̂ is finite then the Ligatti automaton en-

forcing P̂ is finitely representable as well.

7 Related work and Conclusions

Schneider [20] was the first to introduce the notion of en-
forceable security policies. The follow-up work by Hamlen
et al. [11] fixed a number of errors and characterized
more precisely the notion of policies enforceable by exe-
cution monitors as a subset of safety properties. They
also analyzed the properties that can be enforced by
static analysis and program rewriting. This taxonomy
leads to a more accurate characterization of enforceable
security policies. Ligatti, Bauer, and Walker [2] have in-
troduced edit automata; a more detailed framework for
reasoning about execution monitoring mechanisms. As
we already said, in Schneider’s view execution monitors
are just sequence recognizers while Ligatti et al. view ex-
ecution monitors as sequence transformers. Having the
power of modifying program actions at run time, edit
automata are provably more powerful than security au-
tomata [15].

Fong [9] provided a fine-grained, information-based
characterization of enforceable policies. In order to rep-
resent constraints on information available to execution
monitors, he used abstraction functions over sequences
of monitored programs and defined a lattice on the space
of all congruence relations over action sequences aimed
at comparing classes of EM-enforceable security policies.
Still his policies are limited to safety properties over fi-
nite executions.

Martinelli and Matteucci [16] have shown how to syn-
thesize program controllers that monitor behavior of the
untrusted components of the system. Given the system
and a security policy represented as a µ-calculus formula
the user can choose the controller operator (truncation,
suppression, insertion or edit automata). Then he can
generate a program controller that will restrict the be-
havior of the system to those specified by the formula.

When a security policy is represented by a predicate

P̂ over a set of finite executions, we can conclude that
both automata from Theorem 8 [2] and from Figure 2a [2]

are edit automata that effectively=enforce property P̂ .
When one wants to construct such an automaton and
follows the proof of Theorem 8 [2], he obtains a Lig-

atti automaton for P̂ that lately effectively=enforces P̂ .
A problem that is present in the construction of Theo-
rem 8 is that it assumes an oracle that can tell for each
sequence σ whether P̂ (σ) holds or not. A security policy

in Theorem 8 [2] is a predicate P̂ on all possible finite
executions, but in this case the edit automaton which ef-
fectively enforces this policy is only of theoretical inter-
est: following the proof of Theorem 8 only infinite states
automata can be constructed.

In summary, we have shown that the difference be-
tween the running example from [2] and the edit au-
tomata that are constructed according to Theorem 8 in
the very same paper is due to a deeper theoretical dif-
ference. In order to understand this difference, we have
introduced better classification of edit automata intro-
ducing the notion of Late Automata. The particular au-
tomata that are actually constructed according to The-
orem 8 from [2] are a particular form of late automata
that have an all-or-nothing behavior and that we named
Ligatti’s automata after their inventor.

Hence, the construction from Talhi et al. [22] only
applies to Ligatti’s automata. Given an (infinite state)
Ligatti automaton they can extract the Büchi automaton
that represent the policy effectively enforced by the Lig-
atti automaton. What happens if the automaton is not
a Ligatti automaton? For example, the automaton from
Figure 2a? Proposition 6.24 [22] simply does not apply. It
needs to be shown whether given a general edit automa-
ton one can construct a Büchi automaton so that the
latter represents the policy that is effectively enforced
by the former. We leave this question open for future
investigation.

What remains to be done? Our results show that the
edit automaton that you can actually write (e.g., by us-
ing Polymer) does not necessarily correspond to the the-
oretical construction that provably guarantees that your
automaton enforces your policy.

So we fully re-open the most intriguing question that
the stream of papers on execution monitors seemed to
have closed:

Challenge 1 You have written your security enforce-
ment mechanism (aka your edit automata); how do you
know that it really enforces the security policy you spec-
ified?

Our constructive proof of Theorem 5 is only a first
step to address this research challenge. Given a policy
specification expressed as a Policy automaton or Büchi
automaton (as used in Security-by-Contract [3,17,18])
we constructed an extended finite state automaton that
effectively=enforces it.

There is however a much broader issue we would like
to raise. Essentially all papers on security monitors cited
in this article (and this paper itself) only provide a se-
curity judgment over a trace (i.e. a predicate over trace)
that considers the trace as a whole. Hence, we are not
able to define an incremental notion of security that tells
how to fix a bad trace. The Ligatti automaton will output
only the longest valid prefix, the only available theoreti-
cal fix is truncation. So we open another question:

Challenge 2 If your enforcement mechanism really en-
forces your security policy, how exactly it does the en-
forcement? Does it fix the bad sequences in the way you
want?

14 Nataliia Bielova, Fabio Massacci

Acknowledgment

The authors would like to thank the reviewers for their
constructive comments and suggestions that help im-
prove the manuscript. This work has been partly sup-
ported by the European Union under the projects EU-
ICT-IP-MASTER, EU-FET-IP-SecureChange, EU-FP7-
IST-NoE-NESSOS.

References

1. Bauer, L., Ligatti, J., Walker, D.: Composing security
policies with polymer. In: Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language
Design and Implementation, pp. 305–314. ACM Press
(2005)

2. Bauer, L., Ligatti, J., Walker, D.: Edit automata: En-
forcement mechanisms for run-time security policies. In-
ternational Journal of Information Security 4(1-2), 2–16
(2005)

3. Bielova, N., Dragoni, N., Massacci, F., Naliuka, K., Sia-
haan, I.: Matching in security-by-contract for mobile
code. Journal of Logic and Algebraic Programming
78(5), 340–358 (2009)

4. Bielova, N., Massacci, F.: Do you really mean what you
actually enforced? In: Proceedings of the 5th Inter-
national Workshop on Formal Aspects in Security and
Trust, vol. 5491, pp. 287–301. Springer-Verlag Heidelberg
(2008)

5. Bielova, N., Massacci, F., Micheletti, A.: Towards prac-
tical enforcement theories. In: Proceedings of The 14th
Nordic Conference on Secure IT Systems, Lecture Notes
in Computer Science, vol. 5838, pp. 239–254. Springer-
Verlag Heidelberg (2009)

6. Cherubini, A., Citrini, C., Reghizzi, S.C., Mandrioli, D.:
QRT FIFO automata, breadth-first grammars and their
relations. Theoretical Computer Science 85(1), 171–203
(1991)

7. CNET Networks: Channel 4’s 4od: Tv on demand, at a
price. Crave Webzine (2007)

8. Erlingsson, U.: The inlined reference monitor approach to
security policy enforcement. Ph.D. thesis, Cornell Uni-
versity (2003)

9. Fong, P.: Access control by tracking shallow execution
history. Proceedings of the 2004 IEEE Symposium on
Security and Privacy pp. 43–55 (2004)

10. Gong, L., Ellison, G.: Inside Java(TM) 2 Platform Se-
curity: Architecture, API Design, and Implementation.
Pearson Education (2003)

11. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Com-
putability classes for enforcement mechanisms. ACM
Transactions on Programming Languages and Systems
28(1), 175–205 (2006)

12. Havelund, K., Rosu, G.: Efficient monitoring of safety
properties. International Journal on Software Tools for
Technol. Transfer (2004)

13. Krukow, K., Nielsen, M., Sassone, V.: A framework for
concrete reputation-systems with applications to history-
based access control. In: Proceedings of the 12th ACM
Conference on Communications and Computer Security
(2005)

14. LaMacchia, B., Lange, S.: .NET Framework security. Ad-
dison Wesley (2002)

15. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement
of nonsafety policies. ACM Transactions on Information
and System Security 12(3), 1–41 (2009)

16. Martinelli, F., Matteucci, I.: Through modeling to syn-
thesis of security automata. In: Proceedings of the Sec-
ond International Workshop on Security and Trust Man-
agement, Electronic Notes in Theoretical Computer Sci-
ence, vol. 179, pp. 31–46. Elsevier Science Publishers B.V.
(2007)

17. Massacci, F., Siahaan., I.: Matching midlet’s security
claims with a platform security policy using automata
modulo theory. In: Proceedings of The 12th Nordic Work-
shop on Secure IT Systems (NordSec’07) (2007)

18. Massacci, F., Siahaan, I.S.R.: Simulating midlet’s secu-
rity claims with automata modulo theory. In: Proceed-
ings of the 2008 workshop on Programming Language
and analysis for security, pp. 1–9. ACM Press (2008)

19. Ray, B.: Symbian signing is no protection from spy-
ware. http://www.theregister.co.uk/2007/05/23/
symbian_signed_spyware/ (2007)

20. Schneider, F.: Enforceable security policies. ACM Trans-
actions on Information and System Security 3(1), 30–50
(2000)

21. Sekar, R., Venkatakrishnan, V., Basu, S., Bhatkar, S.,
DuVarney, D.: Model-carrying code: a practical approach
for safe execution of untrusted applications. In: Proceed-
ings of the 19th ACM Symposium on Operating Systems
Principles, pp. 15–28. ACM Press (2003)

22. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring
enforcement under memory-limitation constraints. Infor-
mation and Computation 206(2-4), 158–184 (2007)

Do you really mean what you actually enforced? 15

Appendix

Let us prove the the propositions.

Proposition 2 The edit automaton constructed fol-

lowing the proof of Theorem 8 in [2] for property P̂ is a

Ligatti automaton for P̂ .

Proof Consider processing the action a, σo is the output
so far, σk is a suppressed sequence of actions. Let us have
a look at two main steps of the construction:

– if ¬P̂ (σo;σk; a) then suppress a , σ′k = σk; a.

– if P̂ (σo;σk; a) then insert σk; a.

Since at every step the output is empty or σk; a then
the automaton obeys the property (2); it always outputs
prefix of the input, hence statement (1) holds as well.
Constructed automaton outputs the sequence only if it
is valid, hence statement (3) holds. It outputs all the sup-
pressed actions if the sequence becomes valid, therefore
statement (4) holds as well. Since all the conditions of

Ligatti automaton for P̂ are satisfied, we conclude that
automaton constructed following the proof of Theorem 8

in [2] for property P̂ is Ligatti automaton for P̂ . �

Proposition 3 Late automata and Late automata for

property P̂ are not a proper subset of each other.

Proof First we have to prove that if an edit automaton
A is a Late automaton, then it is not necessary that A

is a Late automaton for property P̂ .
By σ we denote an input sequence of the automa-

ton and σ′ is an output sequence. A Late automaton A
obeys only one property: it always outputs some prefix of
the input (1). Hence, even if the overall input sequence
σ is valid, A can output an invalid prefix of the input

(¬P̂ (σ′)), while Late automaton for property P̂ will al-
ways output a valid sequence (3).

Next we have to prove that if edit automaton A is a

Late automaton for property P̂ then it is not necessary
that A is a Late automaton. In case of invalid input

sequence the Late automaton for property P̂ can output
another sequence which is not necessarily a prefix of the
input, while a Late automaton will always output a prefix
of the input (1). �

Proposition 4 Edit automata that effectively=enforce

property P̂ are not a subset of Late automata.

Proof We have to prove that if an edit automaton A

effectively=enforces property P̂ then it is not necessary
that A is a Late automaton.

By σ we denote an input sequence of the automa-
ton and σ′ is an output sequence. The automaton A

that effectively=enforces P̂ obeys the properties: P̂ (σ′)

and P̂ (σ) ⇒ σ = σ′. In case of invalid input, the au-
tomaton A will output some valid sequence (according

to soundness), which is not necessary a prefix of the in-
put. Therefore it is not necessarily a Late automaton.
�

Proposition 5 Edit automata that precisely enforce

property P̂ are a proper subset of edit automata that

effectively=enforce property P̂ .

Proof If an edit automaton precisely enforce property

P̂ then for the valid input sequence it will output in
a lock-step mode the whole sequence, hence the prop-
erty of transparency holds. All the other properties of
effective=enforcement hold as well.

If an edit automaton effectively=enforces property P̂

then it is not necessary that it precisely enforces P̂ . For
an invalid input σ that has a valid prefix σ′ � σ, it can
output some valid sequence which does not necessarily
have a prefix σ′.

Proposition 6 Edit automata that precisely enforce

property P̂ are not a subset of Late Automata.

Proof The proof is straightforward: for an illegal input

edit automaton that precisely enforce property P̂ can
output a sequence that is not necessarily a prefix of the
input, however a Late Automaton always outputs some
prefix of the input.

Proposition 7 All-Or-Nothing automata are a proper
subset of Late automata.

Proof First we show that if A is All-Or-Nothing automa-
ton then A is a Late automaton. Since (1) holds for All-
Or-Nothing automaton A, then A is a Late automaton.

Next we show that if A∗ is a Late automaton then it is
not necessary that A∗ is an All-Or-Nothing automaton.
A∗ can output some prefix of the input that can be some
prefix of all suppressed actions. In this case A∗ is not an
All-Or-Nothing automaton because 2 does not hold. �

Proposition 8 All-Or-Nothing automata are not a

subset of Late automata for property P̂ .

Proof We show that if A is an All-Or-Nothing automa-
ton, then it is not necessary that A is a Late automaton

for property P̂ . An All-Or-Nothing automaton A can
output some invalid prefix of the valid input which is

not possible for a Late automaton for P̂ . �

Proposition 9 Edit automata that lately effective-

ly=enforces property P̂ and All-Or-Nothing automata are
not a proper subset of each other.

Proof First we have to prove that if an edit automaton

A lately effectively=enforces property P̂ then it is not
necessary that A is an All-Or-Nothing automaton.

By σ we denote an input sequence of the automaton
and σ′ is an output sequence. Automaton A can output
some valid prefix of the input which is not necessarily all

16 Nataliia Bielova, Fabio Massacci

the suppressed actions, hence A is not All-Or-Nothing
automaton.

Next we have to prove that if edit automaton A∗ is an
All-Or-Nothing automaton then it is not necessary that

A∗ lately effectively=enforces P̂ . At some step A∗ can
output some invalid prefix of the input while automaton

that lately effectively=enforces P̂ always outputs only
valid prefix of the input. �

Theorem 4 The set of infinite traces accepted by a
Policy automaton is a renewal property.

Proof Let us prove the theorem by contradiction. Sup-
pose that there exists a string σ ∈ Σω such that Pol-
icy automaton A accepts σ but σ does not satisfy equa-
tion (6).

Then there exists a sequence σ′, σ′ � σ such that

∀τ. τ � σ. σ′ � τ.¬P̂ (τ). In this case there exists a
run s = 〈s0, s1, . . . , sd, . . .〉 for a sequence of actions
σ = 〈a1, . . . , ad, . . .〉 such that sd is not an accepting
state. Since σ is accepted by A there must be a suc-
cessor state of sd that is accepting (otherwise s would
have only finitely many accepting states), i.e., a subse-
quence of s = 〈s0, s1, . . . , sd, . . . , sl〉 such that at least sl
is accepting then the corresponding sequence of actions

τl = 〈a1, . . . , ad, . . . , al〉 is such that σ′ � τl � σ ∧ P̂ (τl)
which is a contradiction. �

