
Reactive non-interference for the browser: a provable enforcement mechanism,
sample policies and a proof of concept implementation

Abstract—Given a partially ordered set (po-set) of security
levels, and a labeling of inputs and outputs with such levels,
non-interference (or secure information flow) is a security
property expressing that outputs of level l only depend on
inputs that are labeled with a level smaller than l. In other
words, there is no information flow from high (confidential)
levels, to low (public) levels.

For web browsers, as programs that interact intensely with a
variety of principals, non-interference is an interesting security
property, and several authors have studied how enforcement
mechanisms for it can be incorporated in a browser, usually
focusing on specific scenarios such as securing the flow of
information towards advertisements, or securing mashups.

In this paper, we investigate the suitability of non-
interference as a replacement for the baseline security policy of
a browser, the same-origin-policy. We propose an enforcement
mechanism that can enforce non-interference with respect to
a broad class of security level posets for the full browser. We
prove the security and precision of the enforcement mechanism,
and implement it for the Featheweight Firefox browser model.
Next, we investigate what security level posets are useful in
a web context, and how inputs and outputs to the browser
should be labeled. Somewhat surprisingly, our analysis shows
that useful policies (that approximate but improve the current
same-origin-policy) can be defined without any support for
declassification.

Keywords-noninterference; web browser; dynamic enforce-
ment

I. INTRODUCTION

The explosive growth of Web applications such as web-
based e-mail, social networking, web banking, and others
has turned the Web into one of the most important software
delivery platforms. The Web browser has become a virtual
machine that receives and executes a variety of interactive
applications from different stakeholders. Hence, one of the
key security responsibilities of a browser is to provide proper
protection mechanisms to ensure that these different appli-
cations can not interfere with each other in non-authorized
ways. In today’s browsers, this is achieved by enforcing
the so-called same-origin-policy. An origin is a (protocol,
domain name, port) triple, and restrictions are imposed on
the way in which code and data from different origins can
interact.

Unfortunately, this same-origin-policy is fraught with
problems. Not only is it implemented inconsistently in
current browsers [14], it is also ambiguous and imprecise
[1], and it fails to provide adequate protection for resources
belonging to the user rather than to some origin [14].

This has led to a significant amount of research proposing
improvements for web browser security, ranging from spe-
cific countermeasures for holes in the same-origin-policy to
proposals for new browser architectures that basically turn
a browser into a service operating system. We give a brief
overview of this research area in the related work section.

Of particular importance for this paper are the various
proposals that have been made to base the policy enforced by
a browser on non-interference, or information-flow security.
A program is non-interferent if secret inputs to the program
do not influence public outputs. In other words, secret inputs
should not flow (directly or indirectly) to public outputs.
Non-interference can be defined with respect to a more
general information flow policy. Such a policy is a partially
ordered set (po-set) of security levels l. The levels can be
thought of as confidentiality levels: levels higher in the
po-set will label more confidential information. All input
channels and output channels of the program are labelled
with such a security level, and the program is non-interferent
if information only flows from inputs labelled li to outputs
labelled lo for li ≤ lo. In other words: information only
flows upward, toward more confidential levels.

Non-interference has been studied intensely for several
decades, and a wide variety of enforcement mechanisms
have been proposed. Sabelfeld and Myers [12] provide
an extensive survey of static enforcement methods, and
Le Guernic’s PhD thesis [5] surveys dynamic methods.
Several authors have already investigated the use of secure
information flow techniques in the context of a browser, for
instance to secure mashup composition [10], or to prevent
private information to flow to advertisement providers [9].

Very recently, Bohannon et al. [2] proposed non-
interference as a candidate replacement for the same-origin-
policy. They define the notion of reactive non-interference,
an adaptation of the classic notion of non-interference
to reactive systems, systems that perform asynchronous
I/O such as web browsers. In addition, they provided a
bisimulation-based proof technique to prove the soundness
of enforcement mechanisms for reactive non-interference.
In a later paper, Bohannon et al. [1] develop Featherweight
Firefox, an extensive formalization of a web browser as a
reactive system. They also provide an implementation of
Featherweight Firefox.

A. Contributions of this paper

A first contribution of this paper is the development of an
enforcement technique for reactive non-interference based
on the technique of secure multi-execution [4]. We prove
two major results:
• Security Featherweight Firefox (in fact any reactive

system in the sense of Bohannon et al. [2]) is reactive
non-interferent when executed under this secure multi-
execution regime.

• Precision For inputs for which Featherweight Firefox
is “well-behaved” with respect to the policy, execution
under the secure multi-execution regime will not result
in changes in observable behavior for an observer at
any security level.

Further, we show the value of our technique for web
browsers, by implementing it for Featherweight Firefox. To
the best of our knowledge, our proposal is the first one to
enforce a general non-interference policy for the browser as
a whole.

Non-interference is parameterized by an information flow
policy, so an interesting question is what policies are useful
in a web browser (i.e. what should be the levels, and how
should we assign them to inputs and outputs?). Interestingly,
even without support for declassification, we show that
many interesting and useful policies can be enforced for
the browser and study their behavior on example scenario’s.
Some of the policies feature infinite security level posets,
and we demonstrate how our implementation can support
them. Other examples include useful policies that cannot
be enforced by access control based systems, and policies
that approximate the current same-origin-policy to maintain
some form of compatibility with current browser policies.
We argue that fine-grained policies are required to achieve
more compatibility and discuss an extension of our technique
to policies at a finer level than Featherweight Firefox input
events.

In summary, the contributions of this paper are:
• The development of a provably sound and precise

enforcement mechanism for reactive non-interference.
Our precision results are stronger and more general than
those in related work.

• The analysis of a variety of policies that can be enforced
by this mechanism, thus providing evidence of the
suitability of non-interference as a replacement for the
current same-origin-policy.

• The implementation of this mechanism for the Feath-
erweight Firefox browser model.

B. Plan of the paper

In the next section we specify the problem statement
addressed in this paper. Then we summarize the results of
Bohannon et al. which will be used in the rest of this paper in
Section III. This section contains no original contributions,

and can be skipped by readers familiar with Featherweight
Firefox and reactive non-interference.

Section IV gives an informal overview of our approach
and Section V provides a formal model where we prove
our main precision and security results. In Section VI, we
discuss a variety of useful policies that can be enforced
by our mechanism. We provide more details about our
implementation for Featherweight Firefox in Section VII.
Finally, we discuss related work, and conclude.

II. PROBLEM STATEMENT

A browser interacts with a variety of web sites, and
possibly executes Javascript code downloaded from some of
these sites. Hence, a browser should enforce some security
policy to make sure that these sites do not interfere with
each other in undesirable ways. Today’s browsers enforce the
same-origin-policy, an access-control policy where browser
resources are tagged with information about their origin, and
access to resources is limited to code coming from the same
origin.

The same-origin-policy has many problems, and has been
criticized by many authors [7], [14]. Some of the issues, such
as for instance the fact that different browser resources use
different definitions of the notion of origin, can be consid-
ered implementation bugs or inconsistencies, and they could
in principle be addressed without fundamentally changing
the same-origin access control policy (even though, as Singh
et al. point out [14], the incompatibility burden of such fixes
can be substantial). While such issues are important, they are
not what this paper is about.

Other limitations of the same-origin-policy are more fun-
damental, and don’t seem to be solvable without significant
changes to the policy enforced by the browser. In particular,
there are several scenarios that indicate that a policy based
on information flow theoretic notions of non-interference
would have advantages over the current access control
policy.

A first, very simple, motivating example for an informa-
tion flow policy is a scenario where a website sends code to
perform calculations on user private data.

Example 1 (Tax Calculator): Suppose the fictitious web-
site http://taxcalc.com offers the service of pre-
calculating the amount of tax one has to pay in function of
income, age, marital status and so forth. The service sends
an HTML form for entering the user’s information, and a
JavaScript program that will calculate the tax due based on
the information entered in the form.
The user would like assurance that the information he enters
in the form does not leave his computer – not even to
the website providing the service. Obviously, the same-
origin-policy does not offer any protection for this scenario.
More fundamentally, if we assume that further interactions
between the user and the website are essential (for instance
to pay for the service), no access-control policy can provide

this assurance: the script needs access to the private data to
perform its function, and it needs access to the network to
send invoicing information to the service. What is needed is
an information flow enforcement mechanism that can make
sure that the script can not leak the private information to
the network.

In many cases, the user will of course trust the website
he is interacting with, and will be more concerned with
information leaked to other sites.

Example 2 (Flight ticket): Consider an e-commerce site
where users can order flight tickets. Obviously, the user will
be fine with sharing some private information such as name,
birth date and even credit-card information with the website.
However, the user would like assurance that this information
does not leak to other sites.
The same-origin-policy provides some protection for this
scenario: it will for instance make sure that scripts running
in the user’s browser and belonging to web pages from
other origins can not access the information entered by
the user. However, scripts that are part of the e-commerce
web pages will have access and they can easily transmit
information to other sites. This can be done by initiating
an HTTP request to that other site where some information
to be leaked is encoded in the URL or parameters of the
request [6]. The script that leaks the information does not
necessarily come from the trusted site. There are many
ways in which malicious scripts can find their way into
pages from trusted websites. Two common attack vectors
are (1) cross-site scripting (XSS), where a vulnerability
in the server software enables an attacker to inject scripts
in the web pages served by the server [11], and (2) the
inclusion of advertisements from third-party ad-providers;
such advertisements are regularly implemented as scripts
that run within the same origin as the including page [9].

Another example scenario is a combination of the two
examples above: some information or resources that the web
application user provides are private to the user, others are
intended to be shared only with the web application provider.

Example 3 (Flight ticket(revisited)): Even though the
user trusts http://www.air.com with the information
necessary to purchase a flight ticket, scripts from that site
get access to other information that the user might want to
protect, such as for instance geographical location (available
to Javascript through the geolocation API), or the clipboard
contents. Hence the user has partial trust in the site and
shares some information, but wants assurance that (1) the
information shared with the site will not leak to other sites
(as in the previous example), and in addition (2) some user
private information accessible to scripts remains private to
the user (as in the first example).

An important additional challenge is the fact that for many
web applications, some form of information flow between
origins is actually desired. So any proposed browser security
policy should not block such information flows. It is for

instance very common to include content (most notably
images and scripts) from other origins in web pages. A
strict non-interference policy would prohibit such techniques
and hence be strongly incompatible with the current web.
It should for instance be possible for a script loaded from
b.com into a page served from a.com to load images from
any origin, since web advertising relies essentially on such
scenarios. It should however be impossible for the script
to leak information private to the user or to a.com in that
scenario.

The examples above illustrate that non-interference is a
promising candidate for a (baseline) browser security policy,
but two important problems need to be addressed.

First, an enforcement mechanism for non-interference at
the level of the browser is needed. While several browser
security countermeasures based on information flow security
or related techniques have been proposed, none of them can
enforce non-interference for the full browser and for a broad
class of security lattices in a sound and precise way (see the
Related Work section for a detailed discussion). This paper
proposes an enforcement mechanism, and proves it sound
and precise.

Second, non-interference is parameterized with a policy: a
partially ordered set of security levels, and an assignment of
such levels to browser inputs and outputs. So an important
problem is to select suitable policies. This paper analyzes
several interesting policies and shows that they can securely
handle the scenarios above, yet stay compatible with desired
cross-origin information flows such as cross-domain image
and script loading.

III. BACKGROUND

To address the first problem (the development of a gen-
eral, sound and precise enforcement mechanism for a full
browser), we need a formal model of a browser. In order
to experiment with policies, this browser model should
be executable. Featherweight Firefox is a browser model
developed by Bohannon and Pierce [1] that satisfies these
two requirements. It is a small-step operational semantics of
a browser, that is implemented in OCaml1

In another paper, Bohannon et al. [2] have defined several
variants of non-interference suitable for browsers, and pro-
posed a bisimulation-based proof technique to establish one
of these types of non-interference (called ID-security in their
paper) . We will use their definition and proof technique to
prove the soundness of our enforcement mechanism.

A. Reactive systems

At the highest level of abstraction, a browser is modeled
as a reactive system, a particular kind of automaton that

1We used the version available from Aaron Bohannon’s
webpage: http://www.cis.upenn.edu/˜bohannon/
browser-model/ where interested readers can find the full definition
of the model.

reacts to input events by changing state and emitting output
events.

Definition 3.1: A reactive system is a tuple

(ConsumerState, ProducerState, Input,Output,→)

where → is a labeled transition system whose states are
State = ConsumerState ∪ ProducerState and whose
labels are Act = Input ∪ Ouput, subject to the following
constraints:
• for all C ∈ ConsumerState, if C a−→ Q, then a ∈
Input and Q ∈ ProducerState,

• for all P ∈ ProducerState, if P a−→ Q, then a ∈
Output,

• for all C ∈ ConsumerState and i ∈ Input, there
exists a P ∈ ProducerState such that C i−→ P , and

• for all P ∈ ProducerState, there exists an o ∈
Output and Q ∈ State such that P o−→ Q.

Consumer states are the states where the system is idle
and waiting for inputs. A reactive system can only handle
one input event at a time (thus correctly modeling the fact
that Javascript event handlers are single threaded). Producer
states are states where the system is processing, and from
such producer states, the system can emit outputs. The
definition allows for non-termination: it is possible that the
system never returns to a consumer state.

Reactive systems transform streams of input events into
streams of output events in the obvious way. A stream is
defined as a coinductive interpretation of the grammar

S ::= [] | s :: S (1)

where s ranges over stream elements. So a stream is a finite
or infinite list of elements. We use metavariables I and O
to range over streams of inputs i and outputs o, respectively.
The behavior of a reactive system in a state Q is defined as
a relation between the input streams and output streams.

Definition 3.2: Coinductively define Q(I)⇒ O (Q trans-
forms the input stream I to the output stream O) with the
following rules:

C([])⇒ []

C
i−→ P P (I)⇒ O

C(i :: I)⇒ O

P
o−→ Q Q(I)⇒ O

P (I)⇒ o :: O

B. Featherweight Firefox

The notion of reactive system is very abstract. To analyze
potential security policies, we should define a browser model
that concretizes the abstract states, inputs and outputs. The
Featherweight Firefox browser model [1] does exactly that.
It includes many browser features such as multiple browser
windows; cookies; sending HTTP requests and receiving
HTTP responses; essential HTML elements such as text

boxes, buttons and links; building document node trees (i.e.
a simple variant of the Document Object Model), and also
the basic features of Javascript.

Featherweight FireFox (FF) is a reactive system, with a
much more detailed definition of the input and output events,
and the internal state of the browser. To understand our
soundness proof further in the paper, it suffices to understand
FF at the abstraction level of reactive systems. However, to
understand the example policies and scenarios, some basic
understanding of the full FF model is needed. We focus here
on explaining the I/O events modeled by FF, the details of
the internal browser state are less relevant.

When the browser is in a ConsumerState, it is ready to
process any input event that could arrive. Input events can
either come from the user (loading a URL in a new window,
entering text in a text box, clicking a button), or from the
network (receiving an HTTP response). Output events can
also go to the user (web page is rendered or updated, window
is closed) or to the network (sending HTTP request). The
FF browser model defines precisely how the browser will
react to each of these inputs by emitting outputs.

Some selected input and output events are shown in
Table I. We simplify some syntactical constructs to give the
reader a better understanding without unnecessary details.

Table I
SELECTED USER AND NETWORK I/O EVENTS.

User input load_in_new_window(url)
input_text(user window, nat, string)

User output window_opened
page_loaded(user window, url, rendered doc)
page_updated(user window, rendered doc)

Network input receive(domain, nat, cookie updates, resp body)
Network output send(domain, request uri, cookies, string)

An input event load_in_new_window models the case
where a user navigates to some URL. When a user in-
puts some text into a text box this modeled by the event
input_text . The second parameter is an index that
uniquely identifies the text box that receives the input, and
the third parameter is the text that was typed.

The display of a new window (window_opened) is an
output event to the user and has no parameters since new
windows are always created with a URL about:blank.
Then after an html document is loaded or updated there may
be visible changes of the rendered document on the screen.
The page_loaded and page_updated events model these
outputs to the user; the rendered doc parameter of these
events models a rendered document, and contains only
elements that are visible to the user (for instance, script
source code is not visible in a rendered html document).

Sending an HTTP request is modeled as an output event
send of the browser. The request is sent to a particular
domain and the tuple (request uri, cookies, string) models
a simplified version of an HTTP request.

The only input that can come from the network is the
reception of an HTTP response. It contains a domain, an
index that uniquely defines the open network connection on
which the response arrives, updated cookies and the actual
response content that consists of either an html document or
a script.

The FF model is surprisingly rich. We will see more
elaborate examples of FF behaviour, including for instance
the execution of event handlers implemented as scripts in an
html page, further in the paper.

C. ID-security, or reactive non-interference

It remains to define what it means for a reactive system
(and hence FF) to be non-interferent. Bohannon et al.
investigate different notions of non-interference (for instance
a termination sensitive and a termination insensitive notion),
and use a notation that can distinguish the different notions.
This paper only uses their notion of ID-security, a termi-
nation insensitive variant of non-interference. We specialize
their definitions and notation to this case.

Let us assume that a po-set of security levels is given.
The predicate visiblel(s) models what observers of security
level l can see: visiblel(s) is true iff the stream element s
is visible to an observer at level l. For instance, if we think
of the input stream elements as arriving from input channels
with a given security classification, then visiblel(s) is true
if l is higher than the classification of s’s channel in the
security ordering.

First, we define what it means for two (input or output)
streams to be equivalent up to security level l2.

Definition 3.3: Coinductively define S ≈ID
l S′ (S is ID-

similar to S′ at l) with the following rules:

[] ≈ID
l []

visiblel(s) S ≈ID
l S′

s :: S ≈ID
l s :: S′

¬visiblel(s) S ≈ID
l S′

s :: S ≈ID
l S′

¬visiblel(s) S ≈ID
l S′

S ≈ID
l s :: S′

Then, we can define when a reactive system (in a specific
state Q) is secure.

Definition 3.4: A state Q is ID-secure or (reactive) non-
interferent if, for all l, I ≈ID

l I ′ implies O ≈ID
l O′

whenever Q(I)⇒ O and Q(I ′)⇒ O′.
As Bohannon et al. point out, this definition of security

severely restricts the presence of non-determinism: for non-
deterministic systems, a more intricate definition of non-
interference will be necessary. Since FF is deterministic,

2We take an original definition of VS-similarity and put it in the definition
of ID-similarity since it was proven that S ≈ID

l S′ iff S ≈V S
l S′ [2].

we limit our attention in this paper to deterministic reactive
systems, and the definition above satisfies our needs.

Definition 3.5: A reactive system is deterministic if
• for all P ∈ ProducerState the following holds:

(P
o−→ Q ∧ P o′−→ Q′)⇒ (o = o′ ∧Q = Q′) (2)

• for all C ∈ ConsumerState the following holds:

(C
i−→ P ∧ C i−→ P ′)⇒ P = P ′ (3)

The definitions in this section allow us to state our first
goal for this paper more precisely: we want to construct
an enforcement mechanism that ensures that FF is reactive
non-interferent. Our non-interference proof will build on a
result from Bohannon et al. [2]. They propose an interesting
proof technique for establishing that a reactive system is
non-interferent, based on the notion of ID− bisimulation.

Definition 3.6: An ID-bisimulation on a reactive system
is a label-indexed family of binary relations on states (writ-
ten ∼l) with the following properties:
(a) if Q ∼l Q

′, then Q′ ∼l Q;
(b) if C ∼l C

′ and C i−→ P and C ′ i−→ P ′, then P ∼l P
′;

(c) if C ∼l C
′ and ¬visiblel(i) and C i−→ P , then P ∼l C

′;
(d) if P ∼l C and P o−→ Q, then ¬visiblel(o) and Q ∼l C;
(e) if P ∼l P

′ then either

• P
o−→ Q and P ′ o′−→ Q′ implies o = o′ and Q ∼l Q

′,
or else

• P
o−→ Q implies ¬visiblel(o) and Q ∼l P

′, or else
• P ′

o′−→ Q′ implies ¬visiblel(o′) and P ∼l Q
′.

They show that the existence of an ID-bisimulation entails
non-interference.

Theorem 3.1 ([2]): If Q ∼l Q for all l, then Q is ID-
secure.
This theorem will be a key building block of our soundness
proof: we will establish non-interference for our enforcement
mechanism by showing the existence of an ID-bisimulation.

IV. INFORMAL OVERVIEW

The enforcement mechanism we propose in this paper is
based on a relatively new dynamic technique for achieving
non-interference: secure multi-execution [3], [4]. The core
idea of this mechanism is to execute the program multiple
times (one copy of the program for each security level), and
to make sure that (1) outputs of a given level l are only done
in the execution at level l (outputs are suppressed in other
copies), and (2) inputs at a level l are only done at level l
(for the other copies above l, the values that were input by
level l are reused, whereas copies that are not above l are
fed a default input value). Hence the copy that does output
at level l only sees inputs of levels below l and hence the
output could not have been influenced by inputs of a higher
level. Non-interference follows easily from this observation.

1 var a = parseInt(document
2 .getElementById(’a’).value);
3 var b = parseInt(document
4 .getElementById(’b’).value);
5 var sum = a + b;
6 document.getElementById(’c’).value
7 = sum;
8 var url = ’http://attacker.com’
9 + ’?t=’ + sum;

10 document.getElementById(’banner’)
11 .src = url;

Figure 1. Javascript code example

Devriese and Piessens [4] have worked out this enforce-
ment mechanism for the case of a simple sequential pro-
gramming language with synchronous I/O, and have proven
security and precision in that setting. Capizzi et al. [3] have
implemented the technique at the level of operating system
processes for the case of two security levels H (secret) and
L (public).

The mechanism we propose adapts this technique to re-
active systems, and we prove its security (somewhat weaker
than what Devriese and Piessens have shown in their setting,
because we lose termination- and timing-sensitivity), as
well as its precision (somewhat stronger than the result by
Devriese and Piessens, because we show precision under
weaker assumptions).

Let us explain the mechanism by means of an example.
Consider again the tax calculation example from Section II.
The Javascript code in Figure 1 models the essence of this
example: the user provides private inputs (two integers) in
the text fields a and b , and the Javascript code computes
their sum and displays this in textfield c. We can assume
this Javascript code is part of an event handler that fires
whenever the user changes the contents of a or b.

The code in the figure also shows a potential attack: the
script will leak the (secret) sum to http://attacker.com

by sending an HTTP request to that domain with the secret
as a parameter (setting the src property of an image HTML
element in Javascript will have as a side effect that the image
is reloaded from the URL assigned to the src property).
Recall from Section II that the Javascript code was not
necessarily endorsed by the tax calculation site. It could have
been injected through a cross-site scripting (XSS) attack or
hidden in an advertisement running on the page.

Table II shows the behavior of Featherweight Firefox on
this example. Since Featherweight Firefox does not support
images, we simulate the information leak through a page
load instead of an image load, which is from the point of
view of information flow security the same thing.

If we assume that the inputs to the textfields have a high
security level (H), and the output to http://attacker.

com has a low security level (L), then this program is clearly

not secure: high inputs leak to low outputs. How will our
enforcement mechanism close this leak?

First, we have to assign security levels to all inputs and
outputs of Featherweight Firefox. For this example, we
assign H to input_text events and L to all other events.
Next, following the idea of secure multi-execution, we run
several copies of the web browser, one for each security
level. Input events of level l are only processed by the copies
with a level above or equal to l. Output events of level l are
only produced in the copy at level l. Tables III and IV show
what happens in both copies. The tables also show what
inputs and outputs get suppressed in each level. For instance,
for the low copy, the following things get suppressed: (1)
the input events of level H (and hence also all output events
that would have been the result of that input event), and (2)
the output events at level H .

Table III
RUN OF L COPY OF THE BROWSER.

Input/Output
L load_in_new_window(”http://taxcalc.com”)
H -window_opened
L -send(”taxcalc.com”, request uri, cookies, ””))
L receive(”taxcalc.com”, 0, cookie updates, doc(a=0, b=0, c=0,

js inline))
H -page_loaded(user window, ”http://taxcalc.com”, doc(a=0,

b=0, c=0, js inline))
H input_text(user window, 1, ”2”)
H -page_updated(user window, doc(a=0, b=2, c=2, js inline))
H -window_opened
L -send(”attacker.com”, request uri, cookies, ”?t=2”)

Table IV
RUN OF H COPY OF THE BROWSER.

Input/Output
L load_in_new_window(”http://taxcalc.com”)
H window_opened
L -send(”taxcalc.com”, request uri, cookies, ””))
L receive(”taxcalc.com”, 0, cookie updates, doc(a=0, b=0, c=0,

js inline))
H -page_loaded(user window, ”http://taxcalc.com”, doc(a=0,

b=0, c=0, js inline))
H input_text(user window, 1, ”2”)
H -page_updated(user window, doc(a=0, b=2, c=2, js inline))
H -window_opened
L -send(”attacker.com”, request uri, cookies, ”?t=2”)

The offending output to http://attacker.com is sup-
pressed, as the L copy never gets the input event where
the user is typing secret data in the text box. Even if the
script would try to send the contents of a and b later in the
execution in response to a L input, the actual output sent to
“attacker.com” would only contain the sum of the default
values in both textfields. There is never any information flow
from H inputs to L outputs.

V. FORMALIZATION

We propose to apply an approach of secure multi-
execution to a reactive system first. Given an information-

Table II
CORRESPONDENCE BETWEEN USER’S ACTIONS AND I/O OF FEATHERWEIGHT FIREFOX

Description of user actions and network events Input/Output of Featherweight Firefox
User opens a url of the tax calculator in a new
window, as a result the new window is opened
and an HTTP request is sent

load_in_new_window(”http://taxcalc.com”)
-window_opened
-send(”taxcalc.com”, request uri, cookies, ””))

Network sends an HTTP response with html
doc containing fields a, b, c and inlined
javascript function

receive(”taxcalc.com”, 0, cookie updates, doc(a=0, b=0, c=0, js inline))
-page_loaded(user window, ”http://taxcalc.com”, doc(a=0, b=0, c=0, js inline))

User types ”2” into a text box b. This triggers
the Javascript event handler to execute the
attack

input_text(user window, 1, ”2”)
-page_updated(user window, doc(a=0, b=2, c=2, js inline))
-window_opened
-send(”attacker.com”, request uri, cookies, ”?t=2”)

flow policy, we build a new reactive system that we call
a wrapper. As in previous work [4], the wrapper internally
runs multiple copies (sub-executions) of the original reactive
system: one for each security level. When the wrapper
consumes an input event, its security level is determined,
and the input event is passed to those sub-executions that
are allowed to see it, i.e. the sub-executions at a level higher
than the input event’s level. When a sub-executions at a
security level produces an output event, its security level
is determined and only if the two levels are the same, the
output event is produced by the wrapper.

Because of space constraints, we do not provide proofs of
our theorems. Full proofs are available in a separate technical
report.3

A. Secure multi-execution of reactive systems

We assume that the information-flow policy is given. It
contains a partially ordered set of security levels L,≤. Also
the policy defines a function lbl : Act → L that assigns
security levels to all inputs and outputs of the reactive
system. This function lbl corresponds to Bohannon et al.’s
predicate visiblel such that visiblel(s) iff lbl(s) ≤ l and
s 6= ·. The output · is an output invisible to all levels, and
can be used to represent internal activity of the system. (For
instance to return from a producer state to a consumer state
without producing real output.)

A state of the wrapper is a tuple (R,L), where
• R is a function mapping security levels to states of the

reactive system, R : L → State. R(l) is the state of
the sub-execution at level l.

• L is the list of the levels of all the sub-executions
that are in producer state (you can think of it as the
scheduler’s ready queue).

States (R, ∅) are consumer states of the wrapper and states
(R,L) with L 6= ∅ are producer states. The initial state of
the wrapper is a state (R, ∅) such that for all l ∈ L, the state
R(l) is the initial state of the original reactive system.

We define the semantics of the wrapper in Figure 2. When
a new input event i arrives, it is passed to the copies at

3Note to reviewers: because of anonymization, we do not cite the report
here, but we can make it available to the PC chairs on request.

LOAD

R(l)
i−→ Pl

if lbl(i) ≤ l then R′(l) = Pl else R′(l) = R(l) for all l

(R, ∅) i−→ (R′, Upper(i))

OUT-P
R(l)

o−→ P lbl(o) = l

(R, l :: L)
o−→ (R[l 7→ P], l :: L)

OUT-C
R(l)

o−→ C lbl(o) = l

(R, l :: L)
o−→ (R[l 7→ C], L)

DROP-P
R(l)

o−→ P lbl(o) 6= l

(R, l :: L)
·−→ (R[l 7→ P], l :: L)

DROP-C
R(l)

o−→ C lbl(o) 6= l

(R, l :: L)
·−→ (R[l 7→ C], L)

Figure 2. Semantics for secure multi-execution of a reactive system.

the levels in Upper(i) (defined as the list of security levels
higher than the level of a given input i), and the wrapper
makes a transition to a producer state (rule [LOAD]). Once
the wrapper is in producer state (R,L) it takes the first
security level l from the list of levels L and gives the copy
at this level a chance to proceed. If it produces an output
at level l, it is also produced by the wrapper (rules [OUT-
P] and [OUT-C]), otherwise a silent output (·) is produced
instead (rules [DROP-P] and [DROP-C]). If the copy at the
selected level l goes to a consumer state, then this level is
removed from the L (rules [OUT-C] and [DROP-C]).

It is intuitively almost trivial to see why this construction
guarantees non-interference. Output at any level l is only
produced from the sub-execution at level l, which only gets
to see input at level l or lower, so any leaks from input
at higher levels is impossible. On the other hand, the sub-
execution at a level l receives identical input on level l
or lower as the original. Therefore, if the program is such

that higher-level input does not influence lower-level output,
then our construction will still produce the same output as
the original. It is possible that the order of outputs will
be reordered though. We will discuss both of these aspects
(soundness and precision) in the next subsections.

B. Soundness

First, we show formally that our enforcement technique
guarantees non-interference: for any reactive system and any
information flow policy, the wrapper that we construct for
it will never produce information leaks.

Theorem 5.1 (Soundness): All the states of the wrapper
are ID-secure.

With Bohannon et al.’s bisimulation-based proof tech-
nique [2, Theorem 4.5], it suffices to prove that there exists
an ID-bisimulation ≈l such that for every state of the
wrapper (R,L), we have that (R,L) ≈l (R,L). We use
the following bisimilarity relation ≈l. For a list of security
levels L, we use the notation L|l to represent the list of
levels l′ in L such that l′ ≤ l.

Definition 5.1: The state (R1, L1) is l-similar to the state
(R2, L2) (written (R1, L1) ≈l (R2, L2)) iff

• R1 ≈l R2 meaning for all l′ ≤ l. R1(l
′) = R2(l

′)), and
• L1|l = L2|l.
To prove that this is a bisimulation, we basically need to

show that l-similar states produce outputs that are equal at
level l or lower, and that the relation is maintained when
they receive inputs that are equal up to level l.

Lemma 5.1: This l-similarity relation is an ID-
bisimulation.

C. Precision

On the other hand, we need to prove that our enforcement
mechanism is precise: since it will sometimes modify the
behaviour of programs, we need to prove that it does this in
a sensible way, i.e. it does not observably modify behaviour
for programs that already respect the policy. We will show
precise formal results to explain exactly what we mean by
this.

First, we need to define what we mean when saying that
our enforcement mechanism does not observably modify the
behaviour of programs. Important to notice is that even for
well-behaving programs, the wrapper can change the relative
order of output events at different security levels. With the
assumption that any observer will only ever observe at a sin-
gle security level, we define the observer-indistinguishablel
relation that relates input or output streams that “look the
same” for observers at security level l. Like Bohannon et
al., we use a coinductive definition to clearly specify this
definition for infinite streams.

Definition 5.2: Define observer-indistinguishablel(S, S
′)

coinductively with the following rules:

observer-indistinguishablel([], [])

lbl(s) 6= l observer-indistinguishablel(S, S
′)

observer-indistinguishablel(s :: S, S
′)

lbl(s′) 6= l observer-indistinguishablel(S, S
′)

observer-indistinguishablel(S, s
′ :: S′)

observer-indistinguishablel(S, S
′)

observer-indistinguishablel(s :: S, s :: S
′)

This notion is weaker than Bohannon et al.’s ID-similarity.
In fact, we have the following result:

Lemma 5.2: If O ≈ID
l O′, then

observer-indistinguishablel′(O,O
′) for all l′ ≤ l.

The notion of similarity that we will use for our precision
results requires that the wrapper’s output “looks the same”
as the original output for observers at any one level. We
define S ≈obs

l S′ if observer-indistinguishablel′(S, S
′) for

all l′ ≤ l. Note how these notions allow for changes in the
relative order of events on different security levels.

Another notion we need is the projection of a finite stream
at a certain security level l. The projection function πl
removes from the stream those events that are at a level
not below l.

Definition 5.3: Define, for finite I0

πl([]) = []

πl(i :: I0) =

{
πl(I0) if lbl(i) 6≤ l
i :: πl(I0) if lbl(i) ≤ l

Our enforcement mechanism produces observably equiv-
alent outputs for those inputs for which the original reactive
system is already “well-behaved” with respect to the security
policy. We use the following precise definition:

Definition 5.4: Given a reactive system Q and a fi-
nite input I and output O such that Q(I) = O, we
say that Q behaves securely for input I iff for all
l ∈ SecurityLevel, we have that Q(πl(I)) = Ol with
observer-indistinguishablel(O,Ol).

These are the definitions we need to state the first of
our precision theorems. The following theorem is the most
detailed result, and shows that for those inputs for which the
reactive system behaves securely, the corresponding wrapper
produces results that are observationally equivalent.

Theorem 5.2 (Precision for individual runs): Suppose a
given reactive system Q behaves securely for input I and
Q(I) = OQ. Define the corresponding wrapper W =
(RQ, L) with RQ(l) = Q for all l, L = ∅ if Q ∈
ConsumerState and L = L if Q ∈ ProducerState. For
OW =W (I), we have that OQ ≈obs OW .

This theorem is actually not a typical precision result
for an information flow enforcement technique, because it
does not require non-interference of the original system,
as would be more typical (see e.g. Devriese and Piessens
[4]). Instead, the theorem gives a sufficient condition for
an individual execution to “behave securely” and produce
observationally equivalent results. However, we can show
that the previous theorem is stronger, by showing that if the
original system was non-interferent, then all of its executions
“behave securely”.

Lemma 5.3: If a given reactive system Q is ID-secure,
then it behaves securely for any input I .

This lemma easily leads to the following, more classical,
precision theorem.

Theorem 5.3 (Precision): Suppose a given reactive sys-
tem Q is ID-secure, and Q(I) = O. Define the corre-
sponding wrapper W = (RQ, L) with RQ(l) = Q for
all l, L = ∅ if Q ∈ ConsumerState and L = L if
Q ∈ ProducerState. For O′ = W (I), we have that
O ≈obs O′ for any security level l.

The stronger result is important in practice. Featherweight
Firefox (without secure multi-execution) is never ID-secure:
even if all scripts that have been loaded up to now behaved
fine, somewhere in the future a malicious script might be
loaded that leaks information. So the classical precision
theorem does not apply, and it does not allow us to conclude
precision for runs of the browser that actually behave well.

So what we need is a theorem that says: if the run
of the browser up to some point behaved well, then our
enforcement will not modify that run in an observable way.
This is exactly what our first precision theorem does.

Note that we are only talking about precision here:
security is never at stake. Featherweight Firefox with our
enforcement mechanism will always be ID-secure. The point
here is that we want to relate the behavior of the secured
browser with the unsecured one, and that we cannot do that
with a classical precision theorem.

VI. INFORMATION FLOW POLICIES

The implementation of our information flow enforcement
technique for Featherweight Firefox allows us to demon-
strate some different information flow policies that are
valuable as browser security policies. We think that the three
basic policies we show demonstrate on the one hand the
power of information flow policies, allowing us to define
precisely (contrary to traditional access control policies) the
property that we want to enforce. On the other hand, our
examples also show that it is our enforcement technique
that enforces the policies in such a way that non-complying
programs are dealt with as precisely as possible (not just
terminating them like traditional information flow policy
enforcement techniques would).

The importance of current web applications calls for
strong guarantees, but the enormous amount of legacy

Table V
SIMPLE HIGH/LOW POLICY

User
input

load_in_new_window(url) L
input_text(user window, nat, string) H

User
output

window_opened H
page_loaded(user window, url, rendered doc) H
page_updated(user window, rendered doc) H

Network
input

receive(domain, nat, cookie updates, resp body) L

Network
output

send(domain, request uri, cookies, string) L

software out there calls for a highly compatible solution.
We think that it is the combination of the accuracy of
information flow policies together with the precise support
for non-complying programs that makes a nice fit for the
requirements of a browser security policy context.

A. High/Low Policy

Let us take another look at the tax calculator example. In
this case, we would like the browser to guarantee to the user
that his input does not leave his computer. However, it is our
goal to do this without breaking the legacy website that uses
existing DOM APIs and might interact with internet servers
for downloading scripts and images.

Already for this simple scenario, an access control policy
is not fine-grained enough to achieve these goals. An access
control policy can prevent information leaks through server
requests only by allowing requests to pass or not based
on their content. Unlike an information flow policy, it
cannot reason about what input the requests’ content was
constructed from and as such, it cannot distinguish requests
that actually leak information from those that don’t.

An information flow policy can be more fine-grained. In
this case, the policy could classify all user input as secret
information (H) and all network requests as public (L),
disallowing URLs for dynamically added images to depend
on secret information. Table V shows the classification of
some I/O events. The policy then states that output events
at level L (public) are not allowed to be influenced by input
events at level H (secret).

Figure 3 shows a table representing the execution of a
prototypical script for the tax calculator example using our
enforcement technique for the simple High/Low policy from
Table V. We see the browser responding in the normal way
to the user navigation and the load of the script page. In
response to the user entering text in one of the text boxes, the
script modifies the page and the browser shows the modified
page to the user. However, the script is malicious and tries
to leak the user’s information by triggering a navigation to
a page under the “attacker.com” domain.

However, our enforcement mechanism modifies this be-
haviour: we see that depending on the level of each input
event, it is either passed to both or only one of the sub-
executions at levels L and H. Each sub-execution produces

Figure 3. Executing a tax calculator script containing a malicious leak,
enforcing the simple High/Low policy from Table V.

L load_in_new_window(”http://taxcalc.com”)

L L send(“taxcalc.com”, request uri, cookies, “”))
H window_opened

H L send(“taxcalc.com”, request uri, cookies, “”))
H window_opened

L receive(”taxcalc.com”, 0, cookie updates, doc(a=0,
b=0, c=0, js inline))

L H page_loaded(user window,
”http://taxcalc.com”, doc(a=0, b=0, c=0, js inline))

H H page_loaded(user window, ”http://taxcalc.
com”, doc(a=0, b=0, c=0, js inline))

H input_text(user window, 1, ”2”)

H

H page_updated(user window, doc(a=0, b=2,
c=2, js inline))

H window_opened
L send(”attacker.com”, request uri, cookies, ”?t=2”)

output events, but only the output events at its own level are
actually produced by the wrapped system. This effectively
prevents the information leak that the script is trying to
trigger, as we can see in the example: the request to
“attacker.com” is not produced, since the low execution
does not receive the input_text input event and the high
execution will not trigger this output. To the people behind
“attacker.com”, it seems as though the user loads the
page, but never inputs any text.

Even though the behaviour towards the external website
is being modified, the user in this case sees exactly the same
behaviour as he would without the security mechanism. As
long as future user-observable behaviour does not depend on
the reactions of untrusted observers to information leaking
requests, this is likely to be okay. For example in the case
that the leak was the result of an XSS-attack [11], this is
likely to be the case.

In this example, it might seem that our simple High/Low
policy will block any request to a website. However, this
is not the case. Intuitively, the reason that the request to
“attacker.com” is being blocked is that it is being made in
response to a user input event, and the fact that the user has
performed a text input is defined to be private information
by our policy. Toward observers on the L security level,
the policy enforcement therefore replaces this behavior by
default behavior coming from the L execution, which is
giving the illusion that no user input has occurred.

We can illustrate this observation by demonstrating an-
other script that makes legitimate use of external requests.
Let’s suppose that the tax calculator script needs information
from a third-party website (for example, an up to date table
of tax rates for different income ranges). In table VI, we
show what happens if the script requests to download such
a table from a server at “remote.com” after the page has
loaded.

In this case, we see that the legitimate request to
“remote.com” is allowed to pass without any problem.

Table VI
SIMPLE HIGH/LOW POLICY, THIRD-PARTY SCRIPT

Input/Output
L load_in_new_window(”http://taxcalc.com”)

L H window_opened
L send(”taxcalc.com”, request uri, cookies, ””))

H H window_opened
L send(”taxcalc.com”, request uri, cookies, ””))

L receive(”taxcalc.com”, 0, cookie updates, doc(a=0, b=0, c=0,
js remote))

L
H page_loaded(user window, ”http://taxcalc.com”,

doc(a=0, b=0, c=0, js remote))
L send(”remote.com”, request uri, cookies, ””))

H
H page_loaded(user window, ”http://taxcalc.com”,

doc(a=0, b=0, c=0, js remote))
L send(”remote.com”, request uri, cookies, ””))

L receive(”remote.com”, 0, cookie updates, js function)
L
H

H input_text(user window, 1, ”2”)

H

H page_updated(user window, doc(a=0, b=2, c=2,
js remote))

H window_opened
L send(”attacker.com”, request uri, cookies, ”?t=2”)

Table VII
SIMPLE HIGH/LOW POLICY, STEALING COOKIES

Input/Output
...
L receive(”taxcalc.com”, 0, (”lang”, ”ru”), doc(a=0, b=0, c=0,

js remote))

L
H page_loaded(user window, ”http://taxcalc.com”,

doc(a=0, b=0, c=0, js remote))
L send(”remote.com”, request uri, (), ””))
L send(”attacker.com”, request uri, (), ”?lang=ru”))

H
H page_loaded(user window, ”http://taxcalc.com”,

doc(a=0, b=0, c=0, js remote))
L send(”remote.com”, request uri, (), ””))
L send(”attacker.com”, request uri, (), ”?lang=ru”))

...

When its response comes in, both the L and H execution
see this and the program behaves as intended. This shows
that indeed, we get what we ask for: our policy specifies
only that user input mustn’t influence network output, and
indeed we see that network output that is not influenced by
user input behaves as intended.

Finally, the simple High/Low policy is designed specif-
ically for a case like a tax calculator website where all
interaction with the user can be assumed to occur inside
the browser. Specifically, the policy assumes all information
coming from the network as public data. It is important to
remember, when applying this policy, that this policy will
not provide any protection for information that is classified
as public, like for example page content or cookies. As an
example, table VII shows a case where a cookie tracking
the user’s language is leaked. This is not a limitation of
our enforcement mechanism, but a limitation of the specific
policy that it is enforcing here.

Note that this policy is a very simple information flow
policy, but already achieves something that was previously

Table VIII
ORIGIN SEPARATION POLICY

User
input

load_in_new_window(url) L
input_text(user window, nat, string) M(...)

User
output

window_opened H
page_loaded(user window, url,
rendered doc)

H

page_updated(user window, rendered doc) H
Network
input

receive(dom, nat, cookie updates,
resp body)

M(dom)

Network
output

send(dom, request uri, cookies, string) M(dom)

not possible with simple access control policies. We can run
a website making sure that certain user information is never
leaked. It is not hard to think of interesting extensions of
this idea for real-life browser scenario’s. We imagine for
example a “Keep all information in this field inside my
browser” button that you can push to prevent information
entered into a field from leaving your browser. The browser’s
policy enforcement could then use an enforcement technique
like ours to make sure that the rest of the behaviour of the
site is hopefully unmodified.

B. Separating origins

The airplane tickets e-commerce site example is more
typical for a general web site. In this scenario, a level of
trust is assumed between the user and the company hosting
the ticketing website, in order for the ticketing company to
provide useful information. Nevertheless, the standard same-
origin-policy (SOP) is not sufficient as it allows (in practice)
this data to be sent anywhere.

We believe that the basic model of the SOP is actually
correct. When a typical user enters information on a website,
it is typically his intent to disclose this information to the
owner of that website, but not others. Likewise, information
received from a website can be trusted to be sent back to this
website but not to others. We think that using information
flow enforcement techniques such as the one described
in this paper, a replacement for the SOP can be defined
that does achieve the intended information protection, with
sufficient backwards compatibility for much of the code
currently “out there”.

A somewhat evident idea here is to use a security lattice
with three types of levels: L, M(dom) for any domain dom
and H. The L and H levels are smaller resp. bigger than all
others and the M(...) domains are mutually incomparable.
The M(domain) level is assigned to all network events
originating from or going to this domain and to all user
input events that contain information destined for a page on
this domain. Output events going to the user are classified
as H. This policy is summarized in table VIII.

Table IX shows the execution of a prototypical airline
ticketing website script under the origin separation policy
from table VIII. We see that network output to “air.com”

Table IX
ORIGIN SEPARATION POLICY. M1 = M(“AIR.COM”), M2 =

M(“ATTACKER.COM”).

Input/Output
L load_in_new_window(”http://air.com”)

L H window_opened
L M1 send(”air.com”, request uri, cookies, ””))
H H window_opened
H M1 send(”air.com”, request uri, cookies, ””))

M1 receive(”air.com”, 0, cookie updates, doc(age=0, ...,
js inline))
M1 H page_loaded(user window, ”http://air.com”,

doc(age=0, ..., js inline))
H H page_loaded(user window, ”http://air.com”,

doc(age=0, ..., js inline))
M1 input_text(user window, 0, ”25”)

M1

H page_updated(user window, doc(age=25, ...,
js inline))

H window_opened
M1 send(”air.com”, request uri, cookies, ”?t=25”)
H window_opened
M2 send(”attacker.com”, request uri, cookies, ”?t=25”)

H

H page_updated(user window, doc(age=25, ...,
js inline))

H window_opened
M1 send(”air.com”, request uri, cookies, ”?t=25”)
H window_opened
M2 send(”attacker.com”, request uri, cookies, ”?t=25”)

Table X
ORIGIN SEPARATION POLICY, THIRD-PARTY SCRIPT.

M1=M(“AIR.COM”), M2=M(“REMOTE.COM”).

Input/Output
L load_in_new_window(”http://air.com”)

L H window_opened
M1 send(”air.com”, request uri, cookies, ””))

H H window_opened
M1 send(”air.com”, request uri, cookies, ””))

M1 receive(”air.com”, 0, cookie updates, doc(age=0, ...,
js remote))

M1
H page_loaded(user window, ”http://air.com”,

doc(age=0, ..., js remote))
M2 send(”remote.com”, request uri, cookies, ””))

H H page_loaded(user window, ”http://air.com”,
doc(age=0, ..., js remote))

M2 send(”remote.com”, request uri, cookies, ””))
...

is now permitted to be influenced by information from user
input in the corresponding web page.

Something interesting happens when we consider a page
that tries to download a third-party script at page load time.
In Table X, we see that our security mechanism prevents the
request for the third party script from being sent at all, very
likely breaking the site’s behaviour.

Let us see why this happens. The request for the third-
party script on host “remote.com” is produced in response
to the receive input event representing the receival of
the website document, since that is where it is specified
that the third-party script should be loaded. However, our
policy marks this input event as information that must only
be revealed through user output and network output to the

“air.com” domain. So our security enforcement cannot be
blamed for breaking the website, since it is only executing
what the policy specified. So that must mean that the policy
is wrong and we should have classified the receive input
event on a different security level?

Unfortunately, there is a very good reason why it should
be classified at this level. If we suppose the page that
is received represents the third step in the airline ticket
purchasing process, and contains a summary of all data
previously input by the user, then this is clearly information
that we want to protect and the policy is correct to not just
allow this info to leak to third-party sites.

One solution would be to provide support for declassifi-
cation, and to declassify parts of the page. However, declas-
sification is complex [?] and makes it hard to understand the
policy that is still being enforced. So we prefer to avoid it.

A possible answer is that the information flow policy
is not fine-grained enough. If we want to refine the SOP
retaining maximum compatibility, then we need to define a
policy that does a better job of formalizing the assumptions
in the current web security model. In this case, there is
the implicit notion that an HTML document contains in-
formation at different confidentiality levels. If the document
specifies that it requires a certain script to function then
this information must be permitted to leak to the website
in question. However, we have to make sure that the rest
of the document cannot be leaked in the process. The
next subsection discusses how to incorporate this in our
mechanism.

C. Sub-input-event security policies

The key to solving the issue is to be able to assign
different labels to different parts of a single input event. One
simple solution is to model such an input event as a number
of separate input events, so that we can give each of these
parts a different level. Then our enforcement mechanism and
our security and precision theorems can be applied as before.

An alternative, more intuitive way of thinking about this
splitting of an input event (where different levels can see
a different subset of the parts of the splitted event), is to
consider security-level dependent projections that project an
input event on the part of the event visible to a specific level.
We discuss our solution from this angle.

Whereas the policies we discussed in previous subsections
have been implemented for Featherweight Firefox, imple-
menting the solution we discuss in this section is ongoing
work.

So far, the information flow policy was defined by the
function lbl : Act → SecLevel returning the security level
for any input or output event.

Alternatively, we can give a more flexible definition of a
security policy by restricting the lbl function to output events
and additionally requiring a set of projection functions
{πl : Input→ Input ∪ {Suppress} | l ∈ SecLevel}.

These projection functions have to be idempotent and such
that the projection function πH at maximum level H is the
identity function and for all l ≤ l′ and input events i and
i′, we have that πl(i) = πl(i

′) whenever πl′(i) = πl′(i
′).

The projection function πl intuitively defines the view of
an input event at security level l (Suppress is a keyword
signaling that the input event should not be visible at this
level at all) and what we’ve been doing up to now actually
corresponds to projection functions defined as follows:

πl(i) =

{
i if l ≥ lbl(i)
Suppress if l 6≥ lbl(i)

Based on these projection functions, we can adapt the
formal definitions of non-interference and our enforcement
technique in an obvious way. The wrapper constructed by
our enforcement technique will no longer send an input
event i to all sub-executions at levels l ≥ lbl(i), but will
instead send the projection πl(i) of the input event to all
sub-executions at levels l such that πl(i) 6= Suppress. We
conjecture that analogues for all of our results hold for these
definitions.

D. Security level per element

With these sub-input-event policies, we can refine our
solution for the origin separation policy to make it align
more closely with the assumptions that are implicit in
the web model. In particular, for an input event i =
receive(dom, nat, cookie updates, body), we propose to
define the projection functions as follows:

πl(i) =
i if l = H or l =M(dom),
receive(dom, nat, {}, projdom′(body))

if l =M(dom′), dom 6= dom′,
Suppress if l = L,

where projdom(body) projects a HTML document onto
an almost empty document with only public information
remaining. It is important that script tags referencing scripts
on domain dom′ are also kept. The assumptions here is that
when a server generates a page for a user, most information
is intended to be kept private, where private means that it can
only flow to the user and back to the originating server. We
make an exception only for that information that the server
must have intended to be leaked to certain destinations.
For example, when the server links to a script on a third-
party domain, then the server is well aware that this will
trigger a request to the domain in question. Therefore, there
is no harm in disclosing this fact on the security level
corresponding to that third-party domain.

If we apply this relaxed policy to the “air.com” website
script with a third-party script, then contrary to Table X,
the request to “remote.com” will be sent properly, in the
M2 execution. A question is then what should happen when

Table XI
FINE-GRAINED ORIGIN SEPARATION POLICY, THIRD-PARTY SCRIPT.

M1=M(“AIR.COM”), M2=M(“REMOTE.COM”).

Input/Output
L load_in_new_window(”http://air.com”)

L H window_opened
M1 send(”air.com”, request uri, cookies, ””))

H H window_opened
M1 send(”air.com”, request uri, cookies, ””))

M1 receive(”air.com”, 0, cookie updates, doc(age=0, ...,
js remote))

M1
H page_loaded(user window, ”http://air.com”,

doc(age=0, ..., js remote))
M2 send(”remote.com”, request uri, cookies, ””))

M2 H page_loaded(user window, ”http://air.com”,
projM2(doc(age=0, ..., js remote)))

M2 send(”remote.com”, request uri, cookies, ””)

H H page_loaded(user window, ”http://air.com”,
doc(age=0, ..., js remote))

M2 send(”remote.com”, request uri, cookies, ””))
L receive(”remote.com”, 0, cookie updates, js function)

...

the response for this event comes in. If we classify it at
security level M(“remote.com”), then we are saying that its
content must not leak to the “air.com” domain, which is
a strong restriction. If the third-party script is a javascript
library like JQuery, then it is clear that this restriction is too
strong and will break the functionality of the website. Hence
the straightforward solution is to classify scripts loaded from
script tags in the document on the L security level (loosely
corresponding to the current browser policy).

In some cases, it might be desirable to give these scripts a
higher classification, for instance if the third-party script is
the JSON result of a web service call. In that case, protection
of the returned script is valuable, since there might be a form
of CSRF “Javascript hijacking” [] attack taking place.

Hence, the classification of this response is a trade-off
between security and compatibility. This is a result of the
ambiguities in the current web security model.

Taking inspiration from existing heuristics to protect
client-side against CSRF attacks [], we believe an interesting
path for future work is to investigate if a heuristic labeling
algorithm can be defined that will classify the contents of
loaded third-party scripts in a reasonably secure, yet compat-
ible way, using information like the security properties of the
protocol it was downloaded over (e.g. HTTPS vs. HTTP),
whether cookies were sent along with the request, etc. If
cookies are available to be sent along with the request, it
might even be a good idea to request the script twice (resp.
with and without cookies) and expose the two results on
different levels. Experiments with real websites are needed
to flesh this out further.

With a fine-grained policy as described here, the proto-
typical airline ticketing website using a remote script would
behave as in Table XI. The remote script is now working
fine, yet user input and document data is protected suitably.

VII. IMPLEMENTATION

We have implemented our enforcement mechanism based
on the idea of secure multi-execution for the Featherweight
Firefox browser model in OCaml and tested it on our
policies4.

The operational semantics defined in Fig. 2 is imple-
mented at the level of a reactive system. Even though the
construction is relatively simple, we had to address several
interesting issues.

One problem is the fact that policies can potentially have
an infinite number of levels, for instance in the policies
where there is one level per origin. We have solved this by
adding additional levels lazily. The following lemma shows
that this is sound (we prove it for finite but unbounded
streams).

Recall that the state of the wrapped system is a tuple
(R,L), where R is a pointer to the running copies of the
browser and L 6= ∅ is a list of levels at which the browser
copies are in producer state. When waiting for a new input,
the state of the wrapped system is (R, ∅) because all the
current states of the browser copies are in consumer state.

Lemma 7.1: Suppose the current state of the wrapped
system is W = (R, ∅). If R is defined for l and l′ and
the input I is such that πl(I) = πl′(I) (the input I looks
the same at l and l′), then R(l) = R(l′).

Hence, when the browser first sees an input of level l
(e.g. the user visits a new website), we can lazily add the
sub-execution at that level based on this lemma. We take the
existing sub-execution at level l′ such that πl(I) = πl′(I)
(where I is the input arrived so far) and use a copy of it
for l. In the implementation it would usually mean that l′ is
one level lower than l in the security lattice.

In particular, we implemented this idea for the policy
with security levels of three types: L, M(dom) and H. In
the beginning of the run the wrapped system has only two
copies of the original browser: at levels H and L. If the input
at a new level l arrives, then in the security lattice it is such
that L < l < H. This means that all the inputs I arrived
so far look the same at new level l and the lowest level L:
πl(I) = πL(I). Hence, we take the Lth copy of the browser
and use it for a copy at new level l.

Do copies at level l′ always exists for an input at a new
level l such that πl(I) = πl′(I)? Unfortunately not. If the
new input level l is such that there exist two incomparable
levels l1 < l and l2 < l, then πl(I) 6= πl1(I), πl(I) 6=
πl2(I). In this case the lth copy of the browser should be
a combination of the l1th and l2th copies. Note that this
cannot happen if we consider security level lattices (instead
of general posets) and if we make sure that the set of levels
for which we run a copy remains a sub-lattice after adding
a new level.

4Concretely an information-flow policy is implemented as an OCaml
function mapping input and output events to security levels.

Our implementation only considers the security po-sets
of the forms we discussed in the previous sections, and for
these po-sets, we can always lazily add new levels. This
is because the security level posets we consider are in fact
lattices and any set containing H and L is a sub-lattice.

Similarly, it can happen that the output event o produced
by the lth copy of the browser has a level l′ and is not in
the list of levels at which the wrapped system is currently
running the browser copies. This means that there is no
copy of the browser at level l′ that will be able to output
o. Hence, if the level l′ of o is such that l < l′ then we
allow the lth copy to output o because this does not violate
the noninterference (higher inputs should not influence lower
outputs). However, we do not add a new copy of the browser
at level l′ to be run by the wrapped system because it is not
necessary for the correctness of our approach.

We have implemented the solutions discussed in this
section and provided an implementation for the High/Low
policy as well as for the separating origins policy described
in Section VI. As we already argued, more sophisticated
policies such as “sub-input-event” are ongoing work as
they need a substantial intervention in the model of the
Featherweight Firefox.

VIII. RELATED WORK

There is a large body of related work on information
flow security in general, or on web security techniques in
general. We refer the reader to three good sources where
these fields are surveyed. Sabelfeld and Myers [12]) survey
static techniques for information flow enforcement, and Le
Guernic [5] surveys dynamic techniques. The PhD thesis of
Martin Johns [7] gives a good survey of web security tech-
niques and countermeasures for web-related vulnerabilites.

In the rest of this section, we focus on the work that is
most closely related to ours.

A first, a very related line of work is the work by
Bohannon et al. that has been discussed extensively in
Section III.

Next, there are several other security countermeasures that
have strong similarities to our approach.

The technique of secure multi-execution proposed by
Devriese and Piessens [4] is the most closely related.
These authors proposed secure multi-execution for enforcing
noninterference, and proved it to be sound and precise.
They show these results for a simple sequential program-
ming language with synchronous I/O. Our work extends
theirs, by showing how the same technique can be applied
to reactive systems and hence browsers. Interestingly, the
formal guarantees we get are different. Whereas Devriese
and Piessens can prove timing-sensitive non-interference, we
have to settle for termination-insensitive non-interference.
The main reason for this is that we are more restricted in
the reordering of output events. On the other hand, we get
a substantially stronger precision result. We show precision

for any well-behaved run, whereas Devriese and Piessens
can only prove precision for programs that are termination-
sensitively non-interferent.

A similar approach was proposed by Capizzi et al. [3]
where they run two executions of operating system processes
for the H (secret) and L (public) security level. They limit
themselves to this simple two-element po-set, but they pro-
vide an actual implementation, and report on benchmarks.

Some other web-browser security techniques solve differ-
ent problems, but use techniques that look like ours.

One recently proposed technique called AdJail [9] is
particularly aimed at the information flow between the
user data displayed on the web page and the third-party
advertisements. Similarly to the secure multi-execution and
to the shadow execution approaches, the authors propose
to have a shadow copy of the web page where all the
interactions between the ad script and the original page
are controlled. They also report on an implementation. This
paper is an excellent example of how shadow executions
can be used to address specific web security issues at a
reasonable performance cost, but obviously the scope of
the protection offered is smaller than for our proposed
countermeasure.

Doppelganger [13] is another example of a similar ap-
proach with a very specific focus. It focusses on keeping
control over HTTP cookies. The approach suggests to have
two copies of the running web page: with and without
cookies. It defines the difference between the pages in such
a way that in certain case the enforcement mechanism can
decide automatically whether keeping cookies is important
for the correct functionality of the web page. This technique,
however, is concerned only about the HTTP cookies and
does not cover general information flow or other browser
functionalities.

Several very recent works have applied information flow
analysis to web mashups. Magazinius et al. [10] propose
an approach to construct a security lattice for mashups.
Similarly to our approach, where an element of security
lattice depends on the origin of the event, the authors of this
paper defined the elements as sets of origins. So the security
lattice consists of elements with one origin (for events) and
elements with all possible combinations of the origins. In
cases where different origin domains have to communicate,
the approach relies on declassification. The paper is focused
on the definition of the policies, and does not focus on
enforcement mechanisms.

Li, Zhang and Wang also deal with mashups in their
Mash-IF approach [8]. The security levels there consists of
a tuple of sensitivity level and an origin. It is a practical
approach, but no soundness or precision guarantees are
provided.

IX. CONCLUSION AND FUTURE WORK

This paper has studied the suitability of non-interference
as a replacement for the same-origin-policy in browsers. We
have shown that it is possible to enforce non-interference
for a browser securely and precisely for a broad class
of information flow policies (even including policies with
an infinite number of levels). In addition we have shown
that, even without any support for declassification, useful
information flow policies for a browser can be defined.

An important remaining challenge is the development
of efficient implementation techniques for our enforcement
mechanism (or alternative secure and precise mechanisms).
Another important item for future work is the evaluation of
the impact of the policies we proposed on real web sites:
while the security benefits of a non-interference policy are
high, it is to be expected that there will be a price to pay.
Even though we have shown by example that some level
of compatibility with the current web can be maintained, it
is to be expected that many detailed incompatibilities will
show up, and evaluating the cost of these – and how they
could be mitigated – is a key challenge for future work.

Still, we do believe that the results reported in this paper
provide evidence that it is worthwhile to go further down
this road, and do the substantial effort of integrating non-
interference mechanisms in standard browsers in order to
evaluate performance and compatibility costs.

REFERENCES

[1] A. Bohannon and B. C. Pierce. Featherweight firefox:
Formalizing the core of a web browser. In Proceedings of
the USENIX Conference on Web Application Development
2010, 2010. To be published.

[2] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and
S. Zdancewic. Reactive noninterference. In Proceedings of
the 16th ACM Conference on Communications and Computer
Security, pages 79–90. ACM Press, 2009.

[3] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. Prasad
Sistla. Preventing information leaks through shadow exe-
cutions. In Proceedings of 24th Annual Computer Security
Applications Conference, ACSAC ’08, pages 322–331. IEEE
Computer Society, 2008.

[4] D. Devriese and F. Piessens. Non-interference through
secure multi-execution. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy, SP ’10, pages 109–124.
IEEE Computer Society Press, 2010.

[5] G. Le Guernic. Confidentiality Enforcement Using Dynamic
Information Flow Analyses. PhD thesis, Kansas State Uni-
versity, 2007.

[6] Martin Johns. On javascript malware and related threats.
Journal in Computer Virology, 4:161–178, 2008.

[7] Martin Johns. Code Injection Vulnerabilities in Web
Applications - Exemplified at Cross-site Scripting. PhD
thesis, University of Passau, 2009.

[8] Z. Li, K. Zhang, and X. Wang. Mash-IF : Practi-
cal Information-Flow Control within Client-side Mashups.
In Proceeedings of IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN-10), pages 251–
260, 2010.

[9] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan.
AdJail : Practical Enforcement of Confidentiality and Integrity
Policies on Web Advertisements. In Proceedings of the 19th
USENIX Security Symposium, 2010.

[10] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-
based approach to mashup security. In Proceedings of ACM
Symposium on Information, Computer and Communications
Security (ASIACCS-10), pages 15–23. ACM Press, 2010.

[11] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Cross-site scripting prevention with dynamic data
tainting and static analysis. In Proceedings of the Symposium
on Network and Distributed System Security (NDSS 2007),
2007.

[12] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. In IEEE Journal on Selected Areas in
Communication, volume 21, pages 5–19, 2003.

[13] U. Shankar and C. Karlof. Doppelganger: Better browser
privacy without the bother. In Proceedings of the 13th ACM
Conference on Communications and Computer Security, CCS
’06, pages 154–167. ACM Press, 2006.

[14] K. Singh, A. Moshchuk, H.J. Wang, and W. Lee. On the
incoherencies in web browser access control policies. In
Proceedings of the 2010 IEEE Symposium on Security and
Privacy, pages 463–478, 2010.

